
Object-oriented programming

Week 4 – Operator overloading

5/2014
CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

What will be discussed?

 What is function overloading?

 Operator overloading

 Overloading cin and cout

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading

 There are many different “definitions” for

the same name

 In C++, overloading functions are

differentiated by their signatures (i.e.

number/types of arguments)

 Note: the return type is not considered in

differentiating overloading functions.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator Overloading

 To define operator implementations for our

new user-defined types

 For example, operators such as +, -, *, /

are already defined for built-in types

 When we have a new data type, e.g.
Fraction, we need to define new

operator implementations to work with it.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators can be overloaded

+ - * / % ^ &

| ~ ! = < > +=

-= *= /= %= ^= &= |=

<< >> >>= <<= == != <=

>= && || ++ -- ->* ,

-> [] () new new[] delete
delete[

]

• Operator :: or . or .* cannot be defined by users.

• Operators sizeof, typeid, ?: cannot be overloaded.

• Operators =, ->, [], () can only be overloaded by non-static functions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading guidelines

 Do what users expect for that operator.

 Define them if they make logical sense.

E.g. subtraction of dates are ok but not

multiplication or division

 Provide a complete set of properly related

operators: a = a + b and a+= b have the

same effect

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Syntax

 Declared & defined like other methods,
except that the keyword operator is used.

<returned-type> operator<op>(arguments)

Example:

bool FullName::operator==(const FullName& rhs)

{

 return((sFirstName==rhs.sFirstFName) &&

 (sSurname==rhs.sSurName));

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators in use

int main()

{

 FullName s1, s2;

 if (s1 == s2) //s1.operator==(s2)

 {

 ...

 }

 ...

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercise

 Implement a Fraction class with basic

arithmetic operators: +, -, *, /

 Remember to handle:

Fraction x, y;

y = x + 5;

y = 5 + x;

 Implement prefix and postfix increment:

x++ and ++x. Hint: using dummy int

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The keyword: friend

 With the keyword friend, you grant

access to other functions or classes

 Friend functions give a flexibility to the

class. It doesn’t violate the encapsulation of

the class.

 Friendship is “directional”. It means if class

A considers class B as its friend, it doesn’t

mean that class B considers A as a friend.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Example

 In doSomething(), we can have access
to private data members of the class Date

class Date

{

 public:

 ...

 friend void doSomething();

 private:

 int iDay, iMonth, iYear;

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Friend functions

 Friend functions is called like f(x) while

member functions is called x.f()

 Use member functions if you can. Only

choose friend functions when you have to.

 Sometimes, friend functions are good:

 Binary infix arithmetic operators, e.g. +, -

 Cannot modify original class, e.g. ostream

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Member and non-member functions

 int main()

{

 FullName s1, s2;

 if (s1 == s2)

 // member: s1.operator==(s2)

 // or non-member: operator==(s1, s2)

 {

 ...

 }

 ...

}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading cin and cout

 We do not have access to the istream or
ostream code  cannot overload << or >>

as member functions

 They cannot be members of the user-defined

class because the first parameter must be an

object of that type

 Operators << and >> must be non-members,

but it needs to access to private data

members  make them friend functions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Typical syntax

 The general syntax for insertion and

extraction operator overloadings:

ostream& operator<<(ostream& out, const Fraction& x)

{

 out << x.numerator << “ / “ << x.denominator;

 return out;

}

istream& operator>>(istream& in, Fraction& x);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Exercises

 Implement insertion and extraction
operators for Fraction and Date class

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Final notes about Op overloading

 Subscript operators often come in pair

 Maintain the usual identities for x == y and

x != y

 Prefix/Postfix operators for ++ and – –

 Prefix returns a reference

 Postfix return a copy

const A& operator[] (int index) const;

A& operator[] (int index);

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

