
OBJECTS AND CLASSES

1

OOP

 OOP (Object Oriented Programming) is the

dominant programming paradigm.

 Your program is made of objects, with certain

properties and operations that the objects can

perform.

2

THE VOCABULARY OF OOP

 Class

 Object

 Instance

 Instance fields

 Methods

 State

 Extends

 Implements

 …

3

OBJECTS

 The object’s behavior.

 The object’s state.

 The object’s identity.

4

USING EXISTING CLASSES

 java.lang.String

 java.lang.System

 java.lang.Exception

 java.util.ArrayList

 java.util.HashMap

 java.lang.Object

 java.lang.Thread

 java.util.Date

 …

5

BUILDING YOUR OWN CLASSES

Class NameOfClass{

 constructor1

 constructor2

 …

 method1

 method2

 …

 field1

 field2

 …

} 6

BUILDING EMPLOYEE CLASS

 Name.

 Salary.

 HiredDate.

 Constructors.

 Get/set methods.

 RaiseSalary.

7

CONSTRUCTORS

 A constructor has the same name as the class.

 A class can have more than one constructor.

 A constructor may take zero, one, or more

parameters.

 A constructor has no return value.

 A constructor is always called with the new

operator.

8

ACCESS CONTROL MODIFIERS

 Visible to the package, the default. No modifiers

are needed.

 Visible to the class only (private).

 Visible to the world (public).

 Visible to the package and all subclasses

(protected).

9

NON ACCESS CONTROL MODIFIERS

 The static modifier for creating class methods and

variables.

 The final modifier for finalizing the

implementations of classes, methods, and

variables.

 The abstract modifier for creating abstract classes

and methods.

 The synchronized and volatile modifiers, which

are used for threads.

10

METHOD ACCESS TO PRIVATE DATA

 You know that a method can access the private

data of the object on which it is invoked. What

many people find surprising is that a method can

access the private data of all objects of its class.

11

PRIVATE METHODS

 These methods can be called only from other

methods of the same class.

 The reason is simple: to implement certain

methods, you may wish to break up the code into

many separate methods. Some of these internal

methods may not be particularly useful to the

public.

12

FINAL INSTANCE FIELDS

 You can define an instance field as final. Such a

field must be initialized when the object is

constructed. That is, it must be guaranteed that

the field value is set after the end of every

constructor. Afterwards, the field may not be

modified again.

13

STATIC FIELDS

 If you define a field as static, then there is only

one such field per class. In contrast, each object

has its own copy of all instance fields.

14

STATIC METHODS

 Static methods are methods that do not operate

on objects.

 When a method doesn't need to access the

object state because all needed parameters are

supplied as explicit parameters.

 When a method only needs to access static fields

of the class.

15

METHOD PARAMETERS

 Call by value.

 Call by reference.

16

PACKAGES

 Java allows you to group classes in a collection

called a package. Packages are convenient for

organizing your work and for separating your

work from code libraries provided by others.

 A class can use all classes from its own package

and all public classes from other packages.

17

