> ~ A
Co so d lieu
TS. H6 Manh Tai
Khoa CNTT2

Hoc vién Céng nghé Bwu chinh Vién thong
2018

Chuong 4: Phu thudc ham
Functional Dependencies

o
1. Dang chuan va phu thudéc ham
Normal forms & functional dependencies

Dang chuan 1 (1% Normal Forms — 1NF‘?~\

Student Courses_. |
Student Courses | . T
Mary CS145 %
Mary {CS145,CS229}
Mary CS229
Joe {CS145,CS106}
Joe CS145
Joe CS106
Violates 1NF. In 15t NF

INF Constraint: Types must be atomic!

Cac rang budc ngan ngua

bat thuong dit liéu

A poorly designed database causes anomalies: ‘%
-)\
Student | Course | Room
Mary CS145 | BO1
Joe CS145 | BO1
Sam CS145 | BO1
N

»
.

If every course is in
only one room,
contains redundant
information!

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room

If we update the
Mary C5145 | BO1 room number for

Joe CS145 [Cl2] one tuple, we get

Sam CS145 |BO1 inconsistent data =
an update anomaly

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room

.

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room
Mary CS145 |BO1 Similarly, we can’t
Joe CS].45 BO]. feserve a room

without students

Sam CS145 |BO1 = an insert
C12 i} i} anomaly

Constraints Prevent (some)
Anomalies in the Data

Is this form better?

Student | Course
Mary C5145 Course | Room * Redundancy?
Joe CS145 C5145 |BO1 * Update anomaly?
Sam CS145 CS229 |C12 * Delete anomaly?
* Insert anomaly?
=

!

‘*“j Today: develop theory to understand why this design
N% may be better and how to find this decomposition...

7

2. Phu thuoc ham - FDs

binh nghia

Def: Let A B be sets of attributes
We write A = B or say A functionally determines B
if, for any tuples t, and t,:

t,[A] = t,[A] implies t,[B] = t,[B]

and we call A = B a functional dependency

A->B means that
“whenever two tuples agree on A then they agree on B.”

11

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and

B={B,,..B}inR,
2 3 -ﬁ‘

Lecture 5 > Section 1 > Functional dependencies

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B={B,..B }inR,

The functional dependency A=> B on R
holds if for any t,t; in R:

Lecture 5 > Section 1 > Functional dependencies

A Picture Of FDs *’!A R
Defn (again): -

Given attribute sets A={A,,...,A..} and &

B={B,..B }inR,

The functional dependency A=> B on R
holds if for any t,t; in R:

t[A,] = [A,] AND t[A,]=t[A,] AND ..
AND t[A,] = t[A,]

|

Lecture 5 > Section 1 > Functional dependencies

A Picture Of FDs \a,-.“ | .-L!‘

Defn (again): :
Given attribute sets A={A,,...,A .} and s

B={B,..B }inR,

A, A, B, B,
| l The functional dependency A= B on R
b holds if for any t,t; in R:
g , if t;[A;] = t,[A;] AND t[A,]=t,[A,] AND
o . AND t[A] = t[A,]
& %Q*’iﬂ,"fz agree here.. ...they also agree here! then ti[Bl] = tj[Bl] AND ti[Bz]ztj[Bz]
& W N AND ... AND t[B,] = t [B,]

0 Byl D

FDs for Relational Schema Design

* High-level idea: why do we care about FDs?

1. Start with some relational schema
2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes the possibility of anomalies

Functional Dependencies as Constrain@*
% J

A functional dependency is a form
of constraint

e Holds on some instances (but not
others) — can check whether there
are violations

e Part of the schema, helps define a

‘< valid instance
p Y
‘Q" * < .y
%y 7?:.*

‘('\.“"‘.*

1 . . .

