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CHUONG 1. LY THUYET TRUONG
THE GRADIENT ¥f

A scalar point-function is a scalar quantity, say temperature, that is a
lunction of the coordinates. Consider a scalar point-function f that is

y 4+ oyl ——————— -
dl dy
)
vi— — —— A.

' Fig. 1-3. A scalar-point function
: changes from f to f + df over the
x v o4 dx _ distance dl.

. -

continuous and differentiable. We wish to know how f changes over the
infinitesimal distance d! in Fig. 1-3. The differential

af af af
df = — dx + == = -
f . 3y dy + 32 dz (1-7)

is the scalar product of the two vectors

dl =dxx +dyvy +dz z (1-8)
and
f . of . of .
Vf=_—"~x+_"—¥%¥+_—2. -
4 Sx'r ny azz (1-9)

The second vector, whose components are the rates of change of f with
distance along the coordinate axes, is called the gradient of f. The symbol

o = a
=F— 4+ —+Z— -10
V=25123,%%5; (1-10)

is read ‘““del.”
Note the value of the magnitude of the gradient:

o =[(30) +(5) + DT )
Thus
df = Vf -dl = |Vf| |dl| cos 8, (1-12)

where & is the angle between the vectors Vf and dl.
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What direction should one choose for di to maximize df? That
direction 1s the one for which cos 8 =1 or 8 =0, that is, the direction of
vf.

Therefore the gradient of a scalar function at a given point is a vector
having the following properties:

(1) Its components are the rates of change of the function along the
directions of the coordinate axes.

(2) Its magnitude is the maximum rate of change with distance.
(3) Its direction is that of the maximum rate of change with distance.

(4) It points toward larger values of the function.

the gradient is a vector point-function that derives from a scalar
point-function.

Again, we have two definitions: Vf is a vector whose magnitude and
direction are those of the maximum space rate of change of f, and it is

L

also the vector of Eq. 1-9. It is clear from the first definition that Vf is
invariant.

INVARIANCE OF THE OPERATOR V

We have just seen that Vf is invariant. Is the operator V itself also
invariant? This requires careful consideration because the components of
V are not numbers, but operators.

Let § and S’ be any two sets of Cartesian coordinates. Figure 1-5 shows
two sets having a common origin, for simplicity. Then a given vector A
has the components A,, A,, A, in S, and A.., A, A, in §', with

A.=a A +a A, +a, A, (1-13)
A, =a A, +a,A, +a,A,, (1-14)
A, =a,A, +a,,A, +a,.A,. (1-15)

The a coefficients depend only on the orientation of §' with respect to S.
If A 1s Vf, then its components are

o  , _

of
ax’ Y gy

A, = —
x Az azr

(1-16)
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and

of of of of
g o, Ly L 1-1
ax' e ax | 4 3y - oz )

Since this is true for any differentiable f, we know that

i—a -§+a i+¢.ac g (1-18)
ox'  ox Yay ez’

and similarly for 3/3y’ and 3/3z’.

The components of Vin §’, namely 3/8x’, 3/3y’, and 8/3z', relate to
those of V in §, 8/3x, 3/38y, and 8/3z, in the same way as the
components of any vector A in §' and in §. Therefore V is invariant like
any vector, and it transforms as a vector. We shall use this property of ¥V
in the following sections.

FLUX

It is often necessary to calculate the flux of a vector quantity through a
surface. By definition, the flux d® of B through an infinitesimal surface
doA is

dP=B-ddA, (1-19)

where the vector dsf is normal to the surface. The flux d® is therefore
the component of the vector normal to the surface, multiplied by d«f. For
a surface of finite area ¢,

fb=f B d«. (1-20)

If the surface is closed, the vector dsf points ourward, by convention.
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THE DIVERGENCE V-B

The outward flux of a vector through a closed surface can be calculated
either from the above equation or as follows. Consider an infinitesimal
volume dx dy dz and a vector B, as in Fig. 1-6, whose components B,,
B,, B, are functions of x, y, z. The value of B, at the center of the
right-hand face may be taken to be the average value over that face.
Through the right-hand face of the volume element, the outgoing flux is

9B, dx
7 2 ) dydz, (1-21)

d¢g s (Bx +

since the normal component of B at the right-hand face is the
x-component of B at that face. The volume being infinitesimal, we
neglect higher-order derivatives of the components of B.

At the left-hand face, the outgoing flux is

OB, dx

e— . 1_
2 )dy 7 (1-22)

d¢';__ — _(B_r =

There is a minus sign before the parenthesis because B.& points inward at
this face and dsf outward.

Thus the outward flux through the two faces is

3B B
dP, +dPy =—"dx dydz = ‘;‘ dv, (1-23)

where dv is the volume of the infinitesimal element.

If we calculate the net flux through the other pairs of faces in the
same manner, we find that the total outward flux for the element of
volume dv is

B
dq}mt = (3 =+ agy + 332) dv

ax | dy oz (1-24)
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Suppose now that we have two adjoining infinitesimal volume elements
and that we add the flux emerging through the bounding surface of the
first volume to the flux emerging through the bounding surface of the
second. At the common face, the fluxes are equal in magnitude but
opposite in sign, and they cancel. The sum, then, of the flux from the first
volume and that from the second is the flux emerging through the
bounding surface of the combined volumes.

To extend this calculation to a finite volume, we sum the individual
fluxes for each of the infinitesimal volume elements in the finite volume,
and so the total outward flux is

8B, 9B, OB,
q)hll_J;( % + 3}' + az)dv. (1'25)

At any given point in the volume, the quantity

OB, OB, 3B,
+—2+
ox Jdy 98z

's thus the outgoing flux per unit volume and is invariant. We call this the
divergence of B at the point.
The divergence of a vector point-function is a scalar point-function.
According to the rule for the scalar product, we write the divergence of
It as

_9B, 3B, 3B,

V-B - :
ox Jy 0oz

(1-26)

I'he divergence is invariant also because both V and the scalar product
are invariant.
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THE DIVERGENCE THEOREM

Now the total outward flux of a vector B is equal to the surface integral
of the normal outward component of B. Thus, if we denote by ./ the area
of the surface bounding v, the total outward flux is

aB . 3B.
O, JB dsd = f az)du fv Bdv. (1-27)

These relations apply to any continuously differentiablet vector field B.
Thus

f B-dm‘=[v-3dv. (1-28)
o v

This is the divergence theorem, also called Green's theorem, or Gauss'’s
theorem. Note that the first integral involves only the values of B on the
surface of area .« whereas the second involves the values of B throughout
the volume v.

THE LINE INTEGRAL [*B-dl.
CONSERVATIVE FIELDS

The integrals

b b b
fﬂ'-di. fBXJI. and f fdl,

evaluated from the point a to the point b over some specified curve, are
examples of line integrals.

In the first, which is especially important, the term under the integral
sign is the product of an element of length dl on the curve, multiplied by
the local value of B according to the rule for the scalar product.

A vector field B is conservative if the line integral of B - dl around any

closed curve 15 zero:
i#;B-d’I=D. (1-29)

The circle on the integral sign indicates that the path of integration is
closed.
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THE CURL VXB

[-or any given field B and for a closed path situated in the xy-plane,
B-dl =B, dx+ B, dy (1-30)

and
ﬂ:ﬂ-d:=j£3xdx+§§gvdy. (1-31)

Now consider the infinitesimal path in Fig. 1-7. There are two
contributions to the first integral on the right-hand side of Eq. 1-31, one
1ty —dy/2 and one at y +dy/2:

a oB, dy) ( oB, a'y)
%Bxdx—( 3y 2 dx — | B, + — 5y 2 dx. (1-32)

I'here is a minus sign before the second term because the path element at
v +dy/2 points in the negative x-direction. Therefore, for this in-
linitesimal path,

%B dx = *—dydx (1-33)
Similarly,

§ B, dy = dx dy, (1-34)
and

9B, 4B
B-di=(Z"- ) :

§ ox By dx dy (1-35)

for the infinitesimal path of Fig. 1-7.
If we set
9B, 3B,
8= "oy (1-36)
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then
%B cdl =g, dod, (1-37)

where dsf =dxdy is the area enclosed by the infinitesimal path. Note
that this is correct only if the line integral runs in the positive direction in
the xy-plane, that is, in the direction in which one would turn a
right-hand screw to make it advance in the positive direction along the
Z-axis.

Consider now g, and the other two symmetric quantities as the
components of a vector

3B - |
Fx3=( z_c?By)f+(an_aB,) (SB_, 3B

S + | —— ol - -
dy 9z 6z ax 1? T \ax dy )z’ (1-38)

which may be written as

e ] y Z

VXB= L (1-39)
ox 3y oz
B, B, B,

This is the curl of B. The quantity g is its z-component.
If we choose a vector dsf that points in the direction of advance of a
right-hand screw turned in the direction chosen for the line integral, then

ded =dd 7 (1-40)

and
5£B-d:=(v><3)-d.d, (1-41)
This means that the line integral of B - df around the edge of the area dsf

is equal to the scalar product of the curl of B by this element of area,
with the above sign convention.
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We have arrived at this result for an element of area dxdy in the
vv-plane. Is this result general? Does it apply to any small area, whatever
its orientation with respect to the coordinate axes? It does if it is
imvariant. We have already seen that the scalar product is invariant. Thus
the above line integral is invariant. We have also seen that the operator V
and the vector product are invariant. Therefore V X B is invariant. This
means that VX B is a vector whose value, defined by Eq. 1-41, is
independent of the particular coordinate axes used, as long as they form
. right-handed Cartesian system. Then Eq. 1-41 is indeed invariant; it
Jdoes apply to any element of area dsf, and

(VX B), = lim léB.-a (1-42)
.ﬂ'—-bl)d;f '

I'hus the component of the curl of a vector normal to a small surface of
area & is equal to the line integral of the vector around the periphery C
ot the surface, divided by </, when this area approaches zero.

In general, VX B is not normal to B. See Prob. 1-7.

The curl of a gradient is identically equal to zero:

v X (Vf) = 0. (1-43)
STOKES’'S THEOREM

surface—any finite surfacet bounded by the path of integration in
question—into elements of area df,, d=f,, and so forth, as in Fig. 1-8.
For any one of these small areas,

i_ﬂ"ff:(VxB)-d&f. (1-46)

We add the left-hand sides of these equations for all the d.sf’s and then
all the right-hand sides. The sum of the left-hand sides is the line integral
around the external boundary, since there are always two equal and
opposite contributions to the sum along every common side between
adjacent dsf’s. The sum of the right-hand sides is merely the integral of
(VX B) -dsf over the finite surface. Thus

f:B-df=J;r(F><B) -dst, (1-47)

where & is the area of any open surface bounded by the curve C.

10
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THE LAPLACIAN OPERATOR V°

I'he divergence of the gradient of f is the Laplacian of f:

’f &f &f
8x2+8y1+ 8z’ e

V-Vf=Vf=

where V7 is the Laplacian operator.
The Laplacian is invariant because it is the result of two successive

invariant operations.
We have defined the Laplacian of a scalar point-function f. It is also
useful to define the Laplacian of a vector point-function B:

V:B=V°B,, + V°B,,+ V°B,,. (1-51)
ORTHOGONAL CURVILINEAR COORDINATES

It is frequently inconvenient, because of the symmetries that exist in
certain fields, to use Cartesian coordinates. Of all the other possible
voordinate systems, we shall restrict our discussion to cylindrical and
spherical polar coordinates, the two most commonly used.

We could calculate the gradient, the divergence, and so on, directly in
both cylindrical and spherical coordinates. However, it is easier and more
general to introduce first the idea of orthogonal curvilinear coordinates.

Consider the equation
in which ¢ is a constant. This equation defines a family of surfaces in
space, each member characterized by a particular value of the parameter
q. An obvious example is x = g, which defines surfaces parallel to the
yz-plane in Cartesian coordinates.

Consider now three equations

filx, y, z)=gq,, fx, y, 2) = gq,, filx, y,z)=¢q3  (1-53)

defining three families of surfaces that are mutually orthogonal. The
intersection of three of these surfaces, one of each family, then defines a
point in space, and q,, q,, g are the orthogonal curvilinear coordinates
of that point, as in Fig. 1-9.

11
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Call ;ﬁ, an element of length normal to the surface g,. This is the
distance between the surfaces ¢, and ¢, + dq, in the infinitesimal region
considered. Then

ﬂql:hldql, (1'54)

where h, is, in general, a function of the coordinates 41> 92, 3. Similarly,
dfz =h2 dqz and d!3=h3 dq::, (1'55)

With Cartesian coordinates hy, h,, h; are all unity.

The unit vectors §,, §,, §; are normal, respectively, to the q1: G2, q3
surfaces and are oriented toward increasing values of these coordinates.
We assign the subscripts 1,2,3 to the coordinates in order that
9, X§,=qs.

The orientations of the three unit vectors vary, in general, with
41, 92, 3. Only in Cartesian coordinates do the unit vectors point in fixed

directions.
The volume element is

dv = dfl dfz dlr:s, =h ]hzh:q,(dq. dq2 dl.?3}. (1'56)

We can now find the g’s, the h’s, the elements of length, and the
clements of volume for cylindrical and spherical coordinates.

Cylindrical Coordinates
In cylindrical coordinates, as in Fig. 1-10, ¢, = p, g, = ¢, g3 =z.

At P there are three mutually orthogonal directions defined by the
three unit vectors p, @, and z. The unit vectors p and ¢ do not maintain
the same directions in space as the point P moves about. However, at any
viven point, the three unit vectors are mutually orthogonal.

The vector that defines the position of P is

r=pp +zz. (1-57)

Note that ¢ does not appear explicitly on the right-hand side; it is
wpecified by the orientation of p.

