
Cơ sở dữ liệu
TS. Hồ Mạnh Tài

Khoa CNTT2

1

Học viện Công nghệ Bưu chính Viễn thông

2018

Chương 4: Phụ thuộc hàm
Functional Dependencies

2

1. Dạng chuẩn và phụ thuộc hàm
Normal forms & functional dependencies

3

Dạng chuẩn 1 (1st Normal Forms – 1NF)

4

Student Courses

Mary {CS145,CS229}

Joe {CS145,CS106}

… …

Violates 1NF.

1NF Constraint: Types must be atomic!

Student Courses

Mary CS145

Mary CS229

Joe CS145

Joe CS106

In 1st NF

Các ràng buộc ngăn ngừa
bất thường dữ liệu

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

If every course is in
only one room,
contains redundant
information!

A poorly designed database causes anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

Mary CS145 B01

Joe CS145 C12

Sam CS145 B01

..

If we update the
room number for
one tuple, we get
inconsistent data =
an update anomaly

A poorly designed database causes anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

..

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

A poorly designed database causes anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Similarly, we can’t
reserve a room
without students
= an insert
anomaly

A poorly designed database causes anomalies:

… CS229 C12

Constraints Prevent (some)
Anomalies in the Data

Student Course

Mary CS145

Joe CS145

Sam CS145

.. ..

Course Room

CS145 B01

CS229 C12

Today: develop theory to understand why this design
may be better and how to find this decomposition…

Is this form better?

• Redundancy?
• Update anomaly?
• Delete anomaly?
• Insert anomaly?

2. Phụ thuộc hàm - FDs

10

Định nghĩa

11

A->B means that
“whenever two tuples agree on A then they agree on B.”

Def: Let A,B be sets of attributes
We write A  B or say A functionally determines B
if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B]

and we call A  B a functional dependency

A Picture Of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

A1 … Am B1 … Bn

A Picture Of FDs

ti

tj

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency A B on R
holds if for any ti,tj in R:

Lecture 5 > Section 1 > Functional dependencies

A Picture Of FDs
Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency A B on R
holds if for any ti,tj in R:

ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND …
AND ti[Am] = tj[Am]

A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here..

Lecture 5 > Section 1 > Functional dependencies

A Picture Of FDs
Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency A B on R
holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND ti[B2]=tj[B2]
AND … AND ti[Bn] = tj[Bn]

A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here.. …they also agree here!

Lecture 5 > Section 1 > Functional dependencies

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Note: The FD {Course}
-> {Room} holds on this
instance

A functional dependency is a form
of constraint

• Holds on some instances (but not
others) – can check whether there
are violations

• Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Functional Dependencies as Constraints

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

However, cannot prove
that the FD {Course} ->
{Room} is part of the
schema

Note that:

• You can check if an FD is
violated by examining a single
instance;

• However, you cannot prove
that an FD is part of the
schema by examining a single
instance.
• This would require checking

every valid instance

19

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

20

{Position}  {Phone}

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876  Salesrep

E1111 Smith 9876  Salesrep

E9999 Mary 1234 Lawyer

More Examples

21

EmpID Name Phone Position

E0045 Smith 1234  Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234  Lawyer

but not {Phone}  {Position}

More Examples

2. Tìm phụ thuộc hàm

22

“Good” vs. “Bad” FDs

• We can start to develop a notion of good vs. bad FDs:

23

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,
Position is “good FD”
• Minimal redundancy,

less possibility of
anomalies

24

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,
Position is “good FD”

But Position -> Phone is a
“bad FD”
• Redundancy!

Possibility of data
anomalies

Lecture 5 > Section 2 > Good vs. Bad FDs

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".

Returning to our original example…
can you see how the “bad FD”
{Course} -> {Room} could lead to
an:

• Update Anomaly
• Insert Anomaly
• Delete Anomaly
• …

“Good” vs. “Bad” FDs

Lecture 5 > Section 2 > Good vs. Bad FDs

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes possibility of anomalies

Lecture 5 > Section 2 > Finding FDs

This part can be tricky!

Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Department}
3. {Color, Category}  {Price}

Name Color Category Dep Price

Gizmo Green Gadget Toys 49

Widget Black Gadget Toys 59

Gizmo Green Whatsit Garden 99

Which / how many other FDs do?!?

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category}  {Price}
must also hold on any instance…

Example:

Lecture 5 > Section 2 > Finding FDs

Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s
Rules.

1. Split/Combine,
2. Reduction, and
3. Transitivity… ideas by picture

Finding Functional Dependencies

1. Split/Combine

A1 … Am B1 … Bn

A1, …, Am  B1,…,Bn

1. Split/Combine

A1 … Am B1 … Bn

A1, …, Am  B1,…,Bn

… is equivalent to the following n FDs…

A1,…,Am  Bi for i=1,…,n

1. Split/Combine

A1 … Am B1 … Bn

A1, …, Am  B1,…,Bn

… is equivalent to …

And vice-versa, A1,…,Am  Bi for i=1,…,n

2. Reduction/Trivial

A1 … Am

A1,…,Am Aj for any j=1,…,m

3. Transitive Closure

A1 … Am B1 … Bn C1 … Ck

A1, …, Am  B1,…,Bn and
B1,…,Bn  C1,…,Ck

3. Transitive Closure

A1 … Am B1 … Bn C1 … Ck

A1, …, Am  B1,…,Bn and
B1,…,Bn  C1,…,Ck

implies

A1,…,Am  C1,…,Ck

Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Department}
3. {Color, Category}  {Price}

Name Color Category Dep Price

Gizmo Green Gadget Toys 49

Widget Black Gadget Toys 59

Gizmo Green Whatsit Garden 99

Which / how many other FDs hold?

