GIAO TAC PHAN TAN
l. GIAO TAC TREN CO SO DU LIEU TAP TRUNG:
1. Bién @ @TRANCOUNT: tra vé s6 giao tac dang hoat dong trén két néi hién tai
Kiéu tra vé : integer

Lénh BEGIN TRANSACTION s& ting @@TRANCOUNT thém 1. ROLLBACK
TRANSACTION s& cho @@TRANCOUNT vé 0. Tuy nhién, néu ta ding ROLLBACK
TRANSACTION savepoint_name thi s& khdng anh hudng dén bién @@ TRANCOUNT.
Lénh COMMIT TRANSACTION hoic COMMIT WORK s& giam bét 1 trén bién
@@TRANCOUNT .

Vi du:
Create Proc sp_UpperName
@ten varchar(50)
AS
BEGIN TRANSACTION
UPDATE nhanvien SET ten = upper(ten)
WHERE ten = @ten
IF @@ROWCOUNT =2
COMMIT TRAN

IF @@TRANCOUNT >0
BEGIN -- update
ROLLBACK TRAN
PRINT ‘Lenh da bi huy'
END

Giai thich chlrc nang ctia sp_UpperName ?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2. SAVE TRANSACTION
Ghi lai 1 vi tri trong giao tac

Syntax
SAVE TRANSACTION { savepoint_name | @savepoint_variable }
Arguments

savepoint_name: 1a tén duoc gan cho vi tri ma ta muén ghi lai. Tén cua savepoint gidng
nhu tén cua id (t6i da 1a 32 ky tw)

@savepoint_variable : bién chira tén cua savepoint. Bién nay chi thuoc vé cac kiéu char,
varchar, nchar, or nvarchar .

The savepoint dinh nghia 1 vi tri trong giao tac dé ta ¢ thé huy 1 phan lénh trong giao
tac .
SAVE TRANSACTION khong hd trg trong méi truong distributed transactions .

Examples

This example changes the royalty (tién ban quyén) split for the two authors of The
Gourmet Microwave. Because the database would be inconsistent between the two
updates, they must be grouped into a user-defined transaction.
BEGIN TRANSACTION royaltychange
UPDATE titleauthor
SET royaltyper = 65
WHERE royaltyper = 75
AND title = 'The Gourmet Microwave'

UPDATE titleauthor
SET royaltyper = 35
WHERE royaltyper = 25
AND title = "The Gourmet Microwave'

SAVE TRANSACTION percentchanged

/*
After having updated the royaltyper entries for the two authors, the
user inserts the savepoint percentchanged, and then determines how a
10-percent increase in the book's price would affect the authors' royalty earnings. */
UPDATE titles
SET price = price * 1.1
WHERE title = "The Gourmet Microwave'

SELECT (price * royalty * ytd_sales) * royaltyper

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

FROM titles, titleauthor
WHERE title = 'The Gourmet Microwave'
AND titles.title_id = titleauthor title_id

/* The transaction is rolled back to the savepoint with the ROLLBACK TRANSACTION
statement.

*/

ROLLBACK percentchanged

COMMIT TRANSACTION
/* End of royaltychange. */

3. BEGIN TRANSACTION WITH MARK

Pénh dau diém bat dau cua 1 giao tac cuc bo. BEGIN TRANSACTION sé& 1am ting
@@TRANCOUNT lén 1.

Syntax

BEGIN TRANSACTION [transaction_name | @tran_name_variable
[WITH MARK [description*]]]

Arguments

transaction_name

Is the name assigned to the transaction. transaction_name must conform to the rules for
identifiers but identifiers longer than 32 characters are not allowed. Use transaction
names only on the outermost pair of nested BEGIN...COMMIT or BEGIN...ROLLBACK
statements.

@tran_name_variable

Is the name of a user-defined variable containing a valid transaction name. The variable
must be declared with a char, varchar, nchar, or nvarchar data type.

WITH MARK ['description’]

Chira transaction dugc danh dau trong file nhat ky. description 1a 1 chudi mé ta y nghia
vi tri dnh dau.