12
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If the coordinates ¢ and z of the point P remain constant while p
increases by dp, then P moves by dr =dp p. If p and z remain constant
while ¢ increases by d¢, then dr = p d¢ ¢. Finally, if p and ¢ are fixed
while z increases by dz, then dr = dz Z. For arbitrary increments dp, d¢,

«z, the distance element is thus

dr=dpp+pdp ¢ +dz 3. (1-58)

(L B

R

Fig. 1-11. Element of volume in
cylindrical coordinates.

Figure 1-11 shows the volume element whose edges are the elements of
length corresponding to infinitesimal increments in the coordinates at the

point P of Fig. 1-10. The infinitesimal volume is

dv =pdpdg dz. (1-59)
13
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Spherical Coordinates
In spherical coordinates the position of a point P has the coordinates
r, 6, ¢ as in Fig. 1-12. Again, the unit vectors 7, #, ¢ do not maintain the
same orientations in space as P moves about.

The vector r that defines the position of P is now simply r7, the
coordinates € and ¢ being given by the orientation of 7. Also,

Fig. 1-13. Element of volume in
spherical coordinates.

dr=dri+rd6 @ +rsin6dep ¢. (1-60)
I'he volume element, shown in Fig. 1-13, is
dv = r’sin 8 dr d6 do. (1-61)

Table 1-1 shows the correspondence between curvilinear, Cartesian,
~vhindrical, and spherical coordinates.

Note that the angle ¢ in both cylindrical and spherical coordinates is
andefined for points on the z-axis.

With Cartesian coordinates, one uses the operator V for the gradient of
o scalar point-function and for the divergence and curl of a vector
pomt-function. A single expression defines V, and we obtain the
~radient, the divergence, or the curl by performing the appropriate

14
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CURVILINEAR CARTESIAN CYLINDRICAL SPHERICAL

qi
q:

.
h,

h.
h 1
g
q:f
q-

|aT™

sin @

IR T Rt e il B
o =T =] D

£ Doy N

multiplication. This relatively simple situation is peculiar to the Cartesian
coordinate system. With other coordinate systems, the divergence,
gradient, and curl do not permit a single definition for V but require more
elaborate expressions that we shall now derive.

The Gradient

The gradient is the vector rate of change of a scalar function f:

af af
A 3.*2 %5 o (1-62)

Lef . 1 1 of .
39,

41+__ 1s 1‘63
“h 3qlq' h, 3¢, 1" hyoq, T L)

Vi=

For cylindrical coordinates, then,

f 1 f . of.
v — —Z. -
f = ;}3¢¢+322 (1-64)
With spherical coordinates,
1 of .
Vf= f A : (1-65)

3r r 39 r sin 0 3¢

On the z-axis, ¢ 1s undefined and both p and sin @ are zero, so these
two expressions are meaningless.

15
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The Divergence

To find the divergence, consider the volume element of Fig. 1-14. The
quantity B, is the g, component of B at the center, and h,, h;, h; are the

h values at that point. Since the faces are mutually orthogonal, the
outward flux through the left-hand face is

d®, = =B, h, hy dq, dq, (1-66)
_ﬂﬁ_ ( oh, dgq, Sh- dq,
=-(8 S ') (ks - 5 D) (h-52 ) daa dgs. (1-67)

Remember that 4, and h, may be functions of ¢,, just as B,. We may
neglect differentials of order higher than the third, and then

3 d
d®, = — B, h,h, dg, dq3+£(ﬂlh h;}—@dqadq; (1-68)
1

I3v a similar argument,

lor the right-hand face. The net flux through this pair of faces is then

3
AP, r = 3a. (B,hyhs)dq, dg, dg. (1-70)

q

If we repeat the calculation for the other pairs of faces to find the net

ontward flux through the bounding surface and then divide by the volume
ol the element, we obtain the divergence:

1 3 3
V-B= < { (B, h; h;)+£(5‘2h h,)+aq (Bsh, hz}] (1-71)

16
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In cylindrical coordinates,

1 0 13B, 0B,
V-B= e 1-72
p&'p 3p PB p d¢ Oz (1-72)
B, @B, 13&B, 3JB,
_5 95 1938, 9B (1-73)

p  dp pd¢p Oz

In spherical coordinates,

1 3
V-B—m [—-(Br sin 9)1——(391' sin 8)+—¢ B,pr)] (1-74)
2 8B, B, 19B, 1 JB
=-B, + 0+ - e, -
r ar r t r 36 +rsin 8 J¢ (1-75)

These divergences are also meaningless on the z-axis, where p and
sin 6 are both zero.

The Curl
We apply the fundamental definition given in Eq. 1-42:

(VX B), = lim — 353 di, (1-76)

L‘H'--ﬁ

where the path of integration C lies in the surface g, = constant and
where the direction of integration relates to the direction of the unit
vector ¢, by the right-hand screw rule. For the paths labeled a, b, ¢, d in
Fig. 1-15, we have the following contributions to the line integral:

—Bshs dq,,

SB‘; )( Sh 4 )
B + ht »
( 3 aq dq h aqz dq“ dq_‘;

+Bzh2 dq2?
, 9B oh,
- B )(h1+ hd d > .
( >+ EYR 27 5, Q.a_) q-:

The sum of these four terms, divided by the element of area is equal to
the 1-component of the curl of B. Neglecting higher-order differentials,

17
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T X = ) v ]
= =, (Bshs) — Bhy) | . 1-78
hzha aqz( 3 3) aq3( - 2} ( )

Corresponding expressions for the other components of the curl follow
inw rotating the subscripts. Finally,
hg, h>g> hsq;

1 g I, 2}
VXB= . (1-79)
hlhzhg, aQ1 an aqf‘r

hB, hB, hiB;

I or cylindrical coordinates,

p po Z
1| 3 3 3
vxp=-|> 2 2| (1-80)
p | dp ¢ oz
B, pB, B,
i for spherical coordinates
7 r® rsin0¢
3 2 3
X B — < el — 1. (1-81)
St r’sin@ |3r 36 3¢
B, rBy, rsin 6B,

I hese definitions are not valid on the z-axis.
The Laplacian

W calculate the Laplacian of a scalar function f in curvilinear coordi-

mates by combining the expressions for the divergence and for the
vadient:

V=V-Vf (1-82)
_ 1 [ g (hzhg, 3'f) I a (h;hl Sf)
hihyhs L3q, h, J9q, 9q, \ h, 3q,
3 fhh, 3f )]
4 ) 1-83
5@'3( hy 9q, { )

18
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For cylindrical coordinates,

219 if) 15F .

e (pap * 3503 T 3 (1-84)
'l 2 ] 82 2
_lof of 139f of (1-85)

T pop  8p pPag? 8%
except on the z-axis. For spherical coordinates,
18/, 1 3/, of 1 &
% =——(2—)+ —(sino =) + 86
2ar\" ar) T Psin606\>" " 36/ T Psin? 0 3p? (1-86)

20f O cotOdf 13F 1
=" + —+ ~ . 3 3
ror o 2 86 1236 Psin’ 0 d¢p?

(1-87)

except, again, on the z-axis.

We have already seen in Sec. 1.10 that the Laplacian of a vector B in
Cartesian coordinates is itself a vector whose components are the
Laplacians ot B,, B,, B,. Then

VX(VXB)=V(V-B)- V’B (1-88)

is an identity in Cartesian coordinates.

With other coordinates, V’B is, by definition, the vector whose
components are those of V(V-B)— V X (V X B), and not the sum of the
Laplacians of By, B,, Bi:

V'B=V(V-B)-VX(VXB). (1-89)

19
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CHUONG 2. HAM BIEN PHUC

THE DERIVATIVE IN THE COMPLEX PLANE:
THE CAUCHY-RIEMANN EQUATIONS

We have already introduced the complex variable z = z + iy, where
z and y are variable. We now define another complex variable w = u+iv
so that for each value of z there corresponds a value of w = f(2). From
all of the possible complex functions that we might invent, we will focus
on those functions where for each z there is one, and only one, value of
w. These functions are single-valued. They differ from functions such

z-plane w-plane

Figure 1.3.1: The complex function w = z7.

as the square root, logarithm, and inverse sine and cosine, where there
are multiple answers for each z. These multivalued functions do arise in
various problems. However, they are beyond the scope of this book and
we shall always assume that we are dealing with single-valued functions.

A popular method for representing a complex function involves
drawing some closed domain in the z-plane and then showing the corre-
sponding domain in the w-plane. This procedure is called mapping and
the z-plane illustrates the domain of the function while the w-plane il-
lustrates its image or range. Figure 1.3.1 shows the z-plane and w-plane
for w = z?; a pie-shaped wedge in the z-plane maps into a semicircle on
the w-plane.
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Although the requirement that a complex function be single-valued
is important, it is still too general and would cover all functions of two
real variables. To have a useful theory, we must introduce additional
constraints. Because an important property associated with most func-
tions is the ability to take their derivative, let us examine the derivative
in the complex plane.

Following the definition of a derivative for a single real variable, the
derivative of a complex function w = f(z) is defined as

dw . Aw . f(z4+ Az) - f(z2)
dz ﬂ.ljr—r-ln Az al;rj}n Az '

(1.3.7)

A function of a complex variable that has a derivative at every point
within a region of the complex plane is said to be analytic (or regular
or holomorphic) over that region. If the function is analytic everywhere
in the complex plane, it is entire.

Because the derivative is defined as a limit and limits are well be-
haved with respect to elementary algebraic operations, the following
operations carry over from elementary calculus:

% cf(z)l = cf'(z), ¢ a constant (1.3.8)
% [f(z) + g(z)] = f'(z2) £ ¢'(2) (1.3.9)
e = reee+ e aso
4[] _ o )=o) 1311
dz | g(2) 9%(z)

d_d;{f[g(z}]} = f'l9(2)]d'(2), the chain rule. (1.3.12)
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Another important property that carries over from real variables 1s
I’Héspital Tule: Let f(z) and g(z) be analytic at zo, where f(z) has a
zero! of order m and g(z) has a zero of order n. Then, if m > n,

lim L) — o, (1.3.13)
z—z0 g(z)
if m=n,
z (m) (2
lim £82) = S () (1.3.14)

=20 g(z) — g(™)(z0)
and if m < n,
im 22— o (1.3.15)
z2—zo0 g(2)
So far we have introduced the derivative and some of its properties.
But how do we actually know whether a function is analytic or how
do we compute its derivative? At this point we must develop some
relationships involving the known quantities u(x, y) and v(z, y).
We begin by returning to the definition of the derivative. Because
Az = Az+iAy, there is an infinite number of different ways of approach-
ing the limit Az — 0. Uniqueness of that limit requires that (1.3.7) must
be independent of the manner in which Az approaches zero. A simple
example is to take Az in the z-direction so that Az = Axz; another is
to take Az in the y-direction so that Az = i{Ay. These examples yield

dw Aw . Au + iAv Ju . Ov

—— = lm — = = — 1.3.17

dz a}:rllﬁ Az al:.-lllﬂ Az oz + t15"::(‘: ( )
and

dw . Aw . Au + 1Av dv  _Ou

—_— = — =1 = —_ 1.3.18

dz  aito Az a;rﬂn 1Ay dy ! dy ( )

In both cases we are approaching zero from the positive side. For the
limit to be unique and independent of path, (1.3.17) must equal (1.3.18),
or

du v Ju dv

3z — 8y ™ 5T o (1.3.19)

These equations which u and v must both satisfy are the Cauchy-
Riemann equations. They are necessary but not sufficient to ensure that
a function is differentiable. The following example will illustrate this.
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Consider the complex function

_J2/=% 2#0
- { 4 e (1.3.20)
The derivative at z = 0 is given by
dw _ o B2°/1827 -0\ (A2)° (1.3.21)
dz Ao Az T az—o0 |[Az]? s

provided that this limit exists. However, this limit does not exist be-
cause, in general, the numerator depends upon the path used to ap-
proach zero. For example, if Az = re™/* with r — 0, dw/dz = —1. On
the other hand, if Az = re™/? with r — 0, dw/dz = 1.

Are the Cauchy-Riemann equations satisfied in this case? To check
this, we first compute

Az \*
ur-(0,0) = ;:.I;}-En (|ﬁf|) = (1.3.22)
ing\*
vy(0,0) = lim_ (I&;l) =1, (1.3.23)
. iAy)® ]
uy(U,O) = n};ﬂﬂ Re [m =0 (1.3.24)
and i
: Az \*

Hence, the Cauchy-Riemann equations are satisfied at the origin. Thus,
even though the derivative is not uniquely defined, (1.3.21) happens to
have the same value for paths taken along the coordinate axes so that
the Cauchy-Riemann equations are satisfied.

In summary, if a function is differentiable at a point, the Cauchy-
Riemann equations hold. Similarly, if the Cauchy-Riemann equations
are not satisfied at a point, then the function is not differentiable at that
point. This is one of the important uses of the Cauchy-Riemann equa-
tions: the location of nonanalytic points. Isolated nonanalytic points
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of an otherwise analytic function are called isolated singularities. Func-
tions that contain isolated singularities are called meromorphic.