' Recall: an instance of a schema is a multiset of
=~ tuples conforming to that schema, i.e. a table

l

Student | Course | Room..|

Mary CS145 |BO1
Joe CS145 |BO1
Sam CS145 |BO1

Note: The FD {Course}
-> {Room} holds on this
instance

Functional Dependencies as Constrainif*
3 ;

Note that:

* You can checkifan FD is
violated by examining a single
Instance;

* However, you cannot prove
that an FD is part of the
schema by examining a single

% s instance.
v 5 *2, " Thls Would reqwre checking

"Room..|

Student | Course
Mary CS145 |BO1
Joe CS145 |BO1
Sam CS145 |BO1

However, cannot prove
that the FD {Course} ->
{Room} is part of the

schema

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

19

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 0876 Salesrep
E1111 Smith 0876 Salesrep
E9999 Mary 1234 Lawyer

T

T

{Position} = {Phone}

20

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 — |Clerk
E3542 Mike 0876 Salesrep
E1111 Smith 0876 Salesrep
E9999 Mary 1234 — |Lawyer

but not {Phone} = {Position}

21

2. Tim phu thudc ham

“Good” vs. “Bad” FDs

* We can start to develop a notion of good vs. bad FDs:

Intuitively:

[E9999

EmplD |Name |[Phone |Position
EO045 |[Smith |1234 Clerk
E3542 |Mike 0876 Salesrep
E1111 |Smith |9876 Salesrep
Mary 1234 Lawyer

EmplID -> Name, Phone,

Position is “good FD”

* Minimal redundancy,
less possibility of
anomalies

23

Lecture 5 > Section 2 > Good vs. Bad FDs

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position Intuitively:
E0045 | Smith 1234 Clerk
: A EmplID -> Name, Phone,

E3542 |Mike 0876 Salesrep Position is “good FD”

Smith | 9876 Salesrep

Mar 1234 L awver But Position -> Phone is a

Y il “bad FD”
* Redundancy!
Possibility of data

anomalies

Lecture 5 > Section 2 > Good vs. Bad FDs

“Good” vs. “Bad” FDs

Returning to our original example.&

Student | Course | Room
can you see how the “bad FD* .

Mary S|S0 {Course} -> {Room} could lead to
Joe CS145 |BO1 an:
Sam CS145 |BO1 Update Anomaly

* Insert Anomaly
* Delete Anomaly

%*7,,,*, - Given a set of FDs (from user) our goal is to:
P

>~ 1. Find all FDs, and

; 2. Eliminate the “Bad Ones".

Lecture 5 > Section 2 > Finding FDs

FDs for Relational Schema Design

* High-level idea: why do we care about FDs?

1. Start with some relational schema
2. Find out its functional dependencies (FDs) This part can be tricky!

3. Use these to design a better schema
1. One which minimizes possibility of anomalies

Lecture 5 > Section 2 > Finding FDs

Finding Functional Dependencies

Example:

Products Provided FDs: e
Name | Color | Category Dep Price 1. {Name} = {Color}

Gizmo |Green |Gadget |Toys |49 2. {Category} = {Department}

Widget [Black |Gadget |Toys 59 3. {Color, Category} > {Price}

Gizmo |Green |Whatsit Garden |99

% "‘vaenfthe provided FDs, we can see that {Name, Category} = {Price}
- *Mtgtalso hold on any instance...
= ‘n. —

Which / how many other FDs do?!?

»
*\\

Finding Functional Dependencies *%

Equivalent to asking: Given a set of FDs, F = {f,...f }, does an FD g‘_{gxol :

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s
Rules.

1. Split/Combine,

2. Reduction, and

3. Transitivity... ideas by picture

1. Split/Combine

1. Split/Combine

A, ...,A_ >B,..,B,

... IS equivalent to the following n FDs...

A,,...,A, =2 B fori=1,..,n

1. Split/Combine

And vice-versa, A,,...,A., = B fori=1,...,n

... IS equivalent to ...

