Object-oriented programming

Week 8: Exception Handling
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What will be discussed?

Introduction
try-throw-catch
RAII
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Introduction: some ways to handle errors

Terminate the program immediately

Return a special value to represent that the
program got some errors

Return a normal value but change the state
of the whole program to “error state”

Invoke a certain function when there is any
error
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[1] terminate immediately

It Is not a good way to do because most of
the times, we can handle the error and
continue the program instead of just simply
terminate the running program
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[2] return a special value

The special value Is not always possible to
represent. In some cases, the function
might take all the range of the possible
values. Thus, there is no special value to
represent It.

Also, you need to check it every time you
Invoke the function

Or, the function may not have a return
[] E.g. constructors
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An example

] You have to check every time = makes the
program bigger and harder to maintain
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[3] return a normal value but change the
state of the program to “error state”

The caller might not notice the program has
been put into “error state”

In C language, many libraries have used
this method and change the global variable
errno to a special value. It is hard to keep
checking this value to know If there Is an
error.

It Is also not suitable for parallel processing
applications
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Exception handling

It Is a simple but powerful technigue in C++
to help you handle errors.

Exception handling allows you to separate

the error handling section from the normal
program
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Exception handling

[l C++ provides a mechanism via try-throw-
catch to handle exeption
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An example: x*y/ (x-y)
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class bad index{};

class no memory{} ;;/ )

‘{mld Lest ) different exception class to
differentiate errors

1f(...)
throw bad index () ; \ J
1f(...)
throw no memory();

}

, : throw exception
int main() {

try
test () ;

}

catch (bad index& bi) {
. —

catch and

} — handle
catch (no memoryé& nm) {

CuuDuongThanCong.com https://fb.com/tailieudientucntt
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catch

catch can access and change the value of
the exception variables but all changes are
just local within exception blocks (even
passed by references)

f throw in the try{} block doesn’t return
any value, the catch block will not be
processed. Instead, the program will be
terminated.
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catch

There must be at least 1 catch block right
after each try{}

catch has many arguments with their data
types to receive the return values of throw
from try{}.

catch Is only executed only when there Is
a throw with return value from try{}.
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catch: matching algorithms

vold test () {
try {
throw E () ;

}
catch (H) {

//when 1t comes here???

}

H has the same type as E

H Is a base class of E

H & E are pointers and (1) or (2) satisfies
H is a reference and (1) or (2) satisfies

gk 1| 91| A

cccccccccccccccc
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catch(...)

catch (...) will catch any return values of
throw

It IS often used as the last catch block to
capture remaining exceptions.
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catch

Within the catch block, we can throw the
exception to higher levels:

B Throw with new operands with their data types

B Throw with no operand. It means the catch

throw the exception it received again to higher
level.
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After being throw

If it couldn’t find a match catch block to the
throw operand, the unwinding stack will
pe executed until there iIs a match catch
nlock.

f it still couldn’t find any match catch block,
the program will be terminated.
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throw declaration for a function

By default: a function can throw anything

To specify certain types of throw for a
function, It Is declared at the end of the

function declaration
For example:
int foo(int x) throw(char, int);

If we declare int foo (int x) throw() ;
the function is NOT expect to throw anything
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Some issues of exception handling

Memory leak if we couldn’t handle
resources properly.

Exception handling does NOT work well
with templates because template function
might throw different exceptions based on
different type parameters.
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An example of memory leaking
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Another example
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A fix for it

CuuDuongThanCong.com https://fb.com/tailieudientucntt
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Some questions!!!

How can we handle if the constructors
nave errors/exceptions?

How can we catch exceptions from
initialization list?

Nested try{} block

Inheritance and polymorphism of exception
classes?

Why do we have void pop () for a stack?
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RAIl: Resource Acquisition Is Initialization

Invented by Bjarne Stroustrup to ensure
that If a resource Is used, It Is released
properly by attaching it into the life cycle of
the object.

RAIl helps to write exception-safe code
easiler.
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Main applications of RAIl

Often used to manage thread lock of multi-
threading applications.

Applications working with resources, such
as dynamic memory allocating or file
management to avoid leaking.
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Problem

Ohtain Besource

v

LIse Resource

v

Felegase REesource

CuuDuongThanCong.com
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Problems become more complex

Chtain Resource

.
——

Felease Resource

Felegse Resource

Felease Resource

Felease Resource

Felegse Resource

Felease Resource

Felease Resource
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#include <cstdio>
class file {
public:
file (const char* filename) :
f(std: :fopen(filename, "w+")) {
if ('f)
throw std::runtime error ("open failure") ;
}
~file () {
if (0 '= std::fclose(f))
{... } // handle it
}

void write (const char* str);

}

private:
std: :FILE* f£;

}; (from wikipedia)



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Using the file class above

void example usage()

{

// open file (acquire resource)
file logfile("logfile. txt") ;
logfile.write("hello logfile!");

// continue using logfile
// throw exceptions or return
// without worrying about closing the log;

// it 1is closed automatically when out of scope
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