Programming techniques

Topic 6 — Recursion

3/2015



Agenda

The Nature of Recursion
Tracing a Recursive Function
Work through Examples of Recursion




Recursion

Recursion is repetition (by self-reference)
M it is caused when a function calls/invokes itself.

B Such a process will repeat forever unless
terminated by some control structure.




Recursion

So far, we have learned about control
structures that allow C++ to iterate a set of
statements a number of times.

In addition to iteration, C++ can repeat an
action by having a function call itself.

B This is called recursion. In some cases it is
more suitable than iteration.




Recursion

While recursion is very powerful

B and will allow us to at times simply solve
complex problems

B it should not be used If iteration can be used to
solve the problem in a maintainable way (i.e., if
it isn’t too difficult to solve using iteration)

B so, think about the problem. Can loops do the
trick instead of recursion?




Recursion

Why select iteration versus recursion?
B Efficiency!
B Every time we call a function a stack frame is

pushed onto the program stack and a jJump is
made to the corresponding function

B This is done in addition to evaluating a control
structure (such as the conditional expression for an
If statement) to determine when to stop the
recursive calls.

B With iteration all we need is to check the control
structure (such as the conditional expression for
the while, do-while, or for)




Recursion

Let's look at a very simple example;

B in this case we can see that by using recursion
we can make some difficult problems very
trivial...

B many of these problems would be very difficult
to solve if you only were able to use iteration.

B trace through the following problem in
class...showing how the stack frame works




Recursion

What is the purpose of the following?

void strange (void) ;
int main () {
cout <<"Please enter a string" <<endl;
strange () ;
cout <<endl;
return 0;

}

voilid strange (void) {

char ch;

cin.get (ch);

if (!cin.eof () && ch !'= '"\n'") {
strange () ;

cout << ch;

—



Recursion

This program writes the reverse of what was
entered at the keyboard, no matter how many
characters were entered!

B Try to write an equally simple program just using the
iterative statements we know about; it would be difficult
to make it behave the same without limiting the number
of characters that can be entered or using up a lot of
memory with a huge array of characters!

B Notice, with recursion, we didn't have to even use an
array!!




Recursion

What happens to this “power” if we had
swapped the cout statement with the
recursive call in the previous example?

B It would have simply read and echoed what
was typed in.

B Recursion would be overkill: iteration should be
used instead.




Recursion

[

[

When a recursive call is encountered, execution of the
current function is temporarily stopped.

This is because the result of the recursive call must be
known before it can proceed.

So, it saves all of the information it needs in order to
continue executing that function later (i.e., all current
values of all local variables and the location where it
stopped).

Then, when the recursive call is completed, the
computer returns and completes execution of the
function.




Recursion

=

O O

In order for your recursive calls to be useful, they must
be designed so that your program will ultimately
terminate.

As with iteration or looping, there is danger of creating
a recursive function that is an infinite loop!

We need to be careful to prevent infinite repetition.

Therefore, when designing a recursive function

B one of the first steps should be to determine what the
stopping condition should be




Recursion

The best way to do this is to use

B an if statement to determine if a recursive call
should be made -- depending on the value of some
conditional expression.

Eventually, every recursive set of calls should
reach a point that does not require recursion (l.e.,
this will stop recursion).

Recursion should not be used If it makes your
algorithm harder to understand or if it results In
excessive demands on storage or execution time.




Recursion

[1 Therefore, there are 3 requirements when using recursion:

B Every recursive function must contain a control structure
that prevents further recursion when a certain state is
reached.

B That state must be able to be reached each time you run
the program.

B When that state is reached, the function must have
completed its computation and (if the function returns a
value) return the appropriate value for each recursive call.
don’t forget to have the function “use” the returned value...if
there is one!




Recursion

In class, walk through the following:

int factorial (int n)
{
if (n < 2)
return 1;
else

return (n * factorial (n-1));




Recursion

In class, walk through the following:

int factorial (int n)
{
if (n < 2)
return 1;
else
return (n * factorial (n-1));

}

Compare and contrast with the iterative version.
Which Is better? Why?




Recursion

If you request nesting or recursion that goes
beyond what your system can handle...you
will get an error when you try to execute your
program...such as "stack overflow".

This simply means that you've tried to make
too many function calls - recursively.

If you get this error, one clue would be to

look to see if you have infinite recursion.

B This situation will cause you to exceed the size of
your stack -- no matter how large your stack is!




Examples of Recursion

Two meaningful examples of recursion are the

towers of hanoi problem
binary search

Let’s discuss each of these and examine:

the process they go thru
see how recursion helps solve the problem

look at the implementation details (of the binary
search)

discuss the benefits and drawbacks of recursion
for these algorithms




For Next Time

Practice Recursion

Do the following:

B Rewrite the insert and remove functions with
linked lists using recursion (just for practice...)
[J try to add to the end recursively

L1 try to remove in the middle recursively




