CHAPTER 3

Introduction to MATLAB Programming

computer program
scripts

algorithm

modular program
top-down design
external file

default input device
prompting

default output device
execute/run

high level languages
machine language
executable

compiler

source code

object code
interpreter
documentation

comments

block comment
comment blocks
input/output (I/0)
user

empty string
error message
formatting

format string
place holder
conversion characters
newline character
field width
leading blanks
trailing zeros

plot symbols
markers

line types

toggle

modes

writing to a file
appending to a file
reading from a file
user-defined functions
function call
argument

control

return value
function header
output arguments
input arguments
function body
function definition
local variables
scope of variables
base workspace

CONTENTS

3.1 Algorithms ..74

3.2 MATLAB
Scripts.......... 75

3.3 Input and
Output 78

3.4 Scripts with
Input and
Output 86

3.5 Scripts to
Produce and
Customize
Simple Plots 87

3.6 Introduction to
File Input/
Output (Load
and Save).....93

3.7 User-Defined
Functions That
Return a Single
Value............ 97

3.8 Commands
and
Functions...106

We have now used the MATLAB® product interactively in the Command
Window. That is sufficient when all one needs is a simple calculation.
However, in many cases, quite a few steps are required before the final result
can be obtained. In those cases, it is more convenient to group statements
together in what is called a computer program.

In this chapter, we will introduce the simplest MATLAB programs, which are
called scripts. Examples of scripts that customize simple plots will illustrate the
concept. Input will be introduced, both from files and from the user. Output 73

MATLAB®. http://dx.doi.org/10.1016/B978-0-12-405876-7.00003-1
Copyright © 2013 Elsevier Inc. All rights reserved.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://dx.doi.org/10.1016/B978-0-12-405876-7.00003-1
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

to files and to the screen will also be introduced. Finally, user-defined func-
tions that calculate and return a single value will be described. These topics
serve as an introduction to programming, which will be expanded on in
Chapter 6.

3.1 ALGORITHMS

Before writing any computer program, it is useful to first outline the steps that
will be necessary. An algorithm is the sequence of steps needed to solve
a problem. In a modular approach to programming, the problem solution is
broken down into separate steps, and then each step is further refined until the
resulting steps are small enough to be manageable tasks. This is called the
top-down design approach.

As a simple example, consider the problem of calculating the area of a circle.
First, it is necessary to determine what information is needed to solve the
problem, which, in this case, is the radius of the circle. Next, given the radius
of the circle, the area of the circle would be calculated. Finally, once the area
has been calculated, it has to be displayed in some way. The basic algorithm
then is three steps:

get the input—the radius
calculate the result—the area
display the output.

Even with an algorithm this simple, it is possible to further refine each of the
steps. When a program is written to implement this algorithm, the steps would
be as follows.

Where does the input come from? Two possible choices would be from an
external file or from the user (the person who is running the program) who
enters the number by typing it from the keyboard. For every system, one of
these will be the default input device (which means, if not specified
otherwise, this is where the input comes from!). If the user is supposed to
enter the radius, the user has to be told to type in the radius (and in what
units). Telling the user what to enter is called prompting. So, the input step
actually becomes two steps: prompt the user to enter a radius and then read
it into the program.

To calculate the area, the formula is needed. In this case, the area of the
circle is 7w multiplied by the square of the radius. So, that means the value
of the constant for 7t is needed in the program.

Where does the output go? Two possibilities are (1) to an external file or
(2) to the screen. Depending on the system, one of these will be the default
output device. When displaying the output from the program, it should
always be as informative as possible. In other words, instead of just

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

printing the area (just the number), it should be printed in a nice sentence
format. Also, to make the output even more clear, the input should be
printed. For example, the output might be the sentence “For a circle with
a radius of 1 inch, the area is 3.1416 inches squared”.

For most programs, the basic algorithm consists of the three steps that have
been outlined:

Get the input(s)
Calculate the result(s)
Display the result(s).

As can be seen here, even the simplest problem solutions can then be refined
further. This is top-down design.

3.2 MATLAB SCRIPTS

Once a problem has been analyzed, and the algorithm for its solution has
been written and refined, the solution to the problem is then written in
a particular programming language. A computer program is a sequence of
instructions, in a given language, that accomplishes a task. To execute, or run,
a program is to have the computer actually follow these instructions
sequentially.

High-level languages have English-like commands and functions, such as
“print this” or “if x < 5 do something”. The computer, however, can only
interpret commands written in its machine language. Programs that are written
in high-level languages must therefore be translated into machine language
before the computer can actually execute the sequence of instructions in the
program. A program that does this translation from a high-level language to an
executable file is called a compiler. The original program is called the source
code, and the resulting executable program is called the object code. Compilers
translate from the source code to object code; this is then executed as a sepa-
rate step.

By contrast, an interpreter goes through the code line-by-line, translating and
executing each command as it goes. MATLAB uses what are called either
script files, or M-files (the reason for this is that the extension on the
filename is .m). These script files are interpreted, rather than compiled.
Therefore, the correct terminology is that these are scripts and not programs.
However, the terms are somewhat loosely used by many people, and the
documentation in MATLAB itself refers to scripts as programs. In this book,
we will reserve the use of the word “program” to mean a set of scripts and
functions, as described briefly in Section 3.7 and then in more detail in
Chapter 6.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

3.2 MATLAB Scripts

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

A script is a sequence of MATLAB instructions that is stored in an M-file and
saved. The contents of a script can be displayed in the Command Window
using the type command. The script can be executed, or run, by simply
entering the name of the file (without the .m extension).

Before creating a script, make sure the Current Folder (called “Current Direc-
tory” in earlier versions) is set to the folder in which you want to save your
files.

The steps involved in creating a script depend on the version of MATLAB. In
the most recent versions the easiest method is to click on “New Script” under
the HOME tab. Alternatively, you can click on the down arrow under “New”
and then choose Script (see Figure 3.1)

In earlier versions, one would click on File, then New, then Script (or, in even
earlier versions, M-file). A new window will appear called the Editor (which
can be docked). In the latest versions of MATLAB, this window has three tabs:
“EDITOR”, “PUBLISH”, and “VIEW”. Next, simply type the sequence of
statements (note that line numbers will appear on the left).

When finished, save the file by choosing the Save down arrow under the
EDITOR tab or, in earlier versions of MATLAB, by choosing File and then Save.
Make sure that the extension of .m is on the filename (this should be the
default). The rules for file names are the same as for variables (they must start
with a letter; after that there can be letters, digits, or the underscore). For
example, we will now create a script called script1.m that calculates the area of
a circle. It assigns a value for the radius, and then calculates the area based on
that radius.