The Cauchy-Riemann condition can be modified so that it 1s a
sufficient condition for the derivative to exist. Let us require that u,,
iy, vz, and vy be continuous in some region surrounding a point zg and
satisfy the Cauchy-Riemann conditions there. Then

f(2z) = f(z0) = [u(z) = u(20)] + i[v(2) — v(z0)] (1.3.26)
= [uz(zo (= — x0) + uy{za) (¥ — Yo)
+ €1(x — zo) + €2(y — yo)]
+ i[vz(z0) (2 — xo) + vy(20)(y — ¥o)

+ €a(z — z0) + €a(y — wo)] (1.3.27)
= [uz(z0) + vz (20)](z — 20)
+ (€1 + de3)(x — xo) + (€2 + iea)(y — wo), (1.3.28)

where we have used the Cauchy-Riemann equations and €;, €2, €3, €4 — 0
as Az, Ay — 0. Hence,

f'(z0) = Jim_ f(z) ;zf(z") = uz(20) + #v:(20), (1.3.29)

because |Ax| < |Az| and |Ay| < |Az|. Using (1.3.29) and the Cauchy-
Riemann equations, we can obtain the derivative from any of the fol-
lowing formulas:

dz — 0z T'or 9y ‘5 (1.3.30)

and

dz dy +13;r = bz _ié‘_y' (1.3.31)

Furthermore, f’(zg) is continuous because the partial derivatives are.
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Let us show that sin(z) is an entire function.

w = sin(z) (1.3.32)
u + tv = sin(z + 1y) = sin(z) cos(iy) + cos(z)sin(iy) (1.3.33)
= sin(z) cosh(y) + ¢ cos(z) sinh(y), (1.3.34)

because
cos(iy) = 1 [e!¥) 4 e~ W)} = Lle¥ 4 e=¥] = cosh(y) (1.3.35)
and
sin(iy) = -?1; [us”:"'lrirjl - e"'("y}] = —%[ey - e‘y] = 1sinh(y) (1.3.36)
so that
u(z,y) =sin(z)cosh(y) and wv(z,y) = cos(z)sinh(y). (1.3.37)

Differentiating both u(z, y) and v(z, y) with respect to x and y, we have
that

Ju u : .

3 = cos(z) cosh(y) 3—y = sin(z)sinh(y) (1.3.38)
ov in(z) sinh(y) ov _ h 13.39
3 — sin(x) sinh(y a = cos(z) cosh(y) (1.3.39)

and u(z,y) and v(r,y) satisfy the Cauchy-Riemann equations for all
values of = and y. Furthermore, u;, u,, vz, and v, are continuous for
all  and y. Therefore, the function w = sin(2) is an entire function.
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Let us find the derivative of sin(z).
Using (1.3.30) and (1.3.34),

[sm z)] Ou gz (1.3.46)
= 1:05(1') cosh(y) — tsin(z) sinh(y) (1.3.47)
= cos(x + 1y) = cos(2). (1.3.48)
Similarly,
d 1\ ¢ -2° 2izy e
E5(:’:)_(:rr2+y?)ﬂ’+(=1rr2+y2)1’ (1349
1 1

- — = 1.3.50
(z + 1y)? 2?2 ( )

The results in the above examples are identical to those for z real.
As we showed earlier, the fundamental rules of elementary calculus apply
to complex differentiation. Consequently, it is usually simpler to apply
those rules to find the derivative rather than breaking f(z) down into
its real and imaginary parts, applying either (1.3.30) or (1.3.31), and
then putting everything back together.

An additional property of analytic functions follows by cross differ-
entiating the Cauchy-Riemann equations or

Pu 0% 0%u 821; &%u
= = —— =0 1.3.51
dx?  OJz0y ay? o 3:1:2 dy? ( )
and
2 2 2 2
d?v d%u o*v d*v . v _ 0. (1.3.52)

82~ dzdy 9y 9z T Oy?
Any function that has continuous partial derivatives of second order
and satisfies Laplace’s equation (1.3.51) or (1.3.52) is called a harmonic
function. Because both u(z,y) and v(z,y) satisfy Laplace’s equation

if f(2) = u + v is analytic, u(z,y) and v(z,y) are called conjugate
harmonic functions.
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LINE INTEGRALS

So far, we discussed complex numbers, complex functions, and com-
plex differentiation. We are now ready for integration.

Just as we have integrals involving real variables, we can define an
integral that involves complex variables. Because the z-plane is two-
dimensional there is clearly greater freedom in what we mean by a com-
plex integral. For example, we might ask whether the integral of some
function between points A and B depends upon the curve along which
we integrate. (In general it does.) Consequently, an important ingredi-
ent in any complex integration is the contour that we follow during the
integration.

The result of a line integral is a complex number or expression. Un-
like its counterpart in real variables, there is no physical interpretation
for this quantity, such as area under a curve. Generally, integration in
the complex plane is an intermediate process with a physically realizable
quantity occurring only after we take its real or imaginary part. For ex-
ample, in potential luid flow, the lift and drag are found by taking the
real and imaginary part of a complex integral, respectively.

How do we compute [ f(z)dz?7 Let us deal with the definition; we
will illustrate the actual method by examples.

A popular method for evaluating complex line integrals consists of
breaking everything up into real and imaginary parts. This reduces the
integral to line integrals of real-valued functions which we know how to
handle. Thus, we write f(z) = u(z,y) + iv(z, y) as usual, and because
z = x + iy, formally dz = dz + idy. Therefore,

f _f{z)dz:f[u{:c,y)+iv(;t:, Nldz + i dy] (1.4.1)
Loy C

== f u(z,y)dr — v(x,y)dy + i/ v(x, y)dr + u(z, y) dy.
c o
(1.4.2)

The exact method used to evaluate (1.4.2) depends upon the exact path
specified.

From the definition of the line integral, we have the following self-
evident properties:

_/::f(z} dz = —fcrf(;r}dz, (1.4.3)

where C" is the contour € taken in the opposite direction of C' and

w/{;1+1‘32 f(z)dz = ~/C'; f(z)dz + ‘/C? f(z)d=. (1.4.4)
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THE CAUCHY-GOURSAT THEOREM

In the previous section we showed how to evaluate line integrations
by brute-force reduction to real-valued integrals. In general, this direct
approach is quite difficult and we would like to apply some of the deeper
properties of complex analysis to work smarter. In the remaining por-
tions of this chapter we will introduce several theorems that will do just
that.

If we scan over the examples worked in the previous section, we
see considerable differences when the function was analytic inside and
on the contour and when it was not. We may formalize this anecdotal
evidence into the following theorem:

Cauchy-Goursat theorem?: Let f(z) be analytic in a domain D and

let C be a simple Jom‘an curve® inside D so that f(z) is analytic on and
instde of C. Then §_ f(z)dz = 0.

Proof: Let C denote the contour around which we will integrate w =
f(z). We divide the region within C into a series of infinitesimal rect-
angles. See Figure 1.5.1. The integration around each rectangle equals
the product of the average value of w on each side and its length,

[w+ il d""] dz + [w I dﬁy)] d(iy)

0z 2 Oz 3( y) 2
3_IUd_I dw ow d(zy)] B

+ [w+ 52 E?( ty)‘ (—dz) + [w+ 3G 2 d(—iy)
ow Ow) ,,

= (3_3 - ﬁ) (i dz dy) (1.5.1)

Substituting w = u + v into (1.5.1),

dw Jw du Ov .fO0v Ou
9z idy (3.1: B 3y) e (‘é‘E* E) ‘ (1.5.2)

Because the function is analytic, the right side of (1.5.1) and (1.5.2)
equals zero. Thus, the integration around each of these rectangles also
equals zero.
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We note next that in integrating around adjoining rectangles we
transverse each side in opposite directions, the net result being equiva-
lent to integrating around the outer curve C'. We therefore arrive at the
result ¢, f(z)dz = 0, where f(z) is analytic within and on the closed
contour. O

The Cauchy-Goursat theorem has several useful implications. Sup-
pose we have a domain where f(z) is analytic. Within this domain let
us evaluate a line integral from point A to B along two different con-
tours C} and Cs. Then, the integral around the closed contour formed
by integrating along C; and then back along C;, only in the opposite
direction, is

$rd= [ f@de- [ ed=0  @sy
c Cq Ca

or

e f(z)dz = /C; f(z)dz. (1.5.4)

Because C; and C3 are completely arbitrary, we have the result that
if, in a domain, f(z) is analytic, the integral between any two points
within the domain is path independent.

One obvious advantage of path independence is the ability to choose
the contour so that the computations are made easier. This obvious
choice immediately leads to

The principle of deformation of contours: The value of a line in-
tegral of an analytic function around any simple closed contour remains
unchanged if we deform the contour in such a manner that we do not

pass over a nonanalytic poini.
Finally, suppose that we have a function f(z) such that f(z) is an-

alytic in some domain. Furthermore, let us introduce the analytic func-
tion F(z) such that f(2) = F’'(z). We would like to evaluate f; f(2)dz

in terms of F(z).
We begin by noting that we can represent F, f as F(z) = U + iV
and f(z) = u+ iv. From (1.3.30) we have that u = Uy and v = V.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

29


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Th erefbfe,

b b
f f(z)dz:/(u+iv)(dz+idy) (1.5.6)
4 'ﬂb b
=/ der—%dyﬂj Vedz+Uzdy  (1.5.7)
r:l'!I db
=/ dea:+Uydy+i/ Vedr + 'V, dy (1.5.8)

b b
:/ dU+-if dV = F(b) - F(a) (1.5.9)

or

f f(z)dz = F(b) — F(a). (1.5.10)

Equation (1.5.10) is the complex variable form of the fundamental the-
orem of calculus. Thus, if we can find the antiderivative of a function
f(z) that is analytic within a specific region, we can evaluate the in-
tegral by evaluating the antiderivative at the endpoints for any curves
within that region.

CAUCHY'S INTEGRAL FORMULA

In the previous section, our examples suggested that the presence
of a singularity within a contour really determines the value of a closed
contour integral. Continuing with this idea, let us consider a class of
closed contour integrals that explicitly contain a single singularity within
the contour, namely §. g(z)dz, where g(z) = f(2)/(z — 20) and f(2) is
analytic within and on the contour C. We have closed the contour in
the positive sense where the enclosed area lies to your left as you move
along the contour.

We begin by examining a closed contour integral where the closed
contour consists of the C, Cs, Cs, and C4 as shown in Figure 1.6.1. The
gap or cut between C and Cjy is very small. Because g(2) is analytic
within and on the closed integral, we have that

-Mdz+ -'fﬂdz-i- iEJ_dz+ (2) dz = 0.
c, £~ <0 C, < — <0 Cs = — 20 Cs €~ 20

(1.6.1)
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Figure 1.6.1: Diagram used to prove Cauchy’s integral formula.

It can be shown that the contribution to the integral from the path
C2 going into the singularity will cancel the contribution from the path
C4 going away from the singularity as the gap between them vanishes.
Because f(z) is analytic at zp, we can approximate its value on C3 by
f(z2) = f(z0) + 6(z), where § is a small quantity. Substituting into

(16.1),
fz) dz:—f[zn)/c ! dz—[: dt) dz. (1.6.2)

Clz—zg az—zu 33—:;:[;.

Consequently, as the gap between C5 and Cj4 vanishes, the contour C)
becomes the closed contour C so that (1.6.2) may be written

f(z)

CZ—Z{]

27
dz =2ﬂ'if(zﬂ)+t'/ 6 d8, (1.6.3)
0

where we have set z — zg = €% and dz = ice?*db.
Let M denote the value of the integral on the right side of (1.6.3)
and A equal the greatest value of the modulus of é along the circle.

31
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Then
2

2w
|M| < f |6|d8 < Adf = 27 A. (1.6.4)

0 0
As the radius of the circle diminishes to zero, A also diminishes to zero.
Therefore, |M|, which is positive, becomes less than any finite quantity,
however small, and M itself equals zero. Thus, we have that

1 () 4.

2wt Jo z = 2o

f(z0) = (1.6.5)

This equation is Cauchy’s integral formula. By taking n derivatives of
(1.6.5), we can extend Cauchy’s integral formula* to

(n) _n f f(z)

F7(z0) 271 Jo (z — zp)" ! az (1.6.6)
forn =1,2,3,... For computing integrals, it is convenlent to rewrite
(1.6.6) as

f(z) _ 2mi n)
fz(z— T dz = = F™) (). (1.6.7)

TAYLOR AND LAURENT EXPANSIONS AND SINGULARITIES

In the previous section we showed what a crucial role singularities
play in complex integration. Before we can find the most general way of
computing a closed complex integral, our understanding of singularities
must deepen. For this, we employ power series.

One reason why power series are so important is their ability to
provide locally a general representation of a function even when its ar-
guments are complex. For example, when we were introduced to trigono-
metric functions in high school, it was in the context of a right triangle
and a real angle. However, when the argument becomes complex this
geometrical description disappears and power series provide a formalism
for defining the trigonometric functions, regardless of the nature of the
argument.
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Let us begin our analysis by considering the complex function f(z)
which is analytic everywhere on the boundary and the interior of a circle
whose center is at 2 = z5. Then, if z denotes any point within the circle,
we have from Cauchy’s integral formula that

1 f§) .1 f(<) [ 1
?“iﬁc_zd{:_ﬂ?’fﬁ'(:—zn 1—(3;20)/(C—20)‘d<’
(1.7.1)

where C' denotes the closed contour. Expanding the bracketed term as
a geometric series, we find that

10 =35 | 2L ac+ -0 f L

Applying Cauchy’s mtegral formula to each integral in (1.7.2), we finally
obtain

(z - zg)

T f () +--- (1.7.3)

f(z) = f(z0) + f'(z0)+ -+

(z — 20)"
n!

or the familiar formula for a Taylor expansion. Consequently, we can

erpand any analytic function into a Taylor series. Interestingly, the

radius of convergence® of this series may be shown to be the distance

between zy and the nearest nonanalytic point of f(z).