A, ..,A_ >B,..,B,

2. Reduction/Trivial

A, A, 2 A, for any j=1,...,m

3. Transitive Closure

A, .., A, B,..B and
B,,....B. > C,,...,.C,

3. Transitive Closure

A, .., A, B,..B and
B,,...B. > C,,....C,

implies
A,...A, 2 C,..,C

Finding Functional Dependencies

Example:
Products
Name Color | Category Dep Price
Gizmo |Green |Gadget Toys 49
Widget |Black Gadget Toys 59
Gizmo |Green |Whatsit Garden |99

Provided FDs:

1. {Name} = {Color}
2. {Category} =2 {Department}
3. {Color, Category} > {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs: Provided FDgi ‘”k
1. {Name} > {Color}

4. {Name, Category} -> {Name} ? 2. {Category} = {Dept.}
3. {Color, Category} =2
{Price}

5. {Name, Category} -> {Color}

6. {Name, Category} -> {Category}

7. {Name Category - >{Co|or Category}

Y Y Y oV

Which / how many other FDs hold?

Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs: ey
1. {Namej > (Color
4. {Name, Category} -> {Name} Trivial 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} Transitive (4 -> 1) 3. {.Color, Category} =2
6. {Name, Category} -> {Category} Trivial Price;
7. {Name Category -> {Color, Category} Split/combine (5 + 6)

Category} -> {Price} Transitive (7 -> 3)

Can we find an algorithmic way to do this?

Bao dong - Closures

Closure of a set of Attributes

Given a set of attributes A,, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes Bs.t. {A;, .., A} > B

Example: F = |{name} > {color}
{category} - {department}
{color, category} => {price}

{name}* = {name, color}

{name, category}* =

{name, category, color, dept, price}
{color}* = {color}

39

Closure Algorithm

Start with X =1{A,, ..., A } and set of FDs F.

Repeat until X doesn’t change; do:
if {B,, ..., B,} 2 Cisentailed by F
and {B,, ..., B.} © X

then add C to X.

40

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F. {name, category}* =
Repeat until X doesn’t change; do: {name, category}

if {B,,...,B.,} =2 CisinFand{B,,
., B JEX:

then add C to X.
Return X as X*

{name} > {color}

{category} = {dept}

{color, category} = {price}

— 41

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.
Repeat until X doesn’t change; do:
if {B,,...,B.,} =2 CisinFand{B,,
., B JEX:
then add C to X.
Return X as X*

{name, category}* =
{name, category, color}

{name} > {color}

{category} = {dept}

42

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.
Repeat until X doesn’t change; do:
if {B,,...,B.,} =2 CisinFand{B,,
., B JEX:
then add C to X.
Return X as X*

{name} > {color}

{category} > {dept}

{name, category}* =
{name, category, color, dept}

43

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.
Repeat until X doesn’t change; do:
if {B,,...,B.,} =2 CisinFand{B,,
., B JEX:
then add C to X.
Return X as X*

{name} > {color}

{name, category}* =
{name, category, color, dept, price}

44

Example

R(A,B,C,D,E,F)

o ow ~Compute {A,B}" = {A, B,

o

o } L ompute {A, F}* = {A, F,

A,B} 2 {C}
{A,D} 2 {E}
B} 2 {Dj}

AF} 2 {B}

Example

R(A,B,C,D,E,F) {A,B} > {C}
AD} 2 {E}
{B} 2 1D}

AF} 2 B}

46

Example

R(A,B,C,D,E,F)

- *'.Compute {A,B}* = {A, B,

A,B} 2 {C}
{A,D} 2 {E}
B} 2 {Dj}

AF} 2 {B}

C, D, E}

47

Why Do We Need the Closure? %

* With closure we can find all FD’s easily

Note here that X is a set of

* To checkif X —> A attributes, but Ais a single
attribute. Why does considering
1. Compute X* FDs of this form suffice?