GELiulloghl
E}L C:}, 5 [y Find Fes &‘ ﬂﬁ £z, New Variable | Analyze Code E —_—

{1 Open Variable + {57 Run and Time

SHORTCUTS

HOME

New New Open -|Compare Import Save e Layout Set Path
Script v v & Data {77 Clear v 7 Clear Commands v o

FILE VARIABLE CODE ENVIRONMENT
P> E0O0O Editor - untitled

EDITOR

]

bl

D k}P EI Run Section
M xy| FILE | EDIT | NAVIGATE Breakpoints Run Runand Runand @Aﬂvm
P JPEG imé — = = - - Time Advance

EJSN BREAKPOINTS RUN

G0

M ex)

" MATLABY T ntitled

) call 1 |
" MATLA

) cir

Gl

FIGURE 3.1 Toolstrip and editor

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

In this text, scripts will be displayed in a box with the name of the M-file on
top.

scriptl.m

radius = 5
area = pi * (radius”2)

There are two ways to view a script once it has been written: either open the
Editor Window to view it or use the type command, as shown here, to display
it in the Command Window. The type command shows the contents of the file
named scriptl.m; notice that the .m is not included:

>> type scriptl
radius = 5
area = pi * (radius”2)

To actually run or execute the script from the Command Window, the name of
the file is entered at the prompt (again, without the .m). When executed, the
results of the two assignment statements are displayed, as the output was not
suppressed for either statement.

>> scriptl
radius =
5
area =
78.5398

Once the script has been executed you may find that you want to make
changes to it (especially if there are errors!). To edit an existing file, there are
several methods to open it. The easiest are:

within the Current Folder Window, double-click on the name of the file in
the list of files
choosing the Open down arrow will show a list of Recent Files.

3.2.1 Documentation

It is very important that all scripts be documented well, so that people can
understand what the script does and how it accomplishes its task. One way
of documenting a script is to put comments in it. In MATLAB, a comment is
anything from a % to the end of that particular line. Comments are
completely ignored when the script is executed. To put in a comment,
simply type the % symbol at the beginning of a line, or select the comment
lines and then click on the Edit down arrow and click on the % symbol, and
the Editor will put in the % symbols at the beginning of those lines for the
comments.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

3.2 MATLAB Scripts

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

For example, the previous script to calculate the area of a circle could be
modified to have comments:

circlescript.m

% This script calculates the area of a circle

% First the radius is assigned

radius = 5

% The area is calculated based on the radius
area = pi * (radius”?2)

The first comment at the beginning of the script describes what the script does;
this is sometimes called a block comment. Then, throughout the script,
comments describe different parts of the script (not usually a comment for
every line, however!). Comments don't affect what a script does, so the output
from this script would be the same as for the previous version.

The help command in MATLAB works with scripts as well as with built-in
functions. The first block of comments (defined as contiguous lines at the
beginning) will be displayed. For example, for circlescript:

>> help circlescript
This script calculates the area of a circle

The reason that a blank line was inserted in the script between the first two
comments is that otherwise both would have been interpreted as one
contiguous comment, and both lines would have been displayed with help.
The very first comment line is called the “H1 line”; it is what the function
lookfor searches through.

PRACTICE 3.1

Write a script to calculate the circumference of a circle (C = 2 = 1). Comment the script.

Longer comments, called comment blocks, consist of everything in between
%{and %}, which must be alone on separate lines. For example:

%4
this is a really
Really
REALLY
Tong comment

DD}

3.3 INPUT AND OUTPUT

The previous script would be much more useful if it were more general; for
example, if the value of the radius could be read from an external source rather

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

than being assigned in the script. Also, it would be better to have the script
print the output in a nice, informative way. Statements that accomplish these
tasks are called input/output statements, or I/O for short. Although, for
simplicity, examples of input and output statements will be shown here in the
Command Window, these statements will make the most sense in scripts.

3.3.1 Input Function

Input statements read in values from the default or standard input device. In
most systems, the default input device is the keyboard, so the input statement
reads in values that have been entered by the user, or the person who is
running the script. To let the user know what he or she is supposed to enter,
the script must first prompt the user for the specified values.

The simplest input function in MATLAB is called input. The input function is
used in an assignment statement. To call it, a string is passed that is the prompt
that will appear on the screen, and whatever the user types will be stored in the
variable named on the left of the assignment statement. For ease of reading the
prompt, itis useful to put a colon and then a space after the prompt. For example,

>> rad = input('Enter the radius: ')

Enter the radius: 5
rad =
5

If character or string input is desired, ‘s’ must be added as a second argument
to the input function:

>> letter = input('Enter a char: ','s")
Enter a char: g

letter =

g

If the user enters only spaces or tabs before hitting the Enter key, they are
ignored and an empty string is stored in the variable:

>> mychar = input('Enter a character: ', 's')
Enter a character:
mychar =

However, if blank spaces are entered before other characters, they are included in
the string. In the next example, the user hit the space bar four times before
entering “go”. The length function returns the number of characters in the string.

>> mystr = input('Enter a string: ', 's')
Enter a string: go
mystr =
go
>> length(mystr)
ans =
6

CuuDuongThanCong.com https://fb.com/tailieudientucntt

3.3 Input and Output

Note

Although normally the
quotes are not shown
around a character or
string, in this case they
are shown to demon-
strate that there is
nothing inside of the
string.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

QUICK QUESTION!

What would be the result if the user enters blank spaces after >> length(mychar)

other characters? For example, the user here entered “xyz " ans =

(four blank spaces): 7
>> mychar = input('Enter chars: ', 's') The length can be seen in the Command Window by using the
Enter chars: xyz mouse to highlight the value of the variable; the xyz and four
mychar = spaces will be highlighted.
Xyz

Answer

The space characters would be stored in the string variable. It is
difficult to see above, but is clear from the length of the string.

It is also possible for the user to type quotation marks around the
string rather than including the second argument ‘s’ in the call to the input
function.

>> name = input('Enter your name: ')
Enter your name: 'Stormy'

name =

Stormy

However, this assumes that the user would know to do this so it is better to
signify that character input is desired in the input function itself. Also, if the ‘s’
is specified and the user enters quotation marks, these would become part of
the string.

>> name = input('Enter your name: ','s")
Enter your name: 'Stormy'’
name =
"Stormy’
>> length(name)
ans =
8

Note what happens if string input has not been specified, but the user enters
a letter rather than a number.

>> num = input('Enter a number: ')
Enter a number: t
Error using input
Undefined function or variable 't'.

Enter a number: 3
num =
3

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

MATLAB gave an error message and repeated the prompt. However, if t is the
name of a variable, MATLAB will take its value as the input.

>> t=11;
>> num = input('Enter a number: ')
Enter a number: t
num =
11

Separate input statements are necessary if more than one input is desired. For
example,

>> X =
>>

")
")

input('Enter the x coordinate:
input('Enter the y coordinate:

Normally in a script the results from input statements are suppressed with
a semicolon at the end of the assignment statements.