Néu WITH MARK duoc ding, tén giao tac phai co trong cau lénh. WITH MARK cho
phép phuc hdi giao tac téi vi tri nay

Remarks

BEGIN TRANSACTION represents a point at which the data referenced by a connection
is logically and physically consistent. Néu phat hién 16i, tat ca data da thay doi s& quay
tré lai trang thai ban dau.

BEGIN TRANSACTION starts a local transaction for the connection issuing the
statement. Depending on the current transaction isolation level settings, many resources
acquired to support the Transact-SQL statements issued by the connection are locked by

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

the transaction until it is completed with either a COMMIT TRANSACTION or
ROLLBACK TRANSACTION statement.

Although BEGIN TRANSACTION starts a local transaction, it is not recorded in the
transaction log until the application subsequently performs an action that must be
recorded in the log, such as executing an INSERT, UPDATE, or DELETE statement. An
application can perform actions such as acquiring locks to protect the transaction
isolation level of SELECT statements, but nothing is recorded in the log until the
application performs a modification action.

Naming multiple transactions in a series of nested transactions with a transaction name
has little effect on the transaction. Only the first (outermost) transaction name is
registered with the system. A rollback to any other name (other than a valid savepoint
name) generates an error. None of the statements executed before the rollback are in fact
rolled back at the time this error occurs. The statements are rolled back only when the
outer transaction is rolled back.

BEGIN TRANSACTION starts a local transaction. The local transaction is escalated to a
distributed transaction if the following actions are performed before it is committed or
rolled back:

« An INSERT, DELETE, or UPDATE statement is executed that references a
remote table on a linked server. The INSERT, UPDATE, or DELETE statement
fails if the OLE DB provider used to access the linked server does not support the
ITransactionJoin interface.

o A call is made to a remote stored procedure when the
REMOTE_PROC_TRANSACTIONS option is set to ON.

The local copy of SQL Server becomes the transaction controller and uses MS DTC to
manage the distributed transaction.

Marked Transactions

The WITH MARK option causes the transaction name to be placed in the transaction log.
When restoring a database to an earlier state, the marked transaction can be used in place
of a date and time. For more information, see Restoring a Database to a Prior State,
Recovering to a Named Transaction, and RESTORE.

Additionally, transaction log marks are necessary if you need to recover a set of related
databases to a logically consistent state. Marks can be placed in the transaction logs of
the related databases by a distributed transaction. Recovering the set of related databases
to these marks results in a set of databases that are transactionally consistent. Placement
of marks in related databases requires special procedures. For more information, see
Backup and Recovery of Related Databases.

The mark is placed in the transaction log only if the database is updated by the marked
transaction. Transactions that do not modify data are not marked.

BEGIN TRAN new_name WITH MARK can be nested within an already existing
transaction that is not marked. Upon doing so, new_name becomes the mark name for the

CuuDuongThanCong.com https://fb.com/tailieudientucntt

javascript:hhobj_1.Click()
javascript:hhobj_2.Click()
ts_ra-rz_25rm.htm
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

transaction, despite the name that the transaction may already have been given. In the
following example, M2 is the name of the mark.
BEGIN TRAN T1
UPDATE tablel ...
BEGIN TRAN M2 WITH MARK
UPDATE table2 ...
SELECT * from tablel
COMMIT TRAN M2
UPDATE table3 ...
COMMIT TRAN T1
Attempting to mark a transaction that is already marked results in a warning (not error)
message:
BEGIN TRAN T1 WITH MARK
UPDATE tablel ...
BEGIN TRAN M2 WITH MARK

Server: Msg 3920, Level 16, State 1, Line 3

WITH MARK option only applies to the first BEGIN TRAN WITH MARK.
The option is ignored.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

1. GIAO TAC PHAN TAN :
1. Dich vu MS DTC

The Microsoft Distributed Transaction Coordinator (MS DTC) la 1 trinh quan 1y, diéu
phoi cac giao tac phan tan, né cho phép cac trng dung cua client thao tac I1én di liéu cua
cac data sources trong 1 giao tac phan tan.

The MS DTC service diéu phoi su diing din cua 1 giao tac phan tan, nd bdo dam rang
hodc la tat cd cac cdap nhat di liéu trén tat cd cdc servers la dwoc thuc hién, hogc trong
trirong hop ¢6 10i thi xem nhuw chuwa thuc hién thao tdc gi trén giao tdc do.