Consider now the situation where we draw two concentric circles
about some arbitrary point zp; we denote the outer circle by C while
we denote the inner circle by C;. See Figure 1.7.1. Let us assume that
f(2) is analytic inside the annulus between the two circles. Outside of
this area, the function may or may not be analytic. Within the annulus
we pick a point z and construct a small circle around it, denoting the
circle by Cs. As the gap or cut in the annulus becomes infinitesimally
small, the line integrals that connect the circle C» to €1 and € sum to
zero, leaving
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X

Figure 1.7.1: Contour used in deriving the Laurent expansion.

AN A AT

Because f(() is analytic everywhere within Cs,

2mif(z) = ﬁ‘f; 1) (.

Using the relationship:

¢ -

Q) oSG
}éﬁ(_z C— C]z_cdgj
(1.7.8) becomes
— Q) 1 f(©)
f(z) = 21” = d¢ + 5— g,z—(;dc'
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(1.7.9)

(1.7.10)

(1.7.11)
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C—2z (—zo—z2+20 €(—20t—(2-2)/(—20) (1.7.12)

1 z_zﬂ) z—2\’ z—z\"
1+ 0
(—zg{ (C—Za N C—zn) * +((;._zu) +”']:

(1.7.13)

where |z — zp|/|¢ — zg| < 1 and
1 1 1 1

Z_C=3*ZG—C+ZU=z—zul—((:—zu)f(z-zn) (1.7.14)

SN ¢ — %o ¢—z0\* C—zo\"
e e )

(1.7.15)

Eh;rielgc — 20]/|z — 20| < 1. Upon substituting these expressions into

) = _1_. f(C) &— Z fc
f(}—[%iﬁ ¢ + 'ﬂﬁ: © 4oy

¢ — 2 271 (¢ — 20)2
(2 — z0)" }{ f($)
+ o
2mi Jo (¢ — zo)" ! d+ ]
1 1
* [z % sz fO e+ )22?”-} £ = z0) dG + -+
t e fOC -k ] e
or
(11 ao dn
= + o
f(z) z—zp (z—20)2 (z — zo)?
+bo+bi(z=z0)+ - Fba(z—20)" +--- (1.7.17)
Equation (1.7.17) is a Laurent ezpansion.® If f(z) is analytic at zo,
then ay = as = -+ = a, = --- = 0 and the Laurent expansion reduces

to a Taylor expansion. If zp is a singularity of f(z), then the Laurent
expansion will include both positive and negative powers. The coefficient
of the (z — 29)~* term, ay, is the residue, for reasons that will appear in
the next section.
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Unlike the Taylor series, there is no straightforward method for
obtaining a Laurent series. For the remaining portions of this section
we will illustrate their construction. These techniques include replacing
a function by its appropriate power series, the use of geometric series
to expand the denominator, and the use of algebraic tricks to assist in
applying the first two method.

Removable Singularity
Pole of order n

For complicated complex functions, it is very difficult to determine
the nature of the singularities by finding the complete Laurent expansion
and we must try another method. We shall call it “a poor man’s Laurent
expansion”. The idea behind this method is the fact that we generally
need only the first few terms of the Laurent expansion to discover its
nature. Consequently, we compute these terms through the application
of power series where we retain only the leading terms. Consider the
following example.

THEORY OF RESIDUES

Havingﬁhown that around any singularity we may construct a Lau-
rent expansion, we now use this result in the integration of closed com-
plex integrals. Consider a closed contour in which the function f(z) has
a number of isolated singularities. As we did in the case of Cauchy’s
integral formula, we introduce a new contour C’ which excludes all of
the singularities because they are isolated. See Figure 1.8.1. Therefore,

yll

Figure 1.8.1: Contour used in deriving the residue theorem.
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f f(z)dz - flz)dz —--. _f f(z)dz = f(2)dz=0. (1.8.1)
c [ [ o

Consider now the mth integral, where 1 < m < n. Constructing a
Laurent expansion for the function f(z) at the isolated singularity z =
Zm, this integral equals

o0

1 S .

. f(z)dz ;ak ﬁ;m TR dz +,§}bkfm(z Zm )" dz.

(1.8.2)
Because (z — z,,)* is an entire function if k¥ > 0, the integrals equal
zero for each term in the second summation. We use Cauchy’s integral
formula to evaluate the remaining terms. The analytic function in the
numerator is 1. Because d*~1(1)/dz*~! = 0 if k > 1, all of the terms
vanish except for £ = 1. In that case, the integral equals 27ia,, where
ay is the value of the residue for that particular singularity. Applying

this approach to each of the singularities, we obtain

Cauchy’s residue theorem”: If f(z) is analytic inside and on a closed
contour C' (taken in the positive sense) except at points zy,2s,..., 2
where f(z) has singularities, then

ﬁf(z) dz = ZWIZ RES[f(z)] zj]‘ (1-8.3}
i=1

where Res[f(z); z;] denotes the residue of the jth isolated singularity of
f(z) located at z = z;.
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As it presently stands, it would appear that we must always con-
struct a Laurent expansion for each singularity if we wish to use the
residue theorem. This becomes increasingly difficult as the structure of
the integrand becomes more complicated. In the following paragraphs
we will show several techniques that avoid this problem in practice.

We begin by noting that many functions that we will encounter
consist of the ratio of two polynomials, i.e., rational functions: f(z) =
g(z)/h(z). Generally, we can write h(z) as (z — z1)™' (2 — 22)™? - -~
Here we have assumed that we have divided out any common factors
between g(z) and h(z) so that g(z) does not vanish at z1, 22, .. .. Clearly
21,29, ..., are singularities of f(z). Further analysis shows that the
nature of the singularities are a pole of order m; at z = z1, a pole of
order ms, at z = 24, and so forth.

Having found the nature and location of the singularity, we compute
the residue as follows. Suppose we have a pole of order n. Then we know
that its Laurent expansion 1s

dn + p—1
(Z—-Zu)“ (z—zﬂ)“"l
Multiplying both sides of (1.8.6) by (z — z)",

F(z) = (z —20)" f(2)

=an,+a,_1(z—2z9)+ -+ bo(z — z0)" + b1(2 — zu)n'l'l SEEEL
(1.8.7)

f(z) =

4+ 4+bo+bi(z—2)+- (1.8.6)

Because F(z) is analytic at z = zp, it has the Taylor expansion

F(z) = F(20)+F'(z0)(z—20)+- -+

(n—1)!
Matching powers of z — zp in (1.8.7) and (1.8.8), the residue equals
. F["_I](zg)
Res[f(:)i .a’u] =a = (n — 1}' . (189)
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Substituting in F(2) = (z — 20)™ f(z), we can compute the residue of a
pole of order n by

Resl[f(): 5] = ooy Jim. s (= — )" /)
(1.8.10)
For a simple pole (1.8.10) simplifies to
Res[f(2); 77} = Jim (z = ;) £().
(1.8.11)

Quite often, f(z) = p(z)/q(z). From I’"Hospital’s rule, it follows that

Res[f(2); z;] = q

(1.8.12)
Remember that these formulas work only for finite-order poles. For
an essential singularity we must compute the residue from its Laurent
expansion; however, essential singularities are very rare in applications.

EVALUATION OF REAL DEFINITE INTEGRALS

One of the important applications of the theory of residues consists
in the evaluation of certain types of real definite integrals. Similar tech-

niques apply when the integrand contains a sine or cosine. See Section
3.4.

This example illustrates the basic concepts of evaluating definite
integrals by the residue theorem. We introduce a closed contour that
includes the real axis and an additional contour. We must then evaluate
the integral along this additional contour as well as the closed contour
integral. If we have properly chosen our closed contour, this additional
integral will vanish. For certain classes of general integrals, we shall now
show that this additional contour is a circular arc at infinity.
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Theorem: If, on a circular arc Cr with a radius R and center at the
origin, 2f(z) — 0 uniformly with |z| € Cr and as R — oo, then

him f(z)dz = 0. (1.9.7)
R—oo CR

This follows from the fact that if |zf(z)] < Mg, then |f(z)] <
Mg/R. Because the length of Cr is aR, where a is the subtended
angle,

f(z)dz| < % aR=aMgp —0, (1.9.8)

Cr

because Mg — 0 as R — co. O
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CHUONG 3. BIEN DOI FOURIER
FOURIER SERIES

One of the crowning glories! of nineteenth century mathematics
was the discovery that the infinite series

=2+ i o (”T”) e (’lﬂ) (2.1.1)

n=1

can represent a function f(f) under certain general conditions. This
series, called a Fourier series, converges to the value of the function
f(t) at every point in the interval [—L, L] with the possible exceptions
of the points at any discontinuities and the endpoints of the interval.
Because each term has a period of 2L, the sum of the series also has the
same period. The fundamental of the periodic function f(f) is the n = 1
term while the harmonics are the remaining terms whose frequencies
are integer multiples of the fundamental.

We must now find some easy method for computing the a,’s and
b,’s for a given function f(t). As a first attempt, we integrate (2.1.1)
term by term? from —L to L. On the right side, all of the integrals
multiplied by a, and b, vanish because the average of cos(nwt/L) and
sin(nwt/L) is zero. Therefore, we are left with

f(t)dt. (2.1.2)

adp =

o]
~—
=

-L

Consequently ag is twice the mean value of f(¢) over one period.
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We next ml:lltipl;y' each side of (2.1.1) b}; f‘:c;s(m?rt/L),-where mis a
fixed integer. Integrating from —L to L,

L L
/_L f(t)cos(%@-) dt = :12_.;. cos (mTﬂ) dt
— L nmwt mmi
;an/L ( ) ( L )dt

S 4, f; ("”)cos(mL”) i, (213)

n=

+

_|.

The ap and b,, terms vanish by direct integration. Finally all of the a,

integrals vanish when n # m. Consequently, (2.1.3) simplifies to

= %/:; f(t)cos ("Lﬂ) dt, (2.1.4)

because ff'L cos’(nrt/L)dt = L. Finally, by multiplying both sides of
(2.1.1) by sin(m=t/L) (m is again a fixed integer) and integrating from
—-L to L,

L
by = %fo(t)sin ("T”) dt. (2.1.5)

42
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Although (2.1.2), (2.1.4), and (2.1.5) give us ao, an, and b, for
periodic functions over the interval [—L, L], in certain situations it is
convenient to use the interval [7, 7 + 2L], where 7 is any real number.
In that case, (2.1.1) still gives the Fourier series of f(¢) and

1 T42L
ap = E‘/‘; f{t) dt,

T42L
a, = %f J(t) cos (HTM) dt, (2.1.6)

1 [T (nm
bn = E[, f(?f) 51n (T) di.

These results follow when we recall that the function f(t) is a peri-
odic function that extends from minus infinity to plus infinity. The
results must remain unchanged, therefore, when we shift from the inter-
val [-L, L] to the new interval [r, T+ 2L].

We now ask the question: what types of functions have Fourier
series?” Secondly, if a function 1s discontinuous at a point, what value
will the Fourier series give? Dirichlet®* answered these questions in
the first half of the nineteenth century. He showed that if any arbitrary
function is finite over one period and has a finite number of maxima and
minima, then the Fourier series converges. If f(#) is discontinuous at the
point ¢ and has two different values at f(t~) and f(¢*), where t* and
i~ are points infinitesimally to the right and left of ¢, the Fourier series
converges to the mean value of [f(t*) + f(t7)]/2. Because Dirichlet’s
conditions are very mild, it is very rare that a convergent Fourier series
does not exist for a function that appears in an engineering or scientific
problem.
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PROPERTIES OF FOURIER SERIES

In the previous section we introduced the Fourier series and showed
how to compute one given the function f(¢). In this section we examine
some particular properties of these series.

I Differentiation of a Fourler series ’

In certain instances we only have the Fourier series representation
of a function f(¢). Can we find the derivative or the integral of f(t)
merely by differentiating or integrating the Fourier series term by term?
Is this permitted? Let us consider the case of differentiation first.

Consider a function f(t) of period 2L which has the derivative f'(t).
Let us assume that we can expand f’(t) as a Fourier series. This implies
that f'(t) is continuous except for a finite number of discontinuities and

f(t) 1s continuous over an interval that starts at ¢ = 7 and ends at
t =7+ 2L. Then

oy _ Q0 — nwt , . [ nwt
HOEE +;aﬂcm( 7 )+bnsm( - ) (2.2.1)

where we have denoted the Fourier coefficients of f’(t) with a prime.
Computing the Fourier coefficients,

1

T+2L 1
a = f/, Fdt= 2 [f(r+20) - f(r)] =0,  (222)

if f(7+2L) = f(7). Similarly, by integrating by parts,

T+2L
a!, = % / £(¢) cos ("T’”) dt (2.2.3)
1 nrt\1|"t**  nx Tt . [ nwt
=7 [f(t) oS (T)l T + z /) f(t)sin (T) di(2.2.4)
- “’E’“ (2.2.5)
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and

b, = % f " bt sin (“T’”) dt (2.2.6)
_ % [f(t)sin (1’{—*)] :HL - ’E—";[HL £(t) cos ("T’”) dt (2.2.7)
Sy (2.2.8)

L

Consequently, if we have a function f(¢) whose derivative f'(t) is contin-
uous except for a finite number of discontinuities and f(7r) = f(7+2L),
then

Fi(t) = é % [bn cos (nTﬂ) — ayp sin (nTﬂ)] . (2.2.9)

That is, the derivative of f(t) is given by a term-by-term differentiation
of the Fourier series of f().