PRACTICE 3.2

Create a script that would prompt the user for a length, and then use ‘f’ for feet or ‘m’ for meters,
and store both inputs in variables. For example, when executed it would look like this (assuming
the user enters 12.3 and then m):

Enter the length: 12.3

Is that f(eet)or m(eters)?: m

3.3.2 Output Statements: disp and fprintf

Output statements display strings and/or the results of expressions,
and can allow for formatting, or customizing how they are displayed.
The simplest output function in MATLAB is disp, which is used to display
the result of an expression or a string without assigning any value to
the default variable ans. However, disp does not allow formatting. For
example,

>> disp('Hello")
Hello

>> disp(4r3)
64

Formatted output can be printed to the screen using the fprintf function. For
example,

>> fprintf('The value is %d, for surel\n',4"3)
The value is 64, for sure!
>>

CuuDuongThanCong.com https://fb.com/tailieudientucntt

3.3 Input and Output m

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

To the fprintf function, first a string (called the format string) is passed that
contains any text to be printed, as well as formatting information for the expres-
sions to be printed. In this example, the %d is an example of format information.

The %d is sometimes called a place holder because it specifies where the value
of the expression that is after the string is to be printed. The character in the
place holder is called the conversion character, and it specifies the type of value
that is being printed. There are others, but what follows is a list of the simple
place holders:

%d integer (it stands for decimal integer)
%f float (real number)
%c single character
Note %s string
Don't confuse the % in
the place holder with
the symbol used to

The character ‘\n’ at the end of the string is a special character called the
newline character; what happens when it is printed is that the output that

designate a comment. follows moves down to the next line.

QUICK QUESTION!

What do you think would happen if the newline character is Note that with the disp function, however, the prompt will

omitted from the end of an fprintf statement? always appear on the next line:
Answer >> disp('Hi")

Without it, the next prompt would end up on the same line as Hi

the output. It is still a prompt, and so an expression can be >>

entered, but it looks messy as shown here. .) :
¥ Also, note that an ellipsis can be used after a string but not in

>> fprintf('The value is %d, surely!’,.. the middle.
4" 3)

The value is 64, surely!>> 5 + 3

ans =

8
QUICK QUESTION!

How can you get a blank line in the output? This also points out that the newline character can be
Answer anywhere in the string; when it is printed, the output moves
Have two newline characters in a row. down to the next line.

>> fprintf('The value is %d,\n\nOK!\n' 473)
The value is 64,

0K!

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.3 Input and Output m

Note that the newline character can also be used in the prompt in the input
statement; for example:

>> x=1input('Enter the \nx coordinate: ');
Enter the
x coordinate: 4

However, that is the only formatting character allowed in the prompt in input.

To print two values, there would be two place holders in the format string, and
two expressions after the format string. The expressions fill in for the place
holders in sequence.

>> fprintf('The int is %Zd and the char is Zc\n', ...
33 -2, 'x")
The int is 31 and the char is x

A field width can also be included in the place holder in fprintf, which Note

specifies how many characters total are to be used in printing. For example, If the field width is
%5d would indicate a field width of 5 for printing an integer and %10s wider than necessary,
would indicate a field width of 10 for a string. For floats, the number of leading blanks are
decimal places can also be specified; for example, %6.2f means a field width ~ printed, and if more
of 6 (including the decimal point and the two decimal places) with decimal places are

2 decimal places. For floats, just the number of decimal places can also be specified than neces-
specified; for example, %.3f indicates 3 decimal places, regardless of the field ~Sary. trailing zeros are
width. printed.

>> fprintf('The int is %3d and the float is 46.2f\n', 5, 4.9)

The int is 5 and the float is 4.90

QUICK QUESTION!

What do you think would happen if you tried to print 1234.5678 If the field width is not large enough to print the number, the
in a field width of 3 with 2 decimal places? field width will be increased. Basically, to cut the number off
S> Fprintf('93.2f\n", 1234.5678) would give a misleading result, but rounding the decimal pla-
ces does not change the number by much.
Answer
It would print the entire 1234, but round the decimals to two
places, that is

1234.57

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

QUICK QUESTION!

What would happen if you use the %d conversion character, Note that if you want exponential notation, this is not the
but you're trying to print a real number? correct way to get it; instead, there are conversion characters

Answer

that can be used. Use the help browser to see this option, as
well as many others!

MATLAB will show the result using exponential notation

>> fprintf('%Zd\n',1234567.89)

1.234568e+006

CuuDuongThanCong.com

There are many other options for the format string. For example, the value
being printed can be left-justified within the field width using a minus sign.
The following example shows the difference between printing the integer 3
using %5d and using %-5d. The x’s below are used to show the spacing.

>> fprintf('The integer is xx%5dxx and xx%-5dxx\n',3,3)
The integer is xx 3xx and xx3 XX

Also, strings can be truncated by specifying “decimal places”:

>> fprintf('The string is %s or %.2s\n', 'street', 'street')
The string is street or st

There are several special characters that can be printed in the format string in
addition to the newline character. To print a slash, two slashes in a row are
used, and also to print a single quote, two single quotes in a row are used.
Additionally, ‘\t' is the tab character.

>> fprintf('Try this out: tab\t quote '' slash \\ \n')
Try this out: tab quote ' slash \

3.3.2.1 Printing Vectors and Matrices

For a vector, if a conversion character and the newline character are in the
format string, it will print in a column regardless of whether the vector itself is
a row vector or a column vector.

>> vec = 2:5;

>> fprintf('%Zd\n', vec)
2

3

4

5

Without the newline character, it would print in a row, but the next prompt
would appear on the same line:

>> fprintf('%d', vec)
2345>>

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

However, in a script, a separate newline character could be printed to avoid
this problem. It is also much better to separate the numbers with spaces.

printvec.m

% This demonstrates printing a vector

vec = 2:5;
fprintf('%d ",vec)
fprintf('\n")

>> printvec
2345
>>

If the number of elements in the vector is known, that many conversion
characters can be specified and then the newline:

>> fprintf('%d Zd %d %Zd\n', vec)
2345

This is not very general, however, and is therefore not preferable.

For matrices, MATLAB unwinds the matrix column by column. For example,
consider the following 2 x 3 matrix:

>> mat =[5 9 8; 4 1 107
mat =
5 9 8
1 10

Specifying one conversion character and then the newline character will print
the elements from the matrix in one column. The first values printed are from
the first column, then the second column, and so on.

>> fprintf('%d\n', mat)

= 00— O &~ O

0

If three of the %d conversion characters are specified, the fprintf will print
three numbers across on each line of output, but again the matrix is unwound
column—by-column. It again prints first the two numbers from the first
column (across on the first row of output), then the first value from the
second column, and so on.