Luu ¥: Néu dich vu MSDTC khéng hoat dong, Céach khic phuc nhu sau:
+ Vao CMD va gb Iénh msdtc.exe -install

+ Sau d06 start service tén Distributed Transaction Coordinator

Néu khdng thé khai dong duoc service thi 1am nhu sau:

+ Vao CMD g0 Iénh msdtc -resetlog

+ sau d6 go tiép lénh net start msdtc

2. Cu phap : BEGIN DISTRIBUTED TRANSACTION

Khoi dau cua distributed transaction duoc quan 1y boi Microsoft Distributed Transaction
Coordinator (MS DTC).

BEGIN DISTRIBUTED { TRAN | TRANSACTION }
[transaction_name | @tran_name_variable] ;

Arguments

transaction_name
Ia tén giao tac do user dinh nghia; tén giao tac phai tuan tha qui tac dat tén cho danh hiéu
vaphai <= 32 ky tu.

@tran_name_variable
la tén cua 1 bién chira tén cua giao tac. Bién phai thuc 1 trong cac kiéu char, varchar,
nchar, hoac nvarchar .

The instance of the SQL Server Database Engine thuc thi Iénh BEGIN DISTRIBUTED
TRANSACTION la transaction originator va diéu khién viéc hoan thanh cia transaction. Khi
1énh COMMIT TRANSACTION hoac ROLLBACK TRANSACTION duoc thyc thi trong
session, instance diéu khién s& yéu cau MS DTC hoan tat distributed transaction trén cac
instances co lién quan.

Transaction-level snapshot isolation does not support distributed transactions

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The primary way remote instances of the Database Engine are enlisted in a distributed
transaction is when a session already enlisted in the distributed transaction executes a distributed
query referencing a linked server.

For example, if BEGIN DISTRIBUTED TRANSACTION is issued on ServerA, the session
calls a stored procedure on ServerB and another stored procedure on ServerC. The stored
procedure on ServerC executes a distributed query against ServerD, and then all four computers
are involved in the distributed transaction. The instance of the Database Engine on ServerA is
the originating controlling instance for the transaction.

Permissions : Requires membership in the public role.

Examples

Vi du sau s€ giam bot 1 don vi cua sb luong vat tu co ma “TLO1’ thuoc bang CT PHATSINH
trong 2 phan méanh. Trong bang nay, ta da thiét lap 1 Check Constraint SOLUONG > 0. Nhu
vay, gia st trong Server hién tai ta c6 SOLUONG vét tu “TLO1’ 1a 3, con trong SERVER tai
LINK1 1a 2 thi giao tac phan tan s€ COMMIT,nghia la trong Server hién tai ta s¢ c6 SOLUONG
vat tu “TLO1’ 1a 2, con trong SERVER tai LINK1 la 1.

Nhung néu thyc thi giao tac nay thém 1 1an nita thi hé théng s& roll back toan bo giao tac,
nghia la trong Server hién tai ta van c6 SOLUONG vét tu “TLO1” 1a 2, con trong SERVER tai
LINK1 thi van 1a 1. Luc nay, ta s€ nhan 1 thong béo 10i:

Msg 547, Level 16, State 1, Line 1
The UPDATE statement conflicted with the CHECK constraint "CK_SOLUONG". The conflict occurred in
database "QL VATTU", table "dbo.CT PHATSINH", column 'SOLUONG'.

SET XACT ABORT ON
BEGIN DISTRIBUTED TRANSACTION;
-— Update SOLUONG from local instance.
UPDATE CT PHATSINH
SET SOLUONG = SOLUONG -1
WHERE MAVT = 'TLO1';
—-— Update SOLUONG from remote instance.
UPDATE LINK1.QL VATTU.DBO.CT PHATSINH
SET SOLUONG = SOLUONG -1
WHERE MAVT = 'TLO1';

COMMIT TRANSACTION;
GO

Vi du 2: Gia st ta d3 tao Stored Proc sau trén Server Publisher, va di duoc ddy qua cac
Subscription:
CREATE PROCEDURE SP_UPDATE SOLUONG
@MAVT VARCHAR (5), Q@SOLG INT