I Integration of a Fourier series

To determine whether we can find the integral of f(t) by term-by-
term 1ntegration of its Fourier series, consider a form of the antideriva-

tive of f(2):

F(t) = /; [f(r) - %] dr. (2.2.14)

Now
F(t+2L) =[ [fn -2 dr+[+n 7 - 2] ar 2.215)

= F(¢}+/_i () - 2] ar (2.2.16)

= F(t)+ f: f(r)dr — Lag = F(2), (2.2.17)

so that F'(Z) has a period of 2L. Consequently we may expand F(¢) as
the Fourier series
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n= L L
For A,
. 1 [ nwi
An = E L f(t)COS (—L—-) dt (2219)
1 sin(nwt/L)]|" 1 fE
= — | F(t _ ap nwt
L[ L nr/L ] L “?"/L [f()_? Sm(?) L
(2.2.20)
nr/L (2.2.21)
Similarly,
a
B, = —Z2—,
nr/L (2.2.22)
Therefore,

t o :
][; f(r)dr = E'?'i+ ﬂ_l_ Z an sin(nwt/L) — by, cos(nﬂt/L). (2.2.23)

2 2 nm/L

n=1
This is identical to a term-by-term integration of the Fourier series for

F(t). Thus, we can always find the integral of f(¢) by a term-by-term
integration of its Fourier series.

I Parseval’s equality ‘

One of the fundamental quantities in engineering is power. The
power content of a periodic signal f(t) of period 2L is f:"'zL f2(t)dt/L.
This mathematical definition mirrors the power dissipation I°R that
occurs in a resistor of resistance R where I is the root mean square
(RMS) of the current. We would like to compute this power content as
simply as possible given the coefficients of its Fourier series.
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" Assume that f-(t) has the Fourier series

f(t) = —-éE + Eaﬂ, coS ( ) + b, sin (n;rt) . (2.2.27)

Then,
| [r+2L ao 7+2L
._/ F2(8) dt = 2L f(t) dt

L
r+2L 1
+ Z Effr f(t) cos (P%) dt
T42L ) {
2 E“] f(t)sin (PLL) dt (2.2.28)

Equation (2.2.29) is Parseval’s equality.® It allows us to sum squares
of Fourier coefficients (which we have already computed) rather than

performing the integration [~ S f3(t) dt analytically or numerically.

I Gibbs phenomena \

In the actual application of Fourier series, we cannot sum an infinite
number of terms but must be content with N terms. If we denote this

partial sum of the Fourier series by Sy (t), we have from the definition
of the Fourier series:

Sn(t) = $a0+ Y _an cos(nt) + b, sin(nt) (2.2.34)
n=1
1 2w
g f(I) dfﬂ
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b % :ﬁ f(x) [é cos(nt) cos(nz) + sin(nt) sin(m:)] dr
(2.2.35)
Sn(t) = = fz f(z) {% + i cos[n(t — x)]} dz (2.2.36)
TJo n=1
1 f(a:)Sin[(N +3)E-1)] S

"2 Jo sin[2(z —1)]
The quantity sin[(N + 3)(z —t)]/ sin[3(z — )] is called a scanning func-
tion. Over the range 0 < r < 2w it has a very large peak at z =t where
the amplitude equals 2N + 1. See Figure 2.2.1. On either side of this
peak there are oscillations which decrease rapidly with distance from
the peak. Consequently, as N — oo, the scanning function becomes
essentially a long narrow slit corresponding to the area under the large
peak at £ = t. If we neglect for the moment the small area under the
minor ripples adjacent to this slit, then the integral (2.2.37) essentially
equals f(t) times the area of the slit divided by 27. If 1/27 times the
area of the slit equals unity, then the value of Sy(t) = f(t) to a good
approximation for large N.

For a relatively small value of N, the scanning function deviates
considerably from its ideal form, and the partial sum Sy () only crudely
approximates the given function f(¢). As the partial sum includes more
terms and NV becomes relatively large, the form of the scanning function
improves and so does the degree of approximation between Sy (¢) and
f(t). The improvement in the scanning function is due to the large
hump becoming taller and narrower. At the same time, the adjacent
ripples become larger in number and hence also become narrower in the
same proportion as the large hump becomes narrower.

The reason why Sy(t) and f(¢) will never become identical, even
in the limit of N — oo, is the presence of the positive and negative side
lobes near the large peak. Because

in[(N + 3)(z -t -
e T e, @ase
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an integration of the scanning function over the interval 0 to 27 shows
that the total area under the scanning function equals 27. However,
from Figure 2.2.1 the net area contributed by the ripples is numerically
negative so that the area under the large peak must exceed the value
of 2m if the area of the entire function equals 27. Although the exact
value depends upon N, it is important to note that this excess does not
become zero as N — oc.

Thus, the presence of these negative side lobes explains the depar-
ture of our scanning function from the idealized slit of area 27. To
illustrate this departure, consider the function:

]-1
o={4 5 e
Then,
_ 1 T sin[(N + %)(:r: —1)] 1 2T sin[(N + 1) (z — 1))
Sn(t) = 2 fﬂ sin[z(z — 1)] dz 2w /.,, sin[%{; —1)] da:
(2.2.40)
_ 1y sin[(N + 1)(z — 1)) sin[(N + L)(z + t)]
T 2w [;. { sin[1(z — t)] e sin[%(; + t)] d:c}
(2.2.41)
_ 1 Tt sin[(N + 1)6] 1 "+ sin[(N + 1)6)
2w ), sin(36) d6 2w J, sin(36) 4.
(2.2.42)

The first integral in (2.2.42) gives the contribution to Sx(t) from the
jump discontinuity at ¢ = 0 while the second integral gives the con-
tribution from ¢ = 7. In Figure 2.2.2 we have plotted the numerical

HALF-RANGE EXPANSIONS

In certain applications, we will find that we need a Fourier series
representation for a function f(z) that applies over the interval (0, L)
rather than (—L, L). Because we are completely free to define the func-
tion over the interval (—L, 0), it is simplest to have a series that consists
only of sines or cosines. In this section we shall show how we can obtain

these so-called half-range erpansions.

It is important to remember that half-range expansions are a special
case of the general Fourier series. For any f(x) we can construct either
a Fourier sine or cosine series over the interval (—L, L). Both of these
series will give the correct answer over the interval of (0, L). Which one
we choose to use depends upon whether we wish to deal with a cosine

or sine series.
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COMPLEX FOURIER SERIES

So far in our discussion, we have expressed Fourier series in terms
of sines and cosines. We are now ready to reexpress a Fourier series
as a series of complex exponentials. There are two reasons for this.
First, in certain engineering and scientific applications of Fourier series,
the expansion of a function in terms of complex exponentials results
in coefficients of considerable simplicity and clarity. Secondly, these
complex Fourier series point the way to the development of the Fourier
transform in the next chapter.

We begin by introducing the variable

ni
wn = T, (2-51)
where n = 0,£1,42,... Using Euler’s formula we can replace the sine

and cosine in the Fourier series by exponentials and find that

— a_ﬂ a_ﬂ fwnt —fwnt b_ﬂ- fwnt _ =—iwnt
F) =3 +§ 5 (5" +e7int) + 2% (e e~iwrt)  (2.5.2)
‘E""i(a—“-M L EI—”i+5'1“‘17).c:-f“*w" (2.5.3)
2 — 2 2 2 2 ' o
If we define ¢, as
Cn = %(ﬂn - ibn}, {254)
then
1 T+2L
en = 3(an — ibp) = YA f(t)[cos(wnt) — isin(w,t)]dt  (2.5.5)
1 T4+2L ) ’
=37 f f(t)e " “dt. (2.5.6)

Similarly, the complex conjugate of ¢,, ¢}, equals

T4+ 2L

1 .
¢p = 5{an +ib,) = 5T f(t)ye'“~tdt. (2.5.7)
To simplify (2.5.3) we note that
—n)w nmw
Wep = ( L) == = —wn, (2.5.8)
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which yields the result that

1 r+2L 1 T+2L

— —iwent gt — He'“~tdt = ¢~ (2.5.9
5T f(t)e 5T f(t)e cn ( )

Con =

so that we can write (2.5.3) as

f(f)— __I_Zc e:w"t_l_c e :wntz +ch€=w t_l_c_ne—:w nt

n=1 n=1
(2.5.10)
Letting n = —m in the second summation on the right side of (2.5.10),
o — o0 -1
Z c_ne—:'wnt —_ Z Cm € —sw_m Z cme:wmt — Z Cnﬁiw"t,
n=1 m=-1 m=—oo n=—o0
(2.5.11)

where we have introduced m = n into the last summation in (2.5.11).
Therefore,

fA =5+ ch funt 4 Z cnent. (2.5.12)
== 0
On the other hand,
ao 1 T+2L )
2 = 3L ft)dt = co = coetet, (2.5.13)

because wq = 0w /L = 0. Thus, our final result is

o2
f&)= D cae™nt, (2.5.14)
where
T+2L )
e — % f(t)g"""""t dt (2.5.15)

51
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and n = 0,+1,42, ..., Note that even though ¢, is generally complex,
the summation (2.5.14) always gives a real-valued function f(t).

Just as we can represent the function f(t) graphically by a plot of
t against f(¢), we can plot ¢, as a function of n, commonly called the
frequency specirum. Because ¢, is generally complex, it is necessary
to make two plots. Typically the plotted quantities are the amplitude
spectra |c,| and the phase spectra ¢,, where ¢, is the phase of c,.
However, we could just as well plot the real and imaginary parts of c,,.
Because n is an integer, these plots consist merely of a series of vertical
lines representing the ordinates of the quantity |e,| or ¢, for each n.
For this reason we refer to these plots as the line spectra.

Because 2c, = a, —1b,, the ¢, ’s for an even function will be purely
real; the ¢,,’s for an odd function are purely imaginary. It is important
to note that we lose the advantage of even and odd functions in the sense
that we cannot just integrate over the interval 0 to L and then double
the result. In the present case we have a line integral of a complex
function along the real axis.

The Fourier Transform
FOURIER TRANSFORMS

The Fourier transform is the natural extension of Fourier series to a
function f(t) of infinite period. To show this, consider a periodic func-
tion f(t) of period 2T that satisfies the so-called Dirichlet’s conditions.!

If the integral f: | f(t)| dt exists, this function has the complex Fourier
series:

&)=Y cnem™T, (3.1.1)
Nn==—00
where
e = i[r F(t)e ™ T qy (3.1.2)
=55 ) , .
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Equation (3.1.1) applies only if f(¢) is continuous at ¢; if f(#) suﬂ'ers from
a jump discontinuity at ¢, then the left side of (3.1.1) equals 2[f(t*) +
f(t7)], where f(t*) = limy_;+ f(¢) and f(t~) = lunw_.,_ f(;r) Substi-
tuting (3.1.2) into (3.1.1),

R N T .
ft) = — ginm/T / f(zx)e= =T dg. 3.1.3
2T n:z—ou -T ( )

Let us now introduce the notation w, = n7/T so that Aw, = w1 —
wn = 7/T. Then,

ft) = % > F(wn)e™' Awn, (3.1.4)
where r
Flwy) = fo(z)e'i““”dm. (3.1.5)

As T — o0, w, approaches a continuous variable w and Aw, may be
interpreted as the infinitesimal dw. Therefore, ignoring any possible
difficulties.?

ft) = 2%_ fm F(w)e*dw (3.1.6)
and
F(w) = ” F(t)e *tdt. (3.1.7)
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Equation (3.1.7) is the Fourier transform of f(t) while (3.1.6) is the
inverse Fourier transform which converts a Fourier transform back to
f(t). Alternatively, we may combine (3.1.6)—(3.1.7) to yield the equiv-
alent real form:

=1 [ 4 s)costote — oz do. (3.1.8)

Hamming? has suggested the following analog in understanding the
Fourier transform. Let us imagine that f(t) is a light beam. Then the
Fourier transform, like a glass prism, breaks up the function into its
component frequencies w, each of intensity F'(w). In optics, the various
frequencies are called colors; by analogy the Fourier transform gives
us the color spectrum of a function. On the other hand, the inverse
Fourier transform blends a function’s spectrum to give back the original
function.

Most signals encountered in practice have Fourier transforms be-
cause they are absolutely integrable since they are bounded and of fi-
nite duration. However, there are some notable exceptions. Examples
include the trigonometric functions sine and cosine.

Although this particular example does not show it, the Fourier
transform is, in general, a complex function. The most common method
of displaying it is to plot its amplitude and phase on two separate graphs
for all values of w. See Figure 3.1.1. Of these two quantities, the am-
plitude is by far the more popular one and is given the special name of
frequency spectrum.

From the definition of the inverse Fourier transform,

1 [ sin(wa) | 1 lt| < a
ty = — 1wt = ’
Oy i TR NS C R Rt

An important question is what value does f(t) converge to in the
limit as ¢ — a and t — —a? Because Fourier transforms are an extension
of Fourier series, the behavior at a jump is the same as that for a Fourier

series. For that reason, f(a) = 3(f(a*) + f(a™)] = } and f(—a) =
slf(=a*) + f(=a7)) = L.
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An important function in transform methods is the (Heaviside) step
function:

1, t>0
H(t) = {U: t<0 (3.2.16)

In terms of the sign function it can be written
H(t) = 3 + gsgn(t). (3.2.17)

Because the Fourier transforms of 1 and sgn(t) are 2w6(w) and 2/iw,
respectively, we have that

FIH )] = m6(w) + ;i- (3.2.18)

These transforms are used in engineering but the presence of the delta
function requires extra care to ensure their proper use.

Of the many functions that have a Fourier transform, a particularly
important one is the (Dirac) delta function.* For example, in Section
3.6 we will use it to solve differential equations. We define it as the
inverse of the Fourier transform F(w) = 1. Therefore,

1 [
6(t) = ﬂj e dw. (3.1.13)

— o0
To give some insight into the nature of the delta function, consider
another band-limited transform:

1, lw| < Q
Fn{w)—{[,, w| > Q, (3.1.14)

where Q is real and positive. Then,

| L Qsin(Qt)
= — e = — . 3.1.15
fat) =57 [ etdo =270 (3.1.15)
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Figure 3.1.2: Graph of the function given in (3.1.15) for Q = 300.