>> fprintf('%d %d %Zd\n', mat)
549
1810

CuuDuongThanCong.com https://fb.com/tailieudientucntt

3.3 Input and Output ﬂ

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

If the transpose of the matrix is printed, however, using the three %d conver-
sion characters, the matrix is printed as it appears when created.

>> fprintf('4d %d %Zd\n', mat') % Note the transpose
598
4110

For vectors and matrices, even though formatting cannot be specified, the disp
function may be easier to use in general than fprintf because it displays the
result in a straightforward manner. For example,

>> mat = [15 11 14; 7 10 13]
mat =

15 11 14

7 10 13

>> disp(mat)
15 11 14

7 10 13
>> vec = 2:5
vec =
2 3 4 5

>> disp(vec)
2 3 4 5

Note that when loops are covered in Chapter 5, formatting the output of
matrices will be easier. For now, however, disp works well.

3.4 SCRIPTS WITH INPUT AND OUTPUT

Putting all of this together now, we can implement the algorithm from the
beginning of this chapter. The following script calculates and prints the area of
a circle. It first prompts the user for a radius, reads in the radius, and then
calculates and prints the area of the circle based on this radius.

circlelO.m

% This script calculates the area of a circle
% 1t prompts the user for the radius

% Prompt the user for the radius and calculate
% the area based on that radius

fprintf('Note: the units will be inches.\n')
radius = input('Please enter the radius: ');
area = pi * (radius”2);

% Print all variables in a sentence format
fprintf('For a circle with a radius of %.2f inches,\n', radius)
fprintf('the area is %.2f inches squared\n',area)

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.5 Scripts to Produce and Customize Simple Plots

Executing the script produces the following output:

>> circlel0

Note: the units will be inches.

Please enter the radius: 3.9

For a circle with a radius of 3.90 inches,
the area is 47.78 inches squared

Note that the output from the first two assignment statements (including the
input) is suppressed by putting semicolons at the end. That is usually done in
scripts, so that the exact format of what is displayed by the program is
controlled by the fprintf functions.

PRACTICE 3.3

Write a script to prompt the user separately for a character and a number, and print the character in
a field width of 3 and the number left-justified in a field width of 8 with 3 decimal places. Test this
by entering numbers with varying widths.

3.5 SCRIPTS TO PRODUCE AND CUSTOMIZE
SIMPLE PLOTS

MATLAB has many graphing capabilities. Customizing plots is often desired, and
this is easiest to accomplish by creating a script rather than typing one command at
a time in the Command Window. For that reason, simple plots and how to
customize them will be introduced in this chapter on MATLAB programming.

The help topics that contain graph functions include graph2d and graph3d.
Typing help graph2d would display some of the two-dimensional graph
functions, as well as functions to manipulate the axes and to put labels and
titles on the graphs. The Search Documentation under MATLAB Graphics also
has a section “2-D and 3-D Plots”.

3.5.1 The Plot Function

For now, we'll start with a very simple graph of one point using the plot function.

The following script, plotonepoint, plots one point. To do this, first values are
given for the x and y coordinates of the point in separate variables. The point is
plotted using a red star (‘*’). The plot is then customized by specifying the
minimum and maximum values on first the x and then y axes. Labels are then
put on the x-axis, the y-axis, and the graph itself using the functions xlabel,
ylabel, and title. (Note: there are no default labels for the axes.)

All of this can be done from the Command Window, but it is much easier to
use a script. The following shows the contents of the script plotonepoint that

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

accomplishes this. The x coordinate represents the time of day (e.g., 11 a.m.)
and the y coordinate represents the temperature (e.g., in degrees Fahrenheit) at
that time.

plotonepoint.m

% This is a really simple plot of just one point!
% Create coordinate variables and plot a red '*'

x =11;

y = 48;

plot(x,y,"'r*")

% Change the axes and label them axis([9 12 35 55])
xlabel('Time")

ylabel('Temperature')

% Put a title on the plot
title('Time and Temp"')

In the call to the axis function, one vector is passed. The first two values are the
minimum and maximum for the x-axis, and the last two are the minimum and
maximum for the y-axis. Executing this script brings up a Figure Window with
the plot (see Figure 3.2).

To be more general, the script could prompt the user for the time and temperature,
rather than just assigning values. Then, the axis function could be used based on
whatever the values of x and y are, as in the following example:

axis([x-2 x+2 y-10 y+101)

In addition, although they are the x and y coordinates of a point, variables
named time and temp might be more mnemonic than x and y.

Time and Temp
55 - . :

Temperature
B A
[$)] o

IS
o
.

¥ 95 10 105 11 115 12

Time
FIGURE 3.2 Plot of one data point

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.5 Scripts to Produce and Customize Simple Plots m

PRACTICE 3.4

Modify the script plotonepoint to prompt the user for the time and temperature, and set the axes
based on these values.

To plot more than one point, x and y vectors are created to store the values of
the (x,y) points. For example, to plot the points

(1,1)
(2,5)
(3,3)
(4,9)
(5,11)
(6,8)

first an x vector is created that has the x values (as they range from 1 to 6 in
steps of 1, the colon operator can be used) and then a y vector is created with
the y values. The following will create (in the Command Window) x and y
vectors and then plot them (see Figure 3.3).

>> x = 1:6;

>> y=1[153911 8];

>> plot(x,y)

Note that the points are plotted with straight lines drawn in between. Also, the
axes are set up according to the data; for example, the x values range from 1 to 6
and the y values from 1 to 11, so that is how the axes are set up.

Also, note that in this case the x values are the indices of the y vector (the y
vector has six values in it, so the indices iterate from 1 to 6). When this is the
case it is not necessary to create the x vector. For example,

>> plot(y)

will plot exactly the same figure without using an x vector.

11
10t 1
9. i

N W b OO N
L

1
1 15 2 25 3 35 4 45 5 55 6
FIGURE 3.3 Plot of data points from vectors

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

m CHAPTER 3: Introduction to MATLAB Programming

3.5.1.1 Customizing a Plot: Color, Line Types, Marker Types
Plots can be done in the Command Window, as shown here, if they are really
simple. However, many times it is desired to customize the plot with labels,
titles, and so on, so it makes more sense to do this in a script. Using the help
function for plot will show the many options such as the line types and colors.
In the previous script plotonepoint, the string ‘r*’ specified a red star for the
point type. The LineSpec, or line specification, can specify up to three different
properties in a string, including the color, line type, and the symbol or marker
used for the data points.

The possible colors are:

b blue
cyan
green
black
magenta
red
white
yellow

= S5 3 QO

y
Either the single character listed above or the full name of the color can be used in
the string to specify the color. The plot symbols, or markers, that can be used are:

circle
diamond
hexagram
pentagram
plus

point

square

star

down triangle
left triangle
right triangle
up triangle
x-mark

* v - 4+ T T A o

> VA<

X
Line types can also be specified by the following:

-- dashed
-. dash dot
dotted
- solid
If no line type is specified, a solid line is drawn between the points, as seen in
the last example.

