
Programming Techniques

Week 2

Topic: Data abstraction and ADTs

01/2014

What is in today?

 Programming paradigms in C++

 Data Abstraction and Abstract Data Types

Programming Paradigms

 The most important aspect of C++ is its

ability to support many different

programming paradigms

 We will cover this term

 procedural abstraction

 modular abstraction

 data abstraction

 as ways or techniques used to solve problems

Procedural Abstraction

 This is where you build a “fence” around

program segments, preventing some parts

of the program from “seeing” how tasks are

being accomplished.

 Any use of globals causes side effects that

may not be predictable, reducing the

viability of procedural abstraction

Procedural Abstraction

 This may be the approach taken with stage

#1...where the major tasks are broken into

functions.

 You can test your functions separately

before the entire program is written and

debugged.

Modular Abstraction

 With modular abstraction, we build a “screen”

surrounding the internal structure of our program

prohibiting programmers from accessing the data

except through specified functions.

 Many times data structures (e.g., structures)

common to a module are placed in a header files

along with prototypes (allows external references)

Modular Abstraction

 The corresponding functions that manipulate the

data are then placed in an implementation file.

 Modules (files) can be compiled separately,

allowing users access only to the object (.o) files

 We progress one small step toward OOP by

thinking about the actions that need to take place

on data...

Modular Abstraction

 Later this term we will be implementing
modular abstraction by separating out
various functions/structures/classes into
multiple .cpp and .h files.

 .cpp files contain the implementation of our
functions

 .h files contain the prototypes, class and
structure definitions.

Modular Abstraction

 We then include the .h files in modules that
need access to the prototypes, structures,
or class declarations:

 #include “myfile.h”

 (Notice the double quotes!)

 We then compile the programs

Data Abstraction

 Data Abstraction is one of the most

powerful programming paradigms

 It allows us to create our own user defined

data types (using the class construct) and

 then define variables (i.e., objects) of those

new data types.

Data Abstraction

 With data abstraction we think about what

operations can be performed on a

particular type of data and not how it does

it

 Here we are one step closer to object

oriented programming

Data Abstraction

 Data abstraction is used as a tool to

increase the modularity of a program

 It is used to build walls between a program

and its data structures

 what is a data structure?

 talk about some examples of data structures

 We use it to build new abstract data types

Data Abstraction

 An abstract data type (ADT) is a data type

that we create

 consists of data and operations that can be

performed on that data

 Think about an char type

 it consists of 1 byte of memory and operations

such as assignment, input, output, arithmetic

operations can be performed on the data

Data Abstraction

 An abstract data type is any type you want to add

to the language over and above the fundamental

types

 For example, you might want to add a new type

called: list

 which maintains a list of data

 the data structure might be an array of structures

 operations might be to add to, remove, display all,

display some items in the list

Data Abstraction

 Once defined, we can create lists without
worrying about how the data is stored

 We “hide” the data structure used for the
data within the data type -- so it is
transparent to the program using the data
type

 We call the program using this new data
type: the client program (or client)

Data Abstraction

 Once we have defined what data and operations

make sense for a new data type, we can define

them using the class construct in C++

 Once you have defined a class, you can create as

many instances of that class as you want

 Each “instance” of the class is considered to be

an “object” (variable)

Data Abstraction

 Think of a class as similar to a data type

 and an object as a variable

 And, just as we can have zero or more
variables of any data type...

 we can have zero or more objects of a class!

 Then, we can perform operations on an
object in the same way that we can access
members of a struct...

Example

 For a list of videos, we might start with a

struct defining what a video is:

 struct video {

 char title[100];

 char category[5];

 int quantity;

};

Example

 For a list of videos data type:
class list {

 public:

 list();

 int add (const video &);

 int remove (char title[]);

 int display_all();

 private:

 video my_list[CONST_SIZE];

 int num_of_videos;

};

Example

 For a client to create a list object:
main() {

 list home_videos; //has an array of 100 videos

 list kids_shows; //another 100 videos here...

 •••

 video out_of_site;

 cin.get(out_of_site.title,100,’\n’);

 cin.ignore(100,’\n’);

 •••

 home_videos.add(out_of_site); //use operation

For Next Time

 Study classes...we’ll look at terminology

 Next time we will discuss:

 class constructors

 where to place the class “interface” we saw

previously and

 where to place the implementation of the

“member functions”