Figure 3.1.2 illustrates fq(t) for a large value of Q. We observe that as
! — o0, fa(t) becomes very large near ¢t = 0 as well as very narrow. On
the other hand, fno(t) rapidly approaches zero as |t| increases. Therefore,
we may consider the delta function as the limit:

. sin(Q2t)
o) = i, = R
or 0
o3, i =
5(t) = { 0, t#0. (3.1.17)
Because the Fourier transform of the delta function equals one,
f §(t)e widt = 1. (3.1.18)
-0

Since (3.1.18) must hold for any w, we take w = 0 and find that
f 6(t)dt = 1. (3.1.19)
— o

Thus, the area under the delta function equals unity. Taking (3.1.17)
into account, we can also write (3.1.19) as

b
s(tydt =1,  a,b>0. (3.1.20)

Finally, .
[ 15t — oy dt = s(eo), (3.1.21)

CuuDuongThanCong.com https://fb.com/tailieudientucntt

56


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

if @ < to < b. This follows from the law of the mean of integrals.
We may also use several other functions with equal validity to repre-

sent the delta function. These include the limiting case of the following

rectangular or triangular distributions:

l! t| < £
§(t) = limyg ¢ 2l 2 (3.1.22)
e—0 0, Ifl g 5
or
1(y -1
§(1) = lim{ (1-4), Im<e (3.1.23)
e 0, [t] > €
and the Gaussian function:
. exp(—mwt?/c) oY
6(t) = 21_1:% T : (3.1.24)

Note that the delta function is an even function.

FOURIER TRANSFORMS CONTAINING THE DELTA FUNCTION

In the previous section we stressed the fact that such simple func-
tions as cosine and sine are not absolutely integrable. Does this mean
that these functions do not possess a Fourier transform? In this section
we shall show that certain functions can still have a Fourier transform
even though we cannot compute them directly.

The reason why we can find the Fourier transform of certain func-

tions that are not absolutely integrable lies with the introduction of the
delta function because

- |
] o(w — wo)e'™ dw = e™o! (3.2.1)

for all t. Thus, the inverse of the Fourier transform é(w — wq) is the
complex exponential e*“°* /27 or

F (e'0!) = 2mé(w — wo). (3.2.2)
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£(t), |t] < oo F(w)

11.

12.

1
—at
e"H(t), a>0 I
1
eH(—t), a>0 ,
a— wi
1
—at
te"®*H(t), a>0 (@t wi)?
-1
at _
teH(—t), a>0 =T
E w n!
n_ -—a —
t"e H(t}, R‘E(ﬂ}}oi n=1i4%... (a+wi)“+l
2a
—alt
€ , a> 0 w2 + a?
—4awn
—alt|
le ' a>0 (WE + ﬂ2)2
1 ﬁ —|w/ al
1+ a2t a
= 5 (cmlemel 4 emlorel
S
1, |t|<a 2sin(wa)
0, [t] > a w
sin(at) r/a, lw| < a
at 0, |w| > a

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

58


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

This yields immediately the result that
F (1) = 2nb(w), (3.2.3)

if we set wg = 0. Thus, the Fourier transform of 1 1s an impulse at w = 0
with weight 27. Because the Fourier transform equals zero for all w # 0,
f(t) = 1 does not contain a nonzero frequency and is consequently a DC
signal.

Another set of transforms arises from Euler’s formula because we
have that

Flsin(wot)] = % [F (e?“0?) — F (e~"wot)] (3.2.4)
= 11 [é(w —wp) — O(w + WU)] (3-2.5)
= —7id(w — wp) + Tid(w + wy) (3.2.6)
and
Fleos(wot)] = 1 [F (e'wot) + F (e7?et)] (3.2.7)
= 7 [6(w — wo) + 6(w + wo)]. (3.2.8)

Note that although the amplitude spectra of sin(wgt) and cos(wpt) are
the same, their phase spectra are different.

Let us consider the Fourier transform of any arbitrary periodic func-
tion. Recall that any such function f(¢) with period 2L can be rewritten
as the complex Fourier series:

f(t) = i cneeot, (3.2.9)

n=—0o0

where wo = w/L. The Fourier transform of f(i) is

F(w)=F[f(®)] = Z 2mend(w — nwp). (3.2.10)

n==—0a

Therefore, the Fourier transform of any arbitrary periodic function is
a sequence of impulses with weight 2we, located at w = nwp with
n = 0,+£1,+2,.... Thus, the Fourier series and transform of a peri-
odic function are closely related.
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PROPERTIES OF FOURIER TRANSFORMS

I Linearity \

If f(t) and g(t) are functions with Fourier transforms F(w) and
G(w), respectively, then

Flerf(2) + c2g(t)] = e1 F(w) + c2G(w), (3.3.1)

where c¢; and ¢z are (real or complex) constants.
This result follows from the integral definition:

Flerf(1) + cag(t)] = j;m [e1f(2) + cag(t)]e ™ dt (3.3.2)
=c1 ” f)e™“tdt + ¢, /m g(t)e~™dt (3.3.3)
= 1 F(w) + ¢:G(w). (3.3.4)

I Time shifting \

If f(t) is a function with a Fourier transform F(w), then F[f(t —
7)] = e~ F(w).
This follows from the definition of the Fourier transform:

FIf(t = )] = /_ 7 ft — ryemivtay = /ﬁ T H@)em @+ 4z (3.3.5)

=e T /-m f(z)e™™“Tdz = e~ T F(w). (3.3.6)
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I Scaling factor |

Let f(t) be a function with a Fourier transform F(w) and k be a

real, nonzero constant. Then F[f(kt)] = F(w/k)/|k|.
From the definition of the Fourier transform:

Ff(kt)] = /_ ) flkt)e™"“tdt = I%I f_ : f(z)e Wik gy = I_llF ("-;-) .

(3.3.9)
I Symmetry [

If the function f(t) has the Fourier transform F(w), then F[F(t)] =
2w f(—w).

From the definition of the inverse Fourier transform,

— 1 * il _ ___]'_ ~ ixt
f(t) = ﬂj—m F(w)e'dw = 5 F(z)e'™'dr. (3.3.11)

-0

Then

I f(—w) = L : F(z)e “odz = f_ Z F(t)e™*tdt = F[F(I;]‘:; N

I Derivatives of functions \

Let f)(#),k = 0,1,2,...,n—1, be continuous and f(™)(t) be piece-
wise continuous. Let |f["3(t)| < Ke‘” b > 0,0 <t < oo |f[k}( )| <
Me*,a>0,—c0o<t<0,k=0,1,.,n. Then, F{f™(t)] = (iw)" F(w).

We begin by noting that if the transfcrrm F[f'(2)] exists, then
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FIf@)] = f_: f'(t)e™ ™ dt (3.3.15)

= F(t)e ! [cos(wrt) — isin(wrt)] dt (3.3.16)

-

= (—w; + :‘ur}j;m f(t)e*  [cos(wrt) — isin(w,t)]dt (3.3.17)

= W /m f(t)e“f‘“*dt = wF(w). (3.3.18)
Finally,
FIFM (@) = iwF[fP(@)] = (iw)? F[FOD(@)] = - - = ()" F(w).
(3.3.19)

I Modulation ‘

In communications a popular method of transmitting information
is by amplitude modulation (AM). In this process some signal is carried
according to the expression f(t)e'“°!, where wq is the carrier frequency
and f(t) is some arbitrary function of time whose amplitude spectrum
peaks at some frequency that is usually small compared to wy. We now

want to show that the Fourier transform of f(t)e!“e! is F(w —wq), where
F(w) is the Fourier transform of f(t).
We begin by using the definition of the Fourier transform:

F[f(t)e*o!] = f " f(t)etwote—Widt = / " f(t)e~ilw—woltgs (3.3.22)
= F(w — wp). (3.3.23)

Therefore, if we have the spectrum of a particular function f(t), then
the Fourier transform of the modulated function f(t)e*“°? is the same as
that for f(t) except that it is now centered on the frequency wq rather

than on the zero frequency.
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| Parseval’s equality ‘

In applying Fourier methods to practical problems we may en-
counter a situation where we are interested in computing the energy
of a system. Energy is usually expressed by the integral ffﬂm |£()|? dt.
Can we compute this integral if we only have the Fourier transform of

F(w)?
From the definition of the inverse Fourier transform
f(t) = 2i / F(w)e“'dw, (3.3.37)
TJ-oo

we have that

fm |f()* dt = %f: f(t) U_m F(w)e*“‘dw] dt.  (3.3.38)

_— e ul

Interchanging the order of integration on the right side of (3.3.38),

However, _ N
F*'(w) = f f(t)e'tdt. (3.3.40)
-0

Therefore,

[ uora=g [~ 1F@Pd (3.3.41)

(e n]

This is Parseval’s equality® as it applies to Fourier transforms. The
quantity |F(w)|? is called the power spectrum.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

63


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

I Poisson’s summation formula ‘

If f(x) is integrable over (—o0, 00), there exists a relationship be-
tween the function and its Fourier transform, commonly called Poisson’s
summation formula.”

We begin by inventing a periodic function g(z) defined by
(=]
g(z) = Z f(z + 27k). (3.3.44)
k=—coo

Because g(z) is a periodic function of 27, it can be represented by the
complex Fourier series:

a9
9(z) = D cpe™” (3.3.45)
or
o0 o0
9(0)= Y f@mk)= Y cn. (3.3.46)
k=—o00 n=-—o00
Computing ¢,, we find that
1 " —i 1 " — —in
Cn = 5= B g(x)e " dx = o | k;m f(z + 2km)e """ dx
(3.3.47)
1 — [T : 1 [ :
=5 Z f(z + 2km)e™ """ dx = oy f f(z)e " de
- - — o0
(3.3.48)
— %(-”—), (3.3.49)
T

where F'(w) is the Fourier transform of f(z). Substituting (3.3.49) into
(3.3.46), we obtain

> f@rk)=5- > F(n) (3.3.50)
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or

- 1 «— 2mn
> flak)=— > F(T) (3.3.51)

k=—oa n=-—00

INVERSION OF FOURIER TRANSFORMS

Having focused on the Fourier transform in the previous sections,
we consider in detail the inverse Fourier transform in this section. Recall
that the improper integral (3.1.6) defines the inverse. Consequently one
method of inversion 1s direct integration.

Another method for inverting Fourier transforms is rewriting the
Fourier transform using partial fractions so that we can use transform
tables. The following example illustrates this technique.

Although we may find the inverse by direct integration or partial
fractions, in many 1nstances the Fourier transform does not lend itself
to these techniques. On the other hand, if we view the inverse Fourier
transform as a line integral along the real axis in the complex w-plane,
then perhaps some of the techniques that we developed in Chapter 1
might be applicable to this problem. To this end, we rewrite the inver-
sion integral (3.1.6) as

— 1 = tiw _ 1 itz 1 itz
f(t)—g/_mF(w)e dw = ﬂﬁ.F{E)ﬂ dz—%/cﬂf’(z)e dz,

(3.4.9)
where C' denotes a closed contour consisting of the entire real axis plus
a new contour Cr that joins the point (0c0,0) to (—o0,0). There are
countless possibilities for C'r. For example, it could be the loop (o0, 0)
to (o0, R) to (~o0, R) to (—o0,0) with R > 0. However, any choice
of Cr must be such that we can compute ICR F(z)e** dz. When we
take that constraint into account, the number of acceptable contours
decrease to just a few. The best is given by Jordan’s lemma:®
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Jordan’s lemma: Suppose thatl, on a circular arc Cr with radius R
and center at the origin, f(z) — 0 uniformly as R — oco. Then

(1) lim f(2)e™* dz = 0, (m > 0) (3.4.10)
R—oo CR

if Cr lies in the first and/or second quadrani;
(2) lim f(z)e”"™dz =0, (m>0) (3.4.11)
Cr
if Cr lies in the third and/or fourth quadrant;

(3) Jim f(z)e™dz =0, (m>0) (3.4.12)
=/

if Cr lies in the second and/or third quadrant; and

(4) lim f(z)e ™ dz =0, (m > 0) (3.4.13)
R—rca CH

if Cr lies in the first and/or fourth quadrant.
Technically, only (1) is actually Jordan’s lemma while the remaining

points are variations.

Proof: We shall prove the first part; the remaining portions follow by
analog. We begin by noting that

el =|[ f@emdsl< [ 1f@llem e (3414
Cr Cr
Now
|dz| = Rd8, |f(z)| < MR, (3.4.15)
'eimzl = |exp(£mReﬁ)| = lexp{imR[cos(8) + isin(8)]}| = e~ ™Rsin(®),

(3.4.16)
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Therefore,
¢

x| < RMpg f exp[—mRsin(6)] db, (3.4.17)

8o

where 0 < 6y < 8; < 7. Because the integrand is positive, the right side
of (3.4.17) is largest if we take 8y = 0 and #, = 7. Then

T ) T/2 .
|Ir| < RMg / e~mRsn®)dp — 9aRMR / e~mAsin(®lgg  (3.4.18)
0 0

We cannot evaluate the integrals in (3.4.18) as they stand. However,
because sin(f) > 28/7 if 0 < # < 7/2, we can bound the value of the
integral by

w2
IIr| < ?RMRf e=2mRO/% 4o _ %MR(I —e~™R) . (3.4.19)
0

If m > 0, |Ig| tends to zero with Mg as R — oo. DO
CONVOLUTION

The most important property of Fourier transforms is convolution.
We shall use it extensively in the solution of differential equations and
the design of filters because it yields in time or space the effect of mul-
tiplying two transforms together.