3.5.2 Simple Related Plot Functions

Other functions that are useful in customizing plots include clf, figure, hold,
legend, and grid. Brief descriptions of these functions are given here; use help
to find out more about them.

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.5 Scripts to Produce and Customize Simple Plots

c1f clears the Figure Window by removing everything from it.

figure creates a new, empty Figure Window when called without any
arguments. Callingitas figure(n) where nis an integer is a way of creatingand
maintaining multiple Figure Windows, and of referring to each individually.

hold is a toggle that freezes the current graph in the Figure Window, so that
new plots will be superimposed on the current one. Just hold by itself is
atoggle, so calling this function once turns the hold on, and then the next time
turns it off. Alternatively, the commands hold on and hold off can be used.

Tegend displays strings passed to it in a legend box in the Figure Window in
order of the plots in the Figure Window

grid displays grid lines on a graph. Called by itself, it is a toggle that turns
the grid lines on and off. Alternatively, the commands grid on and grid off
can be used.

Also, there are many plot types. We will see more in Chapter 11, but another
simple plot type is a bar chart.

For example, the following script creates two separate Figure Windows. First, it
clears the Figure Window. Then, it creates an x vector and two different y
vectors (y1 and y2). In the first Figure Window, it plots the y1 values using
a bar chart. In the second Figure Window, it plots the y1 values as black lines,
puts hold on so that the next graph will be superimposed, and plots the y2
values as black circles. It also puts a legend on this graph and uses a grid.
Labels and titles are omitted in this case as it is generic data.

plot2figs.m

% This creates 2 different plots, in 2 different
% Figure Windows, to demonstrate some plot features

clf

x = 1:5; % Not necessary

yl =1[2 11 6 9 3];

y2 =1[4586 2];

% Put a bar chart in Figure 1

figure(l)

bar(x,yl)

% Put plots using different y values on one plot
% with a Tegend

figure(2)
plot(x,yl,'k")
hold on
plot(x,y2,'ko")
grid on

legend('yl",'y2")

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com

m CHAPTER 3: Introduction to MATLAB Programming

Running this script will produce two separate Figure Windows. If there are no
other active Figure Windows, the first, which is the bar chart, will be in the one
titled “Figure 1” in MATLAB. The second will be in “Figure 2”. See Figure 3.4
for both plots.

Note that the first and last points are on the axes, which makes them difficult
to see. That is why the axis function is used frequently, as it creates space
around the points so that they are all visible.

PRACTICE 3.5

Modify the plotZfigs script using the axis function so that all points are easily seen.

The ability to pass a vector to a function and have the function evaluate every
element of the vector can be very useful in creating plots. For example, the
following script displays graphically the difference between the sin and cos
functions:

sinncos.m

% This script plots sin(x) and cos(x) in the same Figure Window
% for values of x ranging from 0 to 2*pi

clf

x = 0: 2*pi/40: 2*pi;
y sin(x);
plot(x,y,'ro")
hold on

y cos(x);
plot(x,y,"'b+")
legend('sin',
xlabel('x")
ylabel('sin(x) or cos(x)"')
title('sin and cos on one graph')

'cos"')

The script creates an x vector; iterating through all of the values from 0 to 2*7
in steps of 2*7/40 gives enough points to get a good graph. It then finds the
sine of each x value, and plots these points using red circles. The command
hold on freezes this in the Figure Window so the next plot will be super-
imposed. Next, it finds the cosine of each x value and plots these points using
blue plus symbols (+). The legend function creates a legend; the first string is
paired with the first plot and the second string with the second plot. Running
this script produces the plot seen in Figure 3.5.

Note that instead of using hold on, both functions could have been plotted
using one call to the plot function:

plot(x,sin(x),'ro",x,cos(x), " "b+")

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.6 Introduction to File Input/Output (Load and Save) ﬂ

12 " T A T T T T
H H H H H | y1
L G e et S B I
o S— N0 S S W SR LI LA N I
TSIV W S ———
O N =me
6 |----- (S A boomol - R S —
S P05 T S SO O SN ISR N
P W/ L T AU NS S S
3 /2 S S NS SN S
/A I N N N N
1 2 3 4 5 1 1.5 2 2.5 3 3.5 4 45 5
FIGURE 3.4 (a) Bar chart produced by script. (b) Plot produced by script, with a grid and legend
] sin and cos on one graph
PRACTICE 3.6 PG
Write a script that plots exp(x) and log(x) for values of x ranging 08 + $° °© 5 L+ cos
from 0 to 3.5. 06 o+ o + E
2 04! Oo ++ oO ++
[%2]
8 0.2 [o + o +
3.6 INTRODUCTION TO FILE 2 Ot * ° * ©
= L + (o] + o
INPUT/OUTPUT (LOAD AND SAVE) £ 02 . o . o
04t
: . . + o+ o
In many cases, input to a script will come from 06! N o+ o
a data file that has been created by another source. 08l *, L ~
Also, it is useful to be able to store output in an A ‘ L ta, ot % o ‘
external file that can be manipulated and/or printed 0 1 2 3 4 5 6 7

later. In this section, the simplest methods used to
read from an external data file and also to write to an
external data file will be demonstrated.

FIGURE 3.5 Plot of sin and cos in one figure window
with a legend

There are basically three different operations, or modes on files. Files can be:

read from
written to
appended to.

Writing to a file means writing to a file from the beginning. Appending to
a file is also writing, but starting at the end of the file rather than the

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

beginning. In other words, appending to a file means adding to what was
already there.

There are many different file types, which use different filename extensions.
For now, we will keep it simple and just work with .dat or .txt files when
working with data, or text, files. There are several methods for reading from
files and writing to files; we will, for now, use the load function to read and the
save function to write to files. More file types and functions for manipulating
them will be discussed in Chapter 9.

3.6.1 Writing Data to a File
The save command can be used to write data from a matrix to a data file, or to
append to a data file. The format is:

save filename matrixvariablename —ascii

The “-ascii” qualifier is used when creating a text or data file. For example, the
following creates a matrix and then saves the values from the matrix variable
to a data file called “testfile.dat”:

>> mymat = rand(2,3)

mymat =
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

>> save testfile.dat mymat -ascii
This creates a file called “testfile.dat” that stores the numbers:

0.4565 0.8214 0.6154
0.0185 0.4447 0.7919

The type command can be used to display the contents of the file; note that
scientific notation is used:

>> type testfile.dat

4.5646767e-001 8.2140716e-001 6.1543235e-001
1.8503643e-002 4.4470336e-001 7.9193704e-001

Note that if the file already exists, the save command will overwrite the file;
save always writes from the beginning of a file.