AS
BEGIN
UPDATE CT PHATSINH

SET SOLUONG = SOLUONG -@SOLG

WHERE MAVT = @MAVT;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

END
Ta thuc hién lai vi du 1, nhung theo dang RPC thi két qua van nhu cii

SET XACT ABORT ON
BEGIN DISTRIBUTED TRANSACTION;

EXEC SP UPDATE SOLUONG 'TLO1', 1
EXEC LINK1.QL VATTU.dbo.SP UPDATE SOLUONG 'TLO1', 1

COMMIT TRANSACTION;

Locking

Microsoft® SQL Server™ uses locking to ensure transactional integrity and database
consistency. Locking prevents users from reading data being changed by other users, and
prevents multiple users from changing the same data at the same time. If locking is not
used, data within the database may become logically incorrect, and queries executed
against that data may produce unexpected results.

Although SQL Server enforces locking automatically, you can design applications that
are more efficient by understanding and customizing locking in your applications.

Customizing the Lock Time-out

When Microsoft® SQL Server™ cannot grant a lock to a transaction on a resource
because another transaction already owns a conflicting lock on that resource, the first
transaction becomes blocked waiting on that resource. If this causes a deadlock, SQL
Server terminates one of the participating transactions (with no time-out involved).

If there is no deadlock, the transaction requesting the lock is blocked until the other
transaction releases the lock. By default, there is no mandatory time-out period, and no
way to test if a resource is locked before locking it, except to attempt to access the data
(and potentially get blocked indefinitely).

Note The sp_who system stored procedure can be used to determine if a process is
being blocked, and who is blocking it.

The LOCK_TIMEOUT setting allows an application to set a maximum time that a
statement waits on a blocked resource. When a statement has waited longer than the
LOCK_TIMEOQOUT setting, the blocked statement is canceled automatically, and error
message 1222 "Lock request time-out period exceeded" is returned to the application.

However, any transaction containing the statement is not rolled back or canceled by SQL
Server. Therefore, the application must have an error handler that can trap error message
1222. If an application does not trap the error, it can proceed unaware that an individual
statement within a transaction has been canceled, and errors can occur because statements
later in the transaction may depend on the statement that was never executed.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Implementing an error handler that traps error message 1222 allows an application to
handle the time-out situation and take remedial action for example, automatically
resubmitting the statement that was blocked, or rolling back the entire transaction.

To determine the current LOCK_TIMEOQOUT setting, execute the @@LOCK_TIMEOUT
function, for example:

DECLARE @Timeout int

SELECT @Timeout = @@lock_timeout

SELECT @Timeout

GO

@@LOCK_TIMEOUT
Returns the current lock time-out setting, in milliseconds, for the current session.
Syntax

@@LOCK_TIMEOUT
Return Types : integer

Remarks

SET LOCK_TIMEOUT allows an application to set the maximum time that a statement
waits on a blocked resource. When a statement has waited longer than the
LOCK_TIMEOUT setting, the blocked statement is automatically canceled, and an error
message is returned to the application.

At the beginning of a connection, @@LOCK_TIMEOUT returns a value of -1.

Examples

This example shows the result set when a LOCK_TIMEQUT value is not set.
SELECT @@LOCK_TIMEOUT
Here is the result set:

This example sets LOCK_TIMEOUT to 1800 milliseconds, and then calls @ LOCK_TIMEOUT.
SET LOCK_TIMEOQUT 1800

SELECT @@LOCK_TIMEOUT

Here is the result set:

SET LOCK_TIMEOUT
Specifies the number of milliseconds a statement waits for a lock to be released.

Syntax

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

SET LOCK_TIMEOUT timeout_period
Arguments

timeout_period

Is the number of milliseconds that will pass before Microsoft® SQL Server™ returns a
locking error. A value of -1 (default) indicates no time-out period (that is, wait forever).
When a wait for a lock exceeds the time-out value, an error is returned. A value of 0
means not to wait at all and return a message as soon as a lock is encountered.

Remarks

At the beginning of a connection, this setting has a value of -1. After it is changed, the
new setting stays in effect for the remainder of the connection.