Recall the Split/combine rule:
XA, ., XDA

implies

XA, .., A}

49

Using Closure to Infer ALL FDs “

Example:
Given F =

Step 1: Compute X*, for every set of attributes X:

{A}" = {A}
{B}* = {B,D}
{C} ={C}
{D}* ={D}
{A,B} = {A,B,C,D}
{A.C}" ={A,C}
| {A,D}* = {A,B,C,D}
4 {A,B,C} = {A,B,D} = {A,C,D} = {A,B,C,D}
{B,C,D}* = {B,C,D}
{A,B,C,D} = {A,B,C,D}

[AB}>C
{AD}> B
B} >D |

No need to
compute all of
these- why?

50

Using Closure to Infer ALL FDs 2
Example: IAB}> C

Given F = {AD}> B
{B} =D

Step 1: Compute X*, for every set of attributes X:

{A}={A}, {B}*={B,D}, {C}* = {C}, {D}* = {D}, {A,B}* =
{A,B,C,D}, {A,C} = {A,C}, {A,D}* = {A,B,C,D}, {A,B,C}* =
{A,B,D} = {A,C,D} = {A,B,C,D}, {B,C,D}* = {B,C,D},
{A,B,C,D} = {A,B,C,D}

N .%ea 2: Enumerateall FDs X2 Y, st.YcXtand XN Y = O:
S &

{A,B} 2 {C,D}, {A,D} - {B,C},

{A,B,C} = {D}, {A,B,D} - {C},

{A,C,D} - {B}

51

._)S‘

Using Closure to Infer ALL FDs 2
Example:

Step 1: Compute X*, for every set of attributes X: V&M =

{A}={A}, {B}*={B,D}, {C}* = {C}, {D}* = {D}, {A,B}* =
{A,B,C,D}, {A,C} = {A,C}, {A,D}* = {A,B,C,D}, {A,B,C}* =
{A,B,D} = {A,C,D} = {A,B,C,D}, {B,C,D}* = {B,C,D},
{A,B,C,D} = {A,B,C,D}

o ,%ea 2: Enumerateall FDs X2 Y, st.Yc X" and XNY = O:
YR o

3441 {A.B} > {C,D}, {AD} > {B,C},
P {{A.B,C} = {D}, {A,B,D} 2 {C},
' {A,C,D} - {B}

{A,é} >C
{AD}> B
B} > |

“Yisin the
closure of X”

52

._)S‘

Using Closure to Infer ALL FDs 2
Example:

Step 1: Compute X*, for every set of attributes X: V&M =

{A}={A}, {B}*={B,D}, {C}* = {C}, {D}* = {D}, {A,B}* =
{A,B,C,D}, {A,C} = {A,C}, {A,D}* = {A,B,C,D}, {A,B,C}* =
{A,B,D} = {A,C,D} = {A,B,C,D}, {B,C,D}* = {B,C,D},
{A,B,C,D} = {A,B,C,D}

o ,%ea 2: Enumerate all FDs X2 Y, st.YcXtand XY = O:
YR o

3441 {A.B} > {C,D}, {AD} > {B,C},
P {{A.B,C} = {D}, {A,B,D} 2 {C},
' {A,C,D} - {B}

{A,é} >C
{AD}> B
B} > |

The FDX =2Y
is non-trivial

53

Superkeys and Keys

Keys and Superkeys

A superkey is a set of attributes A, ..., A, s.t. . all attributes are
for any other attribute B in R, functionally determined
we have {A,, .., A }>B by a superkey

This means that no subset of a
key is also a superkey (i.e.,
dropping any attribute from the
key makes it no longer a
superkey)

Finding Keys and Superkeys

e For each set of attributes X

1. Compute X*
2. If X*=set of all attributes then X is a superkey

3. If Xis minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

{name, category} -> price
{category} - color

What is a key?

Example of Keys

Product(name, price, category, color)

{name, category} -> price
{category} - color

{name, category}* = {name, price, category, color}
= the set of all attributes

= this is a superkey
= this is a key, since neither name nor category

alone is a superkey