3.6.2 Appending Data to a Data File
Once a text file exists, data can be appended to it. The format is the same as the
preceding, with the addition of the qualifier “-append”. For example, the

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.6 Introduction to File Input/Output (Load and Save) ﬂ

following creates a new random matrix and appends it to the file that was just Note
created: Although technically

any size matrix could be

>> mat2 = rand(3,3) appended to this data

mymat = ' .
0.9218 0.4057 0.4103 file, t(_)beableto_readlt
0.7382 0.9355 0.8936 back into a matrix later
0.1763 0.9169 0.0579 there would have to be

>> save testfile.dat matZ2 -ascii -append the same number of

values on every row (or,
in other words, the

0.4565 0.8214 0.6154 same number of
0.0185 0.4447 0.7919 columns).
0.9218 0.4057 0.4103

0.7382 0.9355 0.8936

0.1763 0.9169 0.0579

This results in the file “testfile.dat” containing the following:

PRACTICE 3.7

Prompt the user for the number of rows and columns of a matrix, create a matrix with that many
rows and columns of random integers, and write it to a file.

3.6.3 Reading From a File

Reading from a fileis accomplished using load. Once a file has been created (as in
the preceding), it can be read into a matrix variable. If the file is a data file, the
load command will read from the file “filename.ext” (e.g., the extension might
be .dat) and create a matrix with the same name as the file. For example, if the
data file “testfile.dat” had been created as shown in the previous section, this
would read from it, and store the result in a matrix variable called testfile:

>> clear

>> load testfile.dat

>> who

Your variables are:

testfile

>> testfile

testfile =
0.4565 0.8214 0.6154
0.0185 0.4447 0.7919
0.9218 0.4057 0.4103
0.7382 0.9355 0.8936
0.1763 0.9169 0.0579

The load command works only if there are the same number of values in each
line so that the data can be stored in a matrix, and the save command only
writes from a matrix to a file. If this is not the case, lower-level file I/O
functions must be used; these will be discussed in Chapter 9.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

3.6.3.1 Example: Load from a File and Plot the Data

As an example, a file called “timetemp.dat” stores two lines of data. The first
line is the time of day and the second line is the recorded temperature at each
of those times. The first value of 0 for the time represents midnight. For
example, the contents of the file might be:

0 3 6 9 12 15 18 21
55.5 52.4 52.6 55.7 75.6 /7.7 70.3 66.6

The following script loads the data from the file into a matrix called time-
temp. It then separates the matrix into vectors for the time and temperature,
and then plots the data using black star (*) symbols.

timetempprob.m

% This reads time and temperature data for an afternoon
% from a file and plots the data

load timetemp.dat

% The times are in the first row, temps in the second row
time = timetemp(1l,:);
temp = timetemp(2,:);

% Plot the data and label the plot
plot(time,temp, "k*")

xlabel('Time")
ylabel('Temperature")
title('Temperatures one afternoon')

Running the script produces the plot seen in Figure 3.6.

Note that it is difficult to see the point at time O as it falls on the y-axis. The
axis function could be used to change the axes from the defaults shown here.

80 Temperatures one afternoon

£l

75 *

70 *

65

Temperature

60

55 *

50 : : : :
0 5 10 15 20 25
Time
FIGURE 3.6 Plot of temperature data from a file

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.7 User-Defined Functions That Return a Single Value

To create the data file, the Editor in MATLAB can ABC Corporation Sales: 2013
be used; it is not necessary to create a matrix and 3
save it to a file. Instead, just enter the numbers in
a new script file, and Save As “timetemp.dat”, 2.6

2.8

making sure that the Current Folder is set. B 2.4
5
= 22
=
PRACTICE 3.8 g 2
The sales (in billions) for two separate divisions of the ABC S 1.8 o

Corporation for each of the four quarters of 2013 are stored 16 *
in a file called “salesfigs.dat”: 1'4
. [e]

1.2 1.41.81.3

1.2 : ' ' : :
2.22.51.7 2.9 1 15 2 25 3 35 4

First, create this file (just type the numbers in the Quarter
Editor, and Save As “salesfigs.dat”). FIGURE 3.7 Plot of sales data from file
Then, write a script that will

load the data from the file into a matrix

separate this matrix into 2 vectors

create the plot seen in Figure 3.7 (which uses black

circles and stars as the plot symbols).

QUICK QUESTION!

Sometimes files are not in the format that is desired. For >> load expresults.dat
example, a file “expresults.dat” has been created that has >> expresults

some experimental results, but the order of the values is expresults =

reversed in the file: 4.0000 53.4000

3.0000 44.3000

i iii 2.0000 50.0000
5 50.0 1.0000 55.5000
1 55.5 >> correctorder = flipud(expresults)
correctorder =
How could we create a new file that reverses the order? 1.0000 55 5000
Answer 2.0000 50.0000
We can load from this file into a matrix, use the flipud func- 3.0000 44.3000
tion to “flip” the matrix up to down, and then save this matrix 4.0000 53.4000
to a new file: >> save neworder.dat correctorder — ascii

3.7 USER-DEFINED FUNCTIONS THAT RETURN
A SINGLE VALUE

We have already seen the use of many functions in MATLAB. We have used
many built-in functions, such as sin, fix, abs, and double. In this section,

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

user-defined functions will be introduced. These are functions that the
programmer defines, and then uses, in either the Command Window or in
a script.

There are several different types of functions. For now, we will concentrate on
the kind of function that calculates and returns a single result. Other types of
functions will be introduced in Chapter 6.

First, let us review some of what we already know about functions, including
the use of built-in functions. Although, by now, the use of these functions is
straightforward, explanations will be given in some detail here in order to
compare and contrast to the use of user-defined functions.

The length function is an example of a built-in function that calculates a single
value; it returns the length of a vector. As an example,

length(vec)

is an expression that represents the number of elements in the vector vec. This
expression could be used in the Command Window or in a script. Typically,
the value returned from this expression might be assigned to a variable:

>> vec = 1:3:10;
>> lv = length(vec)
Tv =

4

Alternatively, the length of the vector could be printed:

>> fprintf('The length of the vector is %Zd\n', length(vec))
The length of the vector is 4

The function call to the length function consists of the name of the function,
followed by the argument in parentheses. The function receives as input the
argument, and returns a result. What happens when the call to the function is
encountered is that control is passed to the function itself (in other words, the
function begins executing). The argument(s) are also passed to the function.

The function executes its statements and does whatever it does (the actual
contents of the built-in functions are not generally known or seen by the user)
to determine the number of elements in the vector. As the function is calculating
a single value, this result is then returned and it becomes the value of the
expression. Control is also passed back to the expression that called it in the first
place, which then continues (e.g., in the first example the value would then be
assigned to the variable v and in the second example the value was printed).

