
Programming techniques

Topic 6 – Recursion

3/2015

Agenda

 The Nature of Recursion

 Tracing a Recursive Function

 Work through Examples of Recursion

Recursion

 Recursion is repetition (by self-reference)

 it is caused when a function calls/invokes itself.

 Such a process will repeat forever unless

terminated by some control structure.

Recursion

 So far, we have learned about control

structures that allow C++ to iterate a set of

statements a number of times.

 In addition to iteration, C++ can repeat an

action by having a function call itself.

 This is called recursion. In some cases it is

more suitable than iteration.

Recursion

 While recursion is very powerful

 and will allow us to at times simply solve

complex problems

 it should not be used if iteration can be used to

solve the problem in a maintainable way (i.e., if

it isn’t too difficult to solve using iteration)

 so, think about the problem. Can loops do the

trick instead of recursion?

Recursion

 Why select iteration versus recursion?

 Efficiency!

 Every time we call a function a stack frame is
pushed onto the program stack and a jump is
made to the corresponding function

 This is done in addition to evaluating a control
structure (such as the conditional expression for an
if statement) to determine when to stop the
recursive calls.

 With iteration all we need is to check the control
structure (such as the conditional expression for
the while, do-while, or for)

Recursion

 Let's look at a very simple example;

 in this case we can see that by using recursion

we can make some difficult problems very

trivial...

 many of these problems would be very difficult

to solve if you only were able to use iteration.

 trace through the following problem in

class...showing how the stack frame works

Recursion

 What is the purpose of the following?
 void strange(void);

 int main(){

 cout <<"Please enter a string" <<endl;

 strange();

 cout <<endl;

 return 0;

 }

 void strange(void) {

 char ch;

 cin.get(ch);

 if (!cin.eof() && ch != '\n'){

 strange();

 cout << ch;

 }

 }

Recursion

 This program writes the reverse of what was

entered at the keyboard, no matter how many

characters were entered!

 Try to write an equally simple program just using the

iterative statements we know about; it would be difficult

to make it behave the same without limiting the number

of characters that can be entered or using up a lot of

memory with a huge array of characters!

 Notice, with recursion, we didn't have to even use an

array!!

Recursion

 What happens to this “power” if we had

swapped the cout statement with the

recursive call in the previous example?

 It would have simply read and echoed what

was typed in.

 Recursion would be overkill; iteration should be

used instead.

Recursion

 When a recursive call is encountered, execution of the

current function is temporarily stopped.

 This is because the result of the recursive call must be

known before it can proceed.

 So, it saves all of the information it needs in order to

continue executing that function later (i.e., all current

values of all local variables and the location where it

stopped).

 Then, when the recursive call is completed, the

computer returns and completes execution of the

function.

Recursion

 In order for your recursive calls to be useful, they must

be designed so that your program will ultimately

terminate.

 As with iteration or looping, there is danger of creating

a recursive function that is an infinite loop!

 We need to be careful to prevent infinite repetition.

 Therefore, when designing a recursive function

 one of the first steps should be to determine what the

stopping condition should be

Recursion

 The best way to do this is to use

 an if statement to determine if a recursive call

should be made -- depending on the value of some

conditional expression.

 Eventually, every recursive set of calls should

reach a point that does not require recursion (i.e.,

this will stop recursion).

 Recursion should not be used if it makes your

algorithm harder to understand or if it results in

excessive demands on storage or execution time.

Recursion

 Therefore, there are 3 requirements when using recursion:

 Every recursive function must contain a control structure

that prevents further recursion when a certain state is

reached.

 That state must be able to be reached each time you run

the program.

 When that state is reached, the function must have

completed its computation and (if the function returns a

value) return the appropriate value for each recursive call.

don’t forget to have the function “use” the returned value...if

there is one!

Recursion

 In class, walk through the following:

int factorial(int n)

 {

 if (n < 2)

 return 1;

 else

 return (n * factorial(n-1));

 }

Recursion

 In class, walk through the following:

int factorial(int n)

 {

 if (n < 2)

 return 1;

 else

 return (n * factorial(n-1));

 }

 Compare and contrast with the iterative version.
Which is better? Why?

Recursion

 If you request nesting or recursion that goes

beyond what your system can handle...you

will get an error when you try to execute your

program...such as "stack overflow".

 This simply means that you've tried to make

too many function calls - recursively.

 If you get this error, one clue would be to

look to see if you have infinite recursion.

 This situation will cause you to exceed the size of

your stack -- no matter how large your stack is!

Examples of Recursion

 Two meaningful examples of recursion are the

 towers of hanoi problem

 binary search

 Let’s discuss each of these and examine:

 the process they go thru

 see how recursion helps solve the problem

 look at the implementation details (of the binary

search)

 discuss the benefits and drawbacks of recursion

for these algorithms

For Next Time

 Practice Recursion

 Do the following:

 Rewrite the insert and remove functions with

linked lists using recursion (just for practice...)

 try to add to the end recursively

 try to remove in the middle recursively