Provided FDs:Products

Example:

Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Dept.}
3. {Color, Category} 
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} ?

5. {Name, Category} -> {Color} ?

6. {Name, Category} -> {Category} ?

7. {Name, Category -> {Color, Category} ?

8. {Name, Category} -> {Price} ?

Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Dept.}
3. {Color, Category} 
{Price}

Can we find an algorithmic way to do this?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial

5. {Name, Category} -> {Color} Transitive (4 -> 1)

6. {Name, Category} -> {Category} Trivial

7. {Name, Category -> {Color, Category} Split/combine (5 + 6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Bao đóng - Closures

39

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An}  B

{name}  {color}

{category}  {department}

{color, category}  {price}

Example: F =

Example
Closures:

{name}+ = {name, color}

{name, category}+ =

{name, category, color, dept, price}

{color}+ = {color}

40

Closure Algorithm

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bn}  C is entailed by F

and {B1, …, Bn} ⊆ X

then add C to X.

Return X as X+

41

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bn}  C is in F and {B1,
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category}  {price}

F =

{name, category}+ =

{name, category}

Closure Algorithm

42

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bn}  C is in F and {B1,
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category}  {price}

F =

{name, category}+ =

{name, category}

{name, category}+ =

{name, category, color}

Closure Algorithm

43

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bn}  C is in F and {B1,
…, Bn} ⊆ X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category}  {price}

F =

{name, category}+ =

{name, category}

{name, category}+ =

{name, category, color}

{name, category}+ =

{name, category, color, dept}

Closure Algorithm

44

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bn}  C is in F and {B1,
…, Bn} ⊆ X:

then add C to X.
Return X as X+

F =

{name, category}+ =

{name, category}

{name, category}+ =

{name, category, color, dept, price}

{name, category}+ =

{name, category, color}

{name, category}+ =

{name, category, color, dept}{name}  {color}

{category}  {dept}

{color, category}  {price}

Closure Algorithm

Example

45

Compute {A,B}+ = {A, B, }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F) {A,B}  {C}

{A,D}  {E}

{B}  {D}

{A,F}  {B}

46

Compute {A,B}+ = {A, B, C, D }

Compute {A, F}+ = {A, F, B }

R(A,B,C,D,E,F) {A,B}  {C}

{A,D}  {E}

{B}  {D}

{A,F}  {B}

Example

47

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F) {A,B}  {C}

{A,D}  {E}

{B}  {D}

{A,F}  {B}

Example

3. Closures, Superkeys & Keys

48

49

Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if X  A

1. Compute X+

2. Check if A  X+

Note here that X is a set of
attributes, but A is a single
attribute. Why does considering
FDs of this form suffice?

Recall the Split/combine rule:
X  A1, …, X  An

implies
X  {A1, …, An}

50

Using Closure to Infer ALL FDs
{A,B}  C

{A,D}  B

{B}  D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}

{B}+ = {B,D}

{C}+ = {C}

{D}+ = {D}

{A,B}+ = {A,B,C,D}

{A,C}+ = {A,C}

{A,D}+ = {A,B,C,D}

{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}

{B,C,D}+ = {B,C,D}

{A,B,C,D}+ = {A,B,C,D}

No need to
compute all of
these- why?

51

Using Closure to Infer ALL FDs
{A,B}  C

{A,D}  B

{B}  D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ =

{A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ =

{A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},

{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y = :

{A,B}  {C,D}, {A,D}  {B,C},

{A,B,C}  {D}, {A,B,D}  {C},

{A,C,D}  {B}

52

Using Closure to Infer ALL FDs
{A,B}  C

{A,D}  B

{B}  D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ =

{A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ =

{A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},

{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y = :

{A,B}  {C,D}, {A,D}  {B,C},

{A,B,C}  {D}, {A,B,D}  {C},

{A,C,D}  {B}

“Y is in the
closure of X”

Step 1: Compute X+, for every set of attributes X:

53

Using Closure to Infer ALL FDs
{A,B}  C

{A,D}  B

{B}  D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ = {D}, {A,B}+ =

{A,B,C,D}, {A,C}+ = {A,C}, {A,D}+ = {A,B,C,D}, {A,B,C}+ =

{A,B,D}+ = {A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},

{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y = :

{A,B}  {C,D}, {A,D}  {B,C},

{A,B,C}  {D}, {A,B,D}  {C},

{A,C,D}  {B}

The FD X  Y
is non-trivial

Step 1: Compute X+, for every set of attributes X:

Superkeys and Keys

54

Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.
for any other attribute B in R,
we have {A1, …, An}  B

A key is a minimal superkey

I.e. all attributes are
functionally determined
by a superkey

This means that no subset of a
key is also a superkey (i.e.,
dropping any attribute from the
key makes it no longer a
superkey)

Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

{name, category}  price

{category}  color

What is a key?

Example of Keys

Product(name, price, category, color)

{name, category}  price

{category}  color

{name, category}+ = {name, price, category, color}

= the set of all attributes
⟹ this is a superkey
⟹ this is a key, since neither name nor category

alone is a superkey