The setting of SET LOCK_TIMEOUT is set at execute or run time and not at parse time.
The READPAST locking hint provides an alternative to this SET option.

Permissions
SET LOCK_TIMEOUT permissions default to all users.
Examples

This example sets the lock time-out period to 1,800 milliseconds.
SET LOCK_TIMEOUT 1800
GO

Locking Hints

A range of table-level locking hints can be specified using the SELECT, INSERT,
UPDATE, and DELETE statements to direct Microsoft® SQL Server™ 2000 to the type
of locks to be used. Table-level locking hints can be used when a finer control of the
types of locks acquired on an object is required. These locking hints override the current
transaction isolation level for the session.

Note The SQL Server query optimizer automatically makes the correct
determination. It is recommended that table-level locking hints be used to change the
default locking behavior only when necessary. Disallowing a locking level can affect
concurrency adversely.

Locking hint Description

HOLDLOCK Hold a shared lock until completion of the transaction
instead of releasing the lock as soon as the required
table, row, or data page is no longer required.
HOLDLOCK is equivalent to SERIALIZABLE.

NOLOCK Do not issue shared locks and do not honor exclusive

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

PAGLOCK

READCOMMITTED

READPAST

READUNCOMMITTED
REPEATABLEREAD

ROWLOCK

SERIALIZABLE

TABLOCK

TABLOCKX

UPDLOCK

CuuDuongThanCong.com

locks. When this option is in effect, it is possible to read
an uncommitted transaction or a set of pages that are
rolled back in the middle of a read. Dirty reads are
possible. Only applies to the SELECT statement.

Use page locks where a single table lock would usually
be taken.

Perform a scan with the same locking semantics as a
transaction running at the READ COMMITTED
isolation level. By default, SQL Server 2000 operates at
this isolation level.

Skip locked rows. This option causes a transaction to
skip rows locked by other transactions that would
ordinarily appear in the result set, rather than block the
transaction waiting for the other transactions to release
their locks on these rows. The READPAST lock hint
applies only to transactions operating at READ
COMMITTED isolation and will read only past row-
level locks. Applies only to the SELECT statement.

Equivalent to NOLOCK.

Perform a scan with the same locking semantics as a
transaction running at the REPEATABLE READ
isolation level.

Use row-level locks instead of the coarser-grained page-
and table-level locks.

Perform a scan with the same locking semantics as a
transaction running at the SERIALIZABLE isolation
level. Equivalent to HOLDLOCK.

Use a table lock instead of the finer-grained row- or
page-level locks. SQL Server holds this lock until the
end of the statement. However, if you also specify
HOLDLOCK, the lock is held until the end of the
transaction.

Use an exclusive lock on a table. This lock prevents
others from reading or updating the table and is held
until the end of the statement or transaction.

Use update locks instead of shared locks while reading
a table, and hold locks until the end of the statement or
transaction. UPDLOCK has the advantage of allowing
you to read data (without blocking other readers) and
update it later with the assurance that the data has not
changed since you last read it.

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

XLOCK Use an exclusive lock that will be held until the end of
the transaction on all data processed by the statement.
This lock can be specified with either PAGLOCK or
TABLOCK, in which case the exclusive lock applies to
the appropriate level of granularity.

For example, if the transaction isolation level is set to SERIALIZABLE, and the table-
level locking hint NOLOCK is used with the SELECT statement, key-range locks
typically used to maintain serializable transactions are not taken.

USE pubs

GO

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

GO

BEGIN TRANSACTION

SELECT au_Ilname FROM authors WITH (NOLOCK)

GO

The locks generated are:

EXEC sp_lock

GO

spid dbid Objld Indld Type |Resource Mode Status

1 1 0 0 DB S GRANT
6 1 0 0 DB S GRANT
7 1 0 0 DB S GRANT
8 4 0 0 DB S GRANT
8 4 0 0 DB S GRANT
8 4 117575457 0 TAB Sch-S |GRANT
9 4 0 0 DB S GRANT
9 1 21575115 |0 TAB IS GRANT

SELECT object_name(117575457)

authors
The only lock taken that references authors is a schema stability (Sch-S) lock. In this
case, serializability is no longer guaranteed.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