The convolution operation is

10250 = [ f@at-2yde= [ ft-o@)ds. (@51)

Then,

Flf(t) +g(t)] = j:: f(z)e—i" [/

— O

00

g(t — z)e‘i”["‘”)dt] dz
(3.5.2)
= / f(z)G(w)e™ ™ dz = F(w)G(w). (3.5.3)

Thus, the Fourier transform of the convolution of two functions equals
the product of the Fourier transforms of each of the functions.
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CHUONG 4. BIEN DOI LAPLACE

DEFINITION AND ELEMENTARY PROPERTIES
Consider a function f(¢) such that f(t) = 0 for ¢ < 0. Then the
Laplace integral

LIF()] = F(s) = [J (et (4.1.1)

defines the Laplace transform of f(t}, which we shall write L[f(t)] or
F(s). The Laplace transform converts a function of ¢ into a function of
the transform variable s.

Not all functions have a Laplace transform because the integral
(4.1.1) may fail to exist. For example, the function may have infinite
discontinuities. For this reason, f(#) = tan(t) does not have a Laplace
transform. We may avoid this difficulty by requiring that f(¢) be piece-
wise confinuous. That is, we can divide a finite range into a finite

number of intervals in such a manner that f(¢) is continuous inside each
interval and approaches finite values as we approach either end of any
interval from the interior.

Another unacceptable function is f(¢) = 1/t because the integral
(4.1.1) fails to exist. This leads to the requirement that the product
t"|f(t)| is bounded near t = 0 for some number n < 1.

Finally |f(t)| cannot grow too rapidly or it could overwhelm the
e~ ** term. To express this, we introduce the concept of functions of
erponential order. By exponential order we mean that there exists some
constants, M and k, for which

|f(t)] < MeF? (4.1.2)

for all £ > 0. Then, the Laplace transform of f(t) exists if s, or just the
real part of s, is greater than k.

In summary, the Laplace transform of f(t) exists, for sufficiently
large s, provided f(t) satisfies the following conditions:

e f(t)=0fort <0,
e f(t) is continuous or piece-wise continuous in every interval,
o t"[f(t)| < 0o as t — 0 for some number n, where n < 1,

e e f(1)] < oo as t — oo, for some number sg. The quantity sg
is called the abscissa of convergence.
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The Laplace transform inherits two important properties from its
integral definition. First, the transform of a sum equals the sum of the
transforms:

Lle1 f(t) + c29(t)] = 1 L[F(t)] + c2L[g(2)]. (4.1.11)

This linearity property holds with complex numbers and functions as
well.

The second important property deals with derivatives. Suppose
f(t) is continuous and has a piece-wise continuous derivative f'(t). Then

LI ()] = fum (e *tdt = e'”f(t)t? + s/ﬂm f(t)e *'dt (4.1.17)

by integration by parts. If f(t) is of exponential order, e * f(t) tends
to zero as t — oo, for large enough s, so that

LCIf'(t)) = sF(s) — f(0). (4.1.18)

Similarly, if f(¢) and f'(¢) are continuous, f(t) is piece-wise continuous,
and all three functions are of exponential order, then

L) = sCLF (1)) — £(0) = s2F(s) — sf(0) — f/(0).  (4.1.19)

In general,

LFM @) = s"F(s)—s" "1 f(0)—- - -—sf"=2(0) = F7D(0) | (4.1.20)

on the assumption that f(t) and its first n—1 derivatives are continuous,
f(?)(t) is piece-wise continuous, and all are of exponential order so that
the Laplace transform exists.
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Table 4.1.1: The Laplace Transforms of Some Commonly Encountered

Functions.
f(t), t>0 F(s)
1. 1 1
s
2. e—at i
s+a
_ 1
3. a(1-e™) s(s + a)
— =0 1
1 p(eT - ™) G+a)s+0)
5. A_(be~b — ge—at °
g (be™" —ae™®) G+a)+b)
6. sin(at) 32 _T_ P
7. cos(at) 52 i aZ
8. sinh(at) - - 2
s2~a
9, cosh(at) ‘sz
s2 —a
) 2as
10. ¢sin(at) (5% + a?)2
a
11. 1 C CDS{ﬂt) 3(32 + 1‘12)
" aa
12. at — sin(at) _—32(33 +a?)
§2 — q?
13. t cos(at) (s + )2 a?)?
3
14. sin(at) — at cos(at) (—"-2?: 7)2
s24a
15. ¢ sinh(at) T 2'”2)2
st —a
2 2
16. t cosh(at) (Sz +02)2
s2—a
_ 2a3
17. at cosh(at) — sinh(at) (52 2)2
s2—a
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Table 4.1.1 (contd.): The Laplace Transforms of Some Commonly
Encountered Functions.

f(t), t >0 F(s)
18. e~ sin(at) {S_H;g s
e T
20. (1 4 a*t?)sin(at) — cos(at) G%
21. sin(at) cosh(at) — cos(at) sinh(at) %ﬂa"z

s + da

22, sin(at) sinh(at) Fﬁ%
23. sinh(at) — sin(at) 53314
24. cosh(at) — cos(at) 342:1_2.:;4
25. : Sin(a:z} = :fin(m a? # b’ = azjisz + b2)
26. bsmi::gg__a;;?(bﬂ a® # 6 (s2 + 33}1(32 + %)
27. COS(&;::)::;S(N) ,a* # b? (s + 02;(52 + b?)
28. t",n >0 3:4!-1

-1,-at
29. TTZ?T)!‘”}O (s+1a)"
30. -—-(ﬂ{; i)l—)!at t""2e7 n>1 T _:a)n
31. the=?,n >0 {T_f';‘}w
39 T :ntn(_;::z_) W n>1 s—[n+(1/2)]
33. Jo(at) \_S'z/—}"ﬁ
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Table 4.1.1 (contd.): The Laplace Transforms of Some Commonly

Encountered Functions.

£(t), t >0 F(s)
34 Io(at) !
‘ ’ VeE—a
1 1
35. 7 erf(vat) T
36. Jiﬂ_te-“ +/a erf(Vat) Y ‘9: ¢
1 2 1
37. —— — ae® ferfl t
= ae erc(a\/-} et
at 1
38. e®erfc(v/at ) st oz
39. 2\/1#? (e — e*) Vs—a—+/s—-b
1 a’t V/E
40. = + ae® ‘erf(avt) p—
1 s
41. ——e® t
\/1r_1“‘3 (1+2at) (s —a)ys—a
1 .2, 1
42, —e erf(av/?) a7
43. 1}3—6-“!‘,& >0 e—2Vas
A
44, L et g5 0 L p-2va
vat Vs
45. erfc(\/g) ,a>0 %e'zﬁ?
t a? a e~aVe
46. 2‘/;exp (_E) —a erfc(g—v—/_t-) ,a>0 WE
be=aV?
_pb?t+ab a a
47, e erfc(b\/f+ m)+ erfc(m) ,a>0 ST 75)
— i3y 3
48. e® e terfc (b t —a—) a>0 —
Vit 7)o VAV

2 r
Notes: Error function: erf(z) = -] eV’ dy
T Jo

Complementary error function: erfc(z) = 1 — erf(z)
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The converse of (4.1.20) is also of some importance. If

u(t) = /[. F(r) dr, (4.1.21)
then
oo t
Llu(®)] =/ﬂ e "t [/ﬂ f(r) df] dt (4.1.22)
—_— e-$t i - 1 = —_at
S fnf{f)dru +E[a f(t)e " dt (4.1.23)
and

£ [j: f('r)dr] = @, (4.1.24)

where u(0) = 0.
THE HEAVISIDE STEP AND DIRAC DELTA FUNCTIONS

Change can occur abruptly. We throw a switch and electricity sud-
denly flows. In this section we introduce two functions, the Heaviside
step and Dirac delta, that will give us the ability to construct compli-
cated discontinuous functions to express these changes.

I Heaviside step function \

We define the Heaviside step funclion as

1, t>a
H(t—a) = {0’ {<a, | (4.2.1)
where a > 0. From this definition,
= =] E—ﬁ3
L[H(t—a)] = f e *ldt = — s> 0. (4.2.2)
a
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Note that this transform is identical to that for f(¢) = 1 if @ = 0. This
should not surprise us. As pointed out earlier, the function f(¢) is zero
for all ¢ < 0 by definition. Thus, when dealing with Laplace transforms
f(t) = 1 and H(t) are identical. Generally we will take 1 rather than
H(t) as the inverse of 1/s.

The Heaviside step function is essentially a bookkeeping device that
gives us the ability to “switch on” and “switch off” a given function. For
example, if we want a function f(t) to become nonzero at time t = a, we
represent this process by the product f(t)H (¢ —a). On the other hand,
if we only want the function to be “turned on” when a < t < &, the
desired expression is then f(¢)[H(t —a)— H(t—¥b)]. Fort < a, both step
functions in the brackets have the value of zero. For a < t < b, the first
step function has the value of unity and the second step function has
the value of zero, so that we have f(¢). For ¢ > b, both step functions
equal unity so that their difference is zero.

A
Se)

1__

1 2 3 4 r

Figure 4.2.2: Graphical representation of (4.2.5).

Consider Figure 4.2.2. We would like to express this graph in terms
of Heaviside step functions. We begin by introducing step functions at
each point where there is a kink (discontinuity in the first derivative)
or jump in the graph — in the present case at ¢t = 0,¢ = 1, ¢t = 2, and
t = 3. Thus,

F(#) = ao(})H (t)+ar (1) H(t—1)+az(t)H (t—2)+as(t) H(t—3), (4.2.3)

where the coefficients ag(t), a1(t), . .. are yet to be determined. Proceed-
ing from left to right in Figure 4.2.2, the coefficient of each step function
equals the mathematical expression that we want after the kink or jump
minus the expression before the kink or jump. Thus, in the present ex-

ample,

f(t) = t—0)YH (t)+(1—t)H(t—1)+[(83—1)—1]H(t—2)+[0—(3—t)|H(t—3)
(4.2.4)

f@) =tH@) —(t—1)H(@—1)—(t—2)H(t—2)+(t —3)H(t—3). (4.2.5)
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I Dirac delta function |

The second special function is the Dirac delta function or impulse
function. We define it by

0, t=a

6(!—{;):{0, i Za foma(t—a)dtzl, (4.2.9)

where a > 0.
A popular way of visualizing the delta function is as a very narrow
rectangular pulse:

8(t — a) = hm

=+

1/e, O0< |t —a|l<e/2
0, It —a| > ¢/2,

where ¢ > 0 is some small number and a > 0. This pulse has a width e,
height 1/e, and centered at £ = a so that its area is unity. Now as this
pulse shrinks in width (e — 0), its height increases so that it remains
centered at { = a and its area equals unity. If we continue this process,
always keeping the area unity and the pulse symmetric about ¢ = a,
eventually we obtain an extremely narrow, very large amplitude pulse
at t = a. If we proceed to the limit, where the width approaches zero
and the height approaches infinity (but still with unit area), we obtain
the delta function (¢ — a).

The delta function was introduced earlier during our study of Four-
ier transforms. So what is the difference between the delta function
introduced then and the delta function now? Simply put, the delta
function can now only be used on the interval [0,00). Outside of that,
we shall use it very much as we did with Fourier transforms.

(4.2.10)
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Using (4.2.10), the Laplace transform of the delta function is

o0 1 atef2
L[6(t —a)] = / §(t — a)e”*'dt = lim — e *tdt (4.2.11)
0 e—=0¢€ Ja_¢/2
i (e'“"f“” - e-“’-“fﬁ) (4.2.12)
e—0 €S8
Lim g~ s (1+ +£3 4+ 148 E232+ )
- 11 —_— —— o — P
£—0 ] 2 8 2 8
(4.2.13)
= =%, (4.2.14)

In the special case when a = 0, £[6(t)] = 1, a property that we will use
in Section 4.9. Note that this is exactly the result that we obtained for
the Fourier transform of the delta function.

If we integrate the impulse function,

t
18 1 Of t<a
fn 8(r—a)dr = { 1 T (4.2.15)

1

according to whether the impulse does or does not come within the
range of integration. This integral gives a result that is precisely the
definition of the Heaviside step function so that we can rewrite (4.2.15)

/ 6(T — a) H(t — a). (4.2.16)

Consequently the delta function behaves like the derivative of the step

function or )

A EL —a)] = 6(t — a). (4.2.17)
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SOME USEFUL THEOREMS

I First shifting theorem \

Consider the transform of the function e™%! f(¢), where a is any real
number. Then, by definition,

clmets@] = [ emtemeip@ar = [T etrp@ar, (430

or

L [e* f(t)] = F(s + a). (4.3.2)

That is, if F(s) is the transform of f(¢) and a is a constant, then F'(s+a)
is the transform of e~ %* f(t).

