Programming Techniques

Week 2
Topic: Data abstraction and ADTs

01/2014



What is Iin today?

Programming paradigms in C++
Data Abstraction and Abstract Data Types




Programming Paradigms

The most important aspect of C++ Is its
ability to support many different
programming paradigms

We will cover this term
B procedural abstraction
B modular abstraction

B data abstraction
[1 as ways or technigues used to solve problems




Procedural Abstraction

This is where you build a “fence” around
program segments, preventing some parts
of the program from “seeing” how tasks are
being accomplished.

Any use of globals causes side effects that
may not be predictable, reducing the
viability of procedural abstraction




Procedural Abstraction

This may be the approach taken with stage
#1...where the major tasks are broken into
functions.

You can test your functions separately
before the entire program is written and
debugged.




Modular Abstraction

With modular abstraction, we build a “screen”
surrounding the internal structure of our program
prohibiting programmers from accessing the data
except through specified functions.

Many times data structures (e.g., structures)
common to a module are placed in a header files
along with prototypes (allows external references)




Modular Abstraction

The corresponding functions that manipulate the
data are then placed in an implementation file.

Modules (files) can be compiled separately,
allowing users access only to the object (.0) files

We progress one small step toward OOP by
thinking about the actions that need to take place
on data...




Modular Abstraction

Later this term we will be implementing
modular abstraction by separating out
various functions/structures/classes into
multiple .cpp and .h files.

.cpp files contain the implementation of our
functions

.h files contain the prototypes, class and
structure definitions.




Modular Abstraction

We then include the .h files In modules that

need access to the prototypes, structures,
or class declarations:

B #include “myfile.n”
B (Notice the double quotes!)

We then compile the programs




Data Abstraction

Data Abstraction I1s one of the most
powerful programming paradigms

t allows us to create our own user defined
data types (using the class construct) and

B then define variables (i.e., objects) of those
new data types.




Data Abstraction

With data abstraction we think about what
operations can be performed on a

particular type of data and not how It does
it

Here we are one step closer to object

oriented programming




Data Abstraction

Data abstraction 1s used as a tool to
Increase the modularity of a program

It is used to build walls between a program
and Iits data structures

B what Is a data structure?

B talk about some examples of data structures

We use it to build new abstract data types




Data Abstraction

An abstract data type (ADT) Is a data type
that we create

B consists of data and operations that can be
performed on that data

Think about an char type

B it consists of 1 byte of memory and operations
such as assignment, input, output, arithmetic
operations can be performed on the data




Data Abstraction

An abstract data type Is any type you want to add
to the language over and above the fundamental
types

For example, you might want to add a new type
called: list

B which maintains a list of data

B the data structure might be an array of structures

B operations might be to add to, remove, display all,
display some items in the list




Data Abstraction

Once defined, we can create lists without
worrying about how the data is stored

We “hide” the data structure used for the
data within the data type -- so it is
transparent to the program using the data
type

We call the program using this new data
type: the client program (or client)




Data Abstraction

Once we have defined what data and operations
make sense for a new data type, we can define
them using the class construct in C++

Once you have defined a class, you can create as
many instances of that class as you want

Each “instance” of the class is considered to be
an “object” (variable)




Data Abstraction

Think of a class as similar to a data type
B and an object as a variable

And, Just as we can have zero or more
variables of any data type...

B we can have zero or more objects of a class!
Then, we can perform operations on an

object in the same way that we can access
members of a struct...




Example

For a list of videos, we might start with a
struct defining what a video is:

struct video {
char title[100];
char categoryl[5];
int quantity;

IS




Example

For a list of videos data type:

class 1list {

public:
list ()
int add (const video &);
int remove (char titlel]);
int display all();
private:
video my 1list[CONST SIZE];
int num of videos;

|




Example

For a client to create a list object:

main () {

list home videos; //has an array of 100 videos

list kids shows; //another 100 videos here...

video out of site;

cin.get (out of site.title,100,’\n’);
cin.ignore (100, "\n’");

home videos.add(out of site); //use operation




For Next Time

Study classes...we'll look at terminology

Next time we will discuss:
B class constructors

B where to place the class “interface” we saw
previously and

B where to place the implementation of the
“member functions”