3.7.1 Function Definitions
There are different ways to organize scripts and functions, but, for now, every
function that we write will be stored in a separate M-file, which is why they are

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.7 User-Defined Functions That Return a Single Value a

commonly called “M-file functions”. Although to type in functions in the
Editor it is possible to choose the New down arrow and then Function, it will
be easier for now to type in the function by choosing New Script (this ignores
the defaults that are provided when you choose Function).

A function in MATLAB that returns a single result consists of the following.

The function header (the first line), comprised of:

the reserved word function

the name of the output argument followed by the assignment operator
(=), as the function returns a result
the name of the function (important—this should be the same as the
name of the M-file in which this function is stored to avoid confusion)
the input arguments in parentheses, which correspond to the arguments
that are passed to the function in the function call.

A comment that describes what the function does (this is printed when

help is used).

The body of the function, which includes all statements and eventually
must put a value in the output argument.

end at the end of the function (note that this is not necessary in many cases
in current versions of MATLAB, but it is considered good style anyway).

The general form of a function definition for a function that calculates and

returns one value looks like this:

functionname.m

function outputargument = functionname(input arguments)
% Comment describing the function

Statements here; these must include putting a value in the output
argument

end % of the function

For example, the following is a function called calcarea that calculates and

returns the area of a circle; it is stored in a file called calcarea.m.

calcarea.m

function area = calcarea(rad)

% calcarea calculates the area of a circle
% Format of call: calcarea(radius)

% Returns the area

area = pi * rad * rad;
end

A radius of a circle is passed to the function to the input argument rad; the
function calculates the area of this circle and stores it in the output argument area.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

Note

Many of the functions in
MATLAB are imple-
mented as M-file func-
tions; these can also be
displayed using type.

CuuDuongThanCong.com

In the function header, we have the reserved word function, then the output
argument area followed by the assignment operator =, then the name of the
function (the same as the name of the M-file), and then the input argument rad,
which is the radius. As there is an output argument in the function header,
somewhere in the body of the function we must put a value in this output argu-
ment. This is how a value is returned from the function. In this case, the function is
simple and all we have to do is assign to the output argument area the value of the
built-in constant pi multiplied by the square of the input argument rad.

The function can be displayed in the Command Window using the type
command.

>> type calcarea

function area = calcarea(rad)

% calcarea calculates the area of a circle
% Format of call: calcarea(radius)

% Returns the area

area = pi * rad * rad;
end

3.7.2 Calling a Function
The following is an example of a call to this function in which the value
returned is stored in the default variable ans:

>> calcarea(4)
ans =
50.2655

Technically, calling the function is done with the name of the file in which the
function resides. To avoid confusion, it is easiest to give the function the same
name as the filename, so that is how it will be presented in this book. In this
example, the function name is calcarea and the name of the file is calcarea.m.
The result returned from this function can also be stored in a variable in an
assignment statement; the name could be the same as the name of the output
argument in the function itself, but that is not necessary. So, for example,
either of these assignments would be fine:

>> area = calcarea(b)
area =
78.5398

>> myarea = calcarea(6)
myarea =
113.0973

The output could also be suppressed when calling the function:

>> mya = calcarea(5.2);

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.7 User-Defined Functions That Return a Single Value gtk

Note
The value returned from the calcarea function could also be printed using The printing is not done
either disp or fprintf: in the function itself;

>> disp(calcarea(4)) rather, the function

50.2655 returns the area and
>> fprintf('The area is %.1f\n', calcarea(4)) then an output state-
The area is 50.3 ment can print or

display it.
QUICK QUESTION!
Could we pass a vector of radii to the calcarea function? calcareaii.m
Answer function area = calcareaii(rad)
This function was written assuming that the argument was % calcareaii returns the area of a circle
a scalar, so calling it with a vector instead would produce an % The input argument can be a vector
eITOr message: % of radii

% Format: calcareaii(radiiVector)
>> calcarea(1:3)

Error using *

. . . area = pi * rad .* rad;
Inner matrix dimensions must agree.

end

Error in calcarea (line 6)

>> 1 17(1:
area = pi * rad * rad; calcareaii(1:3)

ans =
This is because the * was used for multiplication in the func- 3.1416 12.5664 28.2743
tion, but .* must be used when multiplying vectors term by
term. Changing this in the function would allow either scalars >> calcareaii(4)
or vectors to be passed to this function: ans =

50.2655

Note that the .* operator is only necessary when multiplying
the radius vector by itself. Multiplying by pi is scalar multi-
plication, so the .* operator is not needed there. We could have
also used:

area = pi * rad ." 2;

Using help with either of these functions displays the contiguous block of
comments under the function header (the block comment). It is useful to put
the format of the call to the function in this block comment:

>> help calcarea
calcarea calculates the area of a circle
Format of call: calcarea(radius)
Returns the area

Many organizations have standards regarding what information should be
included in the block comment in a function. These can include:

name of the function
description of what the function does

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

format of the function call

description of input arguments
description of output argument
description of variables used in function
programmer name and date written
information on revisions.

Although this is excellent programming style, for the most part in this book
these will be omitted simply to save space. Also, documentation in MATLAB
suggests that the name of the function should be in all uppercase letters in the
beginning of the block comment. However, this can be somewhat misleading
in that MATLAB is case-sensitive and typically lowercase letters are used for the
actual function name.

3.7.3 Calling a User-defined Function From a Script

Now, we will modify our script that prompts the user for the radius and
calculates the area of a circle to call our function calcarea to calculate the area
of the circle rather than doing this in the script.

circleCallFn.m

% This script calculates the area of a circle

% 1t prompts the user for the radius

radius = input('Please enter the radius: ');

% It then calls our function to calculate the

% area and then prints the result

area = calcarea(radius);

fprintf('For a circle with a radius of %.2f,"',radius)
fprintf(' the area is %.2f\n',area)

Running this will produce the following:

>> circleCallFn
Please enter the radius: 5
For a circle with a radius of 5.00, the area is 78.54

3.7.3.1 Simple Programs

In this book, a script that calls function(s) is what we will call a MATLAB
program. In the previous example, the program consisted of the script circle-
CallFn and the function it calls, calcarea. The general form of a simple program,
consisting of a script that calls a function to calculate and return a value, looks
like the diagram shown in Figure 3.8.

Itis also possible for a function to call another (whether built-in or user-defined).

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.7 User-Defined Functions That Return a Single Value g{ix}

fn.m
. function out = fn(in)
script.m / out = value based on in
Get input end
CallTn W/'
result

® Print result

FIGURE 3.8 General form of a simple program

3.7.4 Passing Multiple Arguments
In many cases it is necessary to pass more than one argument to a function. For
example, the volume of a cone is given by

1
V = —ar’h
3

where r is the radius of the circular base and h is the height of the cone.
Therefore, a function that calculates the volume of a cone needs both the
radius and the height:

conevol.m

function outarg = conevol(radius, height)
% conevol calculates the volume of a cone
% Format of call: conevol(radius, height)
% Returns the volume

outarg = (pi/3) * radius .~ 2 .* height;
end

As the function has two input arguments in the function header, two values
must be passed to the function when it is called. The order makes a difference.
The first value that is passed to the function is stored in the first input argu-
ment (in this case, radius) and the second argument in the function call is
passed to the second input argument in the function header.