I Second shifting theorem \

The second shifting theorem states that if F(s) is the transform
of f(t), then e~%*F(s) is the transform of f(t — b)H(t — b), where b
1s real and positive. To show this, consider the Laplace transform of
f(t — b)H(t — b). Then, from the definition,

L[f(t—b)H(t —b)] = fm f(t —b)H(t — b)e~""dt (4.3.8)
0
- fm F(t —b)e~*tdt = fm e~ e=" f(z) dx
b 0
(4.3.9)
= —bs > —sr
€ fu e ** f(x)dx (4.3.10)
or
LIf(t —b)H(t —b)] = e~ b F(s), (4.3.11)

where we have set £ =t —b. This theorem is of fundamental importance
because it allows us to write down the transforms for “delayed” time
functions. That is, functions which “turn on” b units after the initial
time.
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Laplace transform of ¢” f(t)

In addition to the shifting theorems, there are two other particularly
useful theorems that involve the derivative and integral of the transform
F(s). For example, if we write

F(s) = LIf(8)] = f F(t)e= " dt (4.3.20)
0
and differentiate with respect to s, then
F'(s) = fm —tf(t)e” " dt = —L[Lf(1)]. (4.3.21)
0

In general, we have that

FM(s) = (=1)"L[t" f(1)]. (4.3.22)

Laplace transform of f(t)/t

Consider the following integration of the Laplace transform F'(s):

[ﬂ F(z)dz = fam Uﬂm f(t)e'“dt] dz. (4.3.23)

Upon interchanging the order of integration, we find that

[ﬂ F(z)dz = /ﬂm () [[o e'“dz] dt (4.3.24)
= *j;m (@) E-: ndic= /ﬂm @e'“dt (4.3.25)

/’m F(z)dz =L Hﬂ] , (4.3.26)

Therefore,
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I Initial-value theorem ‘

Let f(t) and f’(t) possess Laplace transforms. Then, from the
definition of the Laplace transform,

[ rweat=sr) - £0). (43.32)
0

Because s is a parameter in (4.3.32) and the existence of the integral is
implied by the derivative rule, we can let s — oo before we integrate.
In that case, the left side of (4.3.32) vanishes to zero, which leads to

,ll,rﬂ: sF(s) = f(0). (4.3.33)

This is the initial-value theorem.

I Final-value theorem ‘

Let f(t) and f'(t) possess Laplace transforms. Then, in the limit
of s — 0, (4.3.32) becomes

oo t
[ rwa=jin [ 7)dr= lim ) - 10 = lim sF(s) - 50).
’ ’ (4.3.34)

Because f(0) is not a function of ¢ or s, the quantity f(0) cancels from
the (4.3.34), leaving

lim f(t) = hm sF(s). (4.3.35)

t—o0 s—0
Equation (4.3.35) is the final-value theorem. It should be noted that
this theorem assumes that lim,_. o f(t) exists. For example, it does
not apply to sinusoidal functions. Thus, we must restrict ourselves to

Laplace transforms that have singularities in the left half of the s-plane
unless they occur at the origin.
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THE LAPLACE TRANSFORM OF A PERIODIC FUNCTION

Periodic functions frequently occur in engineering problems and
we shall now show how to calculate their transform. They possess the
property that f(t + T) = f(t) for t > 0 and equal zero for ¢ < 0, where
T is the period of the function.

For convenience let us define a function z(t) which equals zero ex-
cept over the interval (0,7) where it equals f(1):

2(t) = {fé‘f)'* ”t“: - 4 (4.4.1)

By definition
F(s):f f(t)e™*dt (4.4.2)
o

T 2T (k+1)T
= f f(t)e *tdt + f(t)e *tdt + +] Fe *tdt + - -
0 T kT
(4.4.3)

Now let z = ¢ — k7", where k = 0,1,2, ..., in the kth integral and F(s)
becomes

T T
F(s):] f(z)e'”dz-l—f flz 4+ T)e s dz 4 ..
0 0
T
+/ flz + kT)e™*CGHEDdz . .. (4.4.4)
0

However,
() =f)=fz+T)=...=f(z+kT)=..., (4.4.5)

because the range of integration in each integral is from 0 to T". Thus,
F(s) becomes

i T
F(s) = f r(z)e *?dz + e"Tj z(z)e”*dz + - - -
0 0

T
+ e"“Tf z(2)e **dz + - - (4.4.6)
0
or

F(s)= (1+ e T 4 e 2T 4. 4 e BT .. )X (5). (4.4.7)
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The first term on the right side of (4.4.7) is a geometric series with
common ratio e=*T, If |e=*7| < 1, then the series converges and

F(s) = % (4.4.8)

INVERSION BY PARTIAL FRACTIONS: HEAVISIDE'S EXPANSION
THEOREM

In the previous sections, we have devoted our efforts to calculating
the Laplace transform of a given function. Obviously we must have a
method for going the other way. Given a transform, we must find the
corresponding function. This is often a very formidable task. In the next
few sections we shall present some general techniques for the inversion
of a Laplace transform.

The first technique involves transforms that we can express as the
ratio of two polynomials: F(s) = q(s)/p(s). We shall assume that the
order of ¢(s) is less than p(s) and we have divided out any common
factor between them. In principle we know that p(s) has n zeros, where
n is the order of the p(s) polynomial. Some of the zeros may be complex,
some of them may be real, and some of them may be duplicates of other
zeros. In the case when p(s) has n simple zeros (nonrepeating roots), a
simple method exists for inverting the transform.

We want to rewrite F(s) in the form:

a) as an q(s)
— . = , 451
F(s) s-—-31+s-32+ +3—3ﬂ p(s) ( )
where s1,89,...,5, are the n simple zeros of p(s). We now multiply
both sides of (4.5.1) by s — s; so that
(=s)ale) _, L s=s)en | (smsdan o
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If we set s = sy, the right side of (4.5.2) becomes simply a;. The left side
takes the form 0/0 and there are two cases. If p(s) = (s — s1)g(s), then
a; = ¢q(s1)/g(s1). If we cannot explicitly factor out s — s, 'Hospital’s
rule gives

o (s=s)g(s) . (s=s1)¢'(s) +q(s) _ q(s1)
a=lim —ry - .hm 2/(5) =Gy 483

In a similar manner, we can compute all of the az’s, where £k = 1,2, ...,
n. Therefore,

LV F(s)] = £ [“'(3) =L" ( g2 )

p(s) §—8 §— 83 §— 8p
(4.5.4)
= a1’ + aze®?t 4 .. 4 g, et (4.5.5)

This is Heaviside’s ezpansion theorem, applicable when p(s) has only
simple poles.
Let us now find the expansion when we have multiple roots, namely

_als) _ q(s)
Fls) = p(s) (s —s1)™(s—83)M2-. (5= s,)mn’

where the order of the denominator, my +ms + - - -+ m,,, is greater than
that for the numerator. Once again we have eliminated any common
factor between the numerator and denominator. Now we can write F'(s)
as

(4.5.14)

n Mg

Fe)=3 3 1 _5:;‘:;*_”1, (4.5.15)

k= 13*"1

Multiplying (4.5.15) by (s — s )™*,

(5 — sx)™*q(s)
p(s)

= agy + ar2(s — k) + - -+ Arm, (5 — Sk)mk"l

+(S—sk}mk [(3—31)’“1 P
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where we have grouped together into the square-bracketed term all of
the terms except for those with a;; coefficients. Taking the limit as

§ — Sk,
ax1 = lim (s — se)™ (5)
s—sx p(s)
Let us now take the derivative of (4.5.16),

£ e=gre)

= aps + 2ag3(s — sg) + -+ (Mme — Dakm, (s — sp)™* 2

(4.5.17)

d —_ ail Arnm
+ o {(s Sk) [(s —ym Tt a2 Sn]}. (4.5.18)
Taking the limit as s — s,
(s — sx)™*g(s)
Bpz = 5]_121" 15 [ 2(5) . (4.5.19)
In general,
1 d771 [(s —sx)™*q(s)
arj = Il ik SRRt [ D (4.5.20)
and by direct inversion,
n meg
ft)y = Z D L gkt (4.5.21)
=1j=1 (rms — J)

CONVOLUTION .
In this section we turn to a fundamental concept in Laplace trans-

forms: convolution. We shall restrict ourselves to its use in finding the
inverse of a transform when that transform consists of the product of
two simpler transforms. In subsequent sections we will use it to solve

ordinary differential equations.
We begin by formally introducing the mathematical operation of

the convolution product:

f(t) xg(t) = [: flt—z)g(z)dz = fﬂ f(z)g(t — z)dz. (4.6.1)

In most cases the operations required by (4.6.1) are straightforward.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

83


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

INTEGRAL EQUATIONS

An integral equation contains the dependent variable under an inte-
gral sign. The convolution theorem provides an excellent tool for solving
a very special class of these equations, Vollerra equation of the second

kind :©
o - [ Kltz f@)ds=g(t), 0<t<T.  (47.1)
0

These equations appear in history-dependent problems, such as epi-
demics,” vibration problems,® and viscoelasticity.®

SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

For the engineer, as it was for Oliver Heaviside, the primary use
of Laplace transforms is the solution of ordinary, constant coefficient,
linear differential equations. These equations are important not only
because they appear in many engineering problems but also because
they may serve as approximations, even if locally, to ordinary differ-
ential equations with nonconstant coefficients or to nonlinear ordinary
differential equations.

For all of these reasons, we wish to solve the initial-value problem

n -1
i—f+a1%:-’-?-_—lq+u-+aﬂ_1%+any=f(t}, t>0 (4.8.1)
by Laplace transforms, where a,, as, ... are constants and we know the
value of 4,9/, ..., 4"~ 1) at t = 0. The procedure is as follows. Applying
the derivative rule (4.1.20) to (4.8.1), we reduce the differential equation
to an algebraic one involving the constants a, as, ..., a,, the parameter
s, the Laplace transform of f(t), and the values of the initial conditions.
We then solve for the Laplace transform of y(¢), Y (s). Finally, we apply
one of the many techniques of inverting a Laplace transform to find y(2).

Similar considerations hold with sysiems of ordinary differential
equations. The Laplace transform of the system of ordinary differential
equations results in an algebraic set of equations containing Y3 (s), Ya(s),
..., Yn(s). By some method we solve this set of equations and in-
vert each transform Yi(s),Ya(s),...,Ya(s) in turn to give yi (%), y2(%),

s Yn(t).
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TRANSFER FUNCTIONS, GREEN'S FUNCTION, AND
INDICIAL ADMITTANCE
One of the drawbacks of using Laplace transforms to solve ordinary
differential equations with a forcing term is its lack of generality. Each
new forcing function requires a repetition of the entire process. In this
section we give some methods for finding the solution in a somewhat
more general manner for stationary systems where the forcing, not any
initially stored energy (i.e., nonzero initial conditions), produces the
total output. Unfortunately, the solution must be written as an integral.
In Example 4.8.3 we solved the linear differential equation

v+ 2y +y = f(t) (4.9.1)

subject to the initial conditions y(0) = »'(0) = 0. At that time we
wrote the Laplace transform of y(t), Y (s), as the product of two Laplace

transforms: .

(s +1)2
One drawback in using (4.9.2) is its dependence upon an unspecified
Laplace transform F(s). Is there a way to eliminate this dependence
and yet retain the essence of the solution?

One way of obtaining a quantity that is independent of the forcing
is to consider the ratio:

Y(s) = F(s). (4.9.2)

Y(s) B 1
Fio) - W= G

(4.9.3)

This ratio is called the transfer function because we can transfer the
input F'(s) into the output Y (s) by multiplying F'(s) by G(s). It depends
only upon the properties of the system.

Let us now consider a related problem to (4.9.1), namely

9" +2¢ +9=6@1), t>0 (4.9.4)

with ¢(0) = ¢’(0) = 0. Because the forcing equals the Dirac delta func-
tion, g(t) is called the impulse response or Green’s function.”® Comput-
ing G(s), .

Gs) = 3y

(4.9.5)
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From (4.9.3) we see that G(s) is also the transfer function. Thus, an
alternative method for computing the transfer function is to subject the
system to impulse forcing and the Laplace transform of the response is
the transfer function.
From (4.9.3),
Y(s) = G(s)F(s) (4.9.6)

oT
y(t) = g(t) = f(2). (4.9.7)

That is, the convolution of the impulse response with the particular
forcing gives the response of the system. Thus, we may describe a
stationary system in one of two ways: (1) in the transform domain
we have the transfer function, and (2) in the time domain there is the
impulse response.

Despite the fundamental importance of the impulse response or
Green'’s function for a given linear system, it is often quite difficult to
determine, especially experimentally, and a more convenient practice is
to deal with the response to the unit step H(t). This response is called
the indicial admittance or step response, which we shall denote by a(t).

Because L[H(t)] = 1/s, we can determine the transfer function from
the indicial admittance because L[a(t)] = G(s)L[H(t)] or sA(s) = G(s).
Furthermore, because

Lla()]

Llg(t)] = G(s) = ZEHD]

(4.9.8)

then e
g(t) = Z& : (4.9.9)

from (4.1.18).
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INVERSION BY CONTOUR INTEGRATION

In Sections 4.5 and 4.6 we showed how we may use partial fractions
and convolution to find the inverse of the Laplace transform F(s). In
many instances these methods fail simply because of the complexity of
the transform to be inverted. In this section we shall show how we may
invert transforms through the powerful method of contour integration.
Of course, the student must be proficient in the use of complex variables.

Consider the piece-wise differentiable function f(z) which vanishes
for x < 0. We can express the function e~ °* f(z) by the complex Fourier
representation of

fz)em = — [/ e”t f(t)e “"’dt‘ dw, (4.10.1)
for any value of the real constant ¢, where the integral
o
I= [ e~ f(t)| dt (4.10.2)
0

exists. By multiplying both sides of (4.10.1) by ¢°* and bringing it inside
the first integral,

f(z) = % /_ Z elctwi) Uﬂm f(t)e“""*“’“‘dtl dw. (4.10.3)

With the substitution z = ¢ + wi, where z is a new, complex variable of
integration,

c+m1

f(z) = [ f(t)e™ “dtl dz. (4.10.4)

27” c—oot
The quantity inside the square brackets is the Laplace transform F(z).
Therefore, we can express f(t) in terms of its transform by the complex
contour integral:

l ce4ooi
f=5z) F (2)e*dz. (4.10.5)
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