This is very important: the arguments in the function call must correspond
one-to-one with the input arguments in the function header.

Here is an example of calling this function. The result returned from the
function is simply stored in the default variable ans.

>> conevol(4,6.1)
ans =
102.2065

In the next example, the result is instead printed with a format of two decimal
places.

>> fprintf('The cone volume is %.2f\n',conevol(3, 5.5))
The cone volume is 51.84

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

Note that by using the array exponentiation and multiplication operators, it
would be possible to pass arrays for the input arguments, as long as the
dimensions are the same.

QUICK QUESTION!

Nothing is technically wrong with the following function, but ~Answer
what about it does not make sense? Why pass the third argument if it is not used?

fun.m

out = a*b;
end

function out = fun(a,b,c)

CuuDuongThanCong.com

PRACTICE 3.9

Write a script that will prompt the user for the radius and height, call the function conevol to calcu-
late the cone volume, and print the result in a nice sentence format. So, the program will consist of
a script and the conevol function that it calls.

PRACTICE 3.10

For a project, we need some material to form a rectangle. Write a function calcrectarea that will
receive the length and width of a rectangle in inches as input arguments, and will retumm the
area of the rectangle. For example, the function could be called as shown, in which the result is
stored in a variable and then the amount of material required is printed, rounded up to the nearest
square inch.

>> ra = calcrectarea(3.1, 4.4)

ra =

13.6400

>> fprintf('We need %d sq in.\n', ...
ceil(ra))
We need 14 sq in.

3.7.5 Functions with Local Variables

The functions discussed thus far have been very simple. However, in many
cases the calculations in a function are more complicated, and may require the
use of extra variables within the function; these are called local variables.

For example, a closed cylinder is being constructed of a material that costs
a certain dollar amount per square foot. We will write a function that will
calculate and return the cost of the material, rounded up to the nearest square

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

3.7 User-Defined Functions That Return a Single Value g{t

foot, for a cylinder with a given radius and a given height. The total surface
area for the closed cylinder is
SA = 27rh+2nwr?

For a cylinder with a radius of 32 inches, height of 73 inches, and cost per
square foot of the material of $4.50, the calculation would be given by the
following algorithm.

Calculate the surface area SA = 2 * 7t * 32 * 73 + 2 * 7t * 32 * 32 inches
squared.

Convert the SA from square inches to square feet = SA/144.

Calculate the total cost = SA in square feet * cost per square foot.

The function includes local variables to store the intermediate results.

cylcost.m

function outcost = cylcost(radius, height, cost)

% cylcost calculates the cost of constructing a closed
% cylinder

% Format of call: cylcost(radius, height, cost)

% Returns the total cost

% The radius and height are in inches
% The cost is per square foot

% Calculate surface area in square inches
surf_area = 2 * pi * radius .* height + 2 * pi * radius .~ 2;

% Convert surface area in square feet and round up
surf_areasf = ceil(surf_area/144);

% Calculate cost
outcost = surf_areasf .* cost;
end

The following shows examples of calling the function:

>> cylcost(32,73,4.50)
ans =
661.5000

>> fprintf('The cost would be $%.2f\n", cylcost(32,73,4.50))
The cost would be $661.50

3.7.6 Introduction to Scope

It is important to understand the scope of variables, which is where they are valid.
More will be described in Chapter 6, but, basically, variables used in a script are
also known in the Command Window and vice versa. All variables used in
a function, however, are local to that function. Both the Command Window and
scripts use a common workspace, the base workspace. Functions, however, have
their own workspaces. This means that when a script is executed, the variables

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

m CHAPTER 3: Introduction to MATLAB Programming

CuuDuongThanCong.com

can subsequently be seen in the Workspace Window and can be used from the
Command Window. This is not the case with functions, however.

3.8 COMMANDS AND FUNCTIONS

Some of the commands that we have used (e.g., format, type, save, and load)
are just shortcuts for function calls. If all of the arguments to be passed to
a function are strings, and the function does not return any values, it can be
used as a command. For example, the following produce the same results:

>> type scriptl

radius = 5
area = pi * (radius”2)

>> type('scriptl')

radius =5
area = pi * (radius”2)

Using load as a command creates a variable with the same name as the file. If
a different variable name is desired, it is easiest to use the functional form of
load. For example,

>> type pointcoords.dat

3.3 1.2
4 5.3
>> points = Toad('pointcoords.dat")
points =
3.3000 1.2000
4.0000 5.3000

m Explore Other Interesting Features

Note that this chapter serves as an introduction to several topics, most

of which will be covered in more detail in future chapters. Before getting

to those chapters, the following are some things you may wish to
explore.

m The help command can be used to see short explanations of built-in
functions. At the end of this, a doc page link is also listed. These
documentation pages frequently have much more information and
useful examples. They can also be reached by typing “doc fnname”,
where fnname is the name of the function.

m Look at formatSpec on the doc page on the fprintf function for more
ways in which expressions can be formatted (e.g., padding numbers with
zeros and printing the sign of a number).

m Use the Search Documentation to find the conversion characters used to
print other types, such as unsigned integers and exponential notation. M

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Summary ey}

H Summary

Common Pitfalls

Spelling a variable name different ways in different places in a script or
function.

Forgetting to add the second ‘s’ argument to the input function when
character input is desired.

Not using the correct conversion character when printing.

Confusing fprintf and disp. Remember that only fprintf can format.

Programming Style Guidelines

Especially for longer scripts and functions, start by writing an algorithm.
Use comments to document scripts and functions, as follows:
a block of contiguous comments at the top to describe a script
a block of contiguous comments under the function header for
functions
comments throughout any M-file (script or function) to describe
each section.
Make sure that the “H1” comment line has useful information.
Use your organization’s standard style guidelines for block comments.
Use mnemonic identifier names (names that make sense, e.g., radius
instead of xyz) for variable names and for file names.
Make all output easy to read and informative.
Put a newline character at the end of every string printed by fprintf so
that the next output or the prompt appears on the line below.
Put informative labels on the x and y axes, and a title on all plots.
Keep functions short — typically no longer than one page in length.
Suppress the output from all assignment statements in functions and
scripts.
Functions that return a value do not normally print the value; it should
simply be returned by the function.
Use the array operators .*, ./, .\, and .A in functions so that the input
arguments can be arrays and not just scalars. |

MATLAB Reserved Words

function end

MATLAB Functions and Commands

type xlabel clf grid
input ylabel figure bar
disp title hold load
forintf axis legend save
plot

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

