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7
Other Algorithms for 
Linear Programming

The key to the extremely widespread use of linear programming is the availability of an
exceptionally efficient algorithm—the simplex method—that will routinely solve the large-
size problems that typically arise in practice. However, the simplex method is only part
of the arsenal of algorithms regularly used by linear programming practitioners. We now
turn to these other algorithms.

This chapter focuses first on three particularly important algorithms that are, in fact, vari-
ants of the simplex method. In particular, the next three sections present the dual simplex
method (a modification particularly useful for sensitivity analysis), parametric linear pro-
gramming (an extension for systematic sensitivity analysis), and the upper bound technique
(a streamlined version of the simplex method for dealing with variables having upper bounds).

Section 4.9 introduced another algorithmic approach to linear programming—a type
of algorithm that moves through the interior of the feasible region. We describe this inte-
rior-point approach further in Sec. 7.4.

We next introduce linear goal programming where, rather than having a single ob-
jective (maximize or minimize Z) as for linear programming, the problem instead has sev-
eral goals toward which we must strive simultaneously. Certain formulation techniques
enable converting a linear goal programming problem back into a linear programming
problem so that solution procedures based on the simplex method can still be used. Sec-
tion 7.5 describes these techniques and procedures.

The dual simplex method is based on the duality theory presented in the first part of Chap.
6. To describe the basic idea behind this method, it is helpful to use some terminology in-
troduced in Tables 6.10 and 6.11 of Sec. 6.3 for describing any pair of complementary ba-
sic solutions in the primal and dual problems. In particular, recall that both solutions are
said to be primal feasible if the primal basic solution is feasible, whereas they are called
dual feasible if the complementary dual basic solution is feasible for the dual problem.
Also recall (as indicated on the right side of Table 6.11) that each complementary basic
solution is optimal for its problem only if it is both primal feasible and dual feasible.

The dual simplex method can be thought of as the mirror image of the simplex method.
The simplex method deals directly with basic solutions in the primal problem that are pri-
mal feasible but not dual feasible. It then moves toward an optimal solution by striving
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to achieve dual feasibility as well (the optimality test for the simplex method). By con-
trast, the dual simplex method deals with basic solutions in the primal problem that are
dual feasible but not primal feasible. It then moves toward an optimal solution by striv-
ing to achieve primal feasibility as well.

Furthermore, the dual simplex method deals with a problem as if the simplex method
were being applied simultaneously to its dual problem. If we make their initial basic so-
lutions complementary, the two methods move in complete sequence, obtaining comple-
mentary basic solutions with each iteration.

The dual simplex method is very useful in certain special types of situations. Ordi-
narily it is easier to find an initial basic solution that is feasible than one that is dual fea-
sible. However, it is occasionally necessary to introduce many artificial variables to con-
struct an initial BF solution artificially. In such cases it may be easier to begin with a dual
feasible basic solution and use the dual simplex method. Furthermore, fewer iterations may
be required when it is not necessary to drive many artificial variables to zero.

As we mentioned several times in Chap. 6 as well as in Sec. 4.7, another important
primary application of the dual simplex method is its use in conjunction with sensitivity
analysis. Suppose that an optimal solution has been obtained by the simplex method but
that it becomes necessary (or of interest for sensitivity analysis) to make minor changes
in the model. If the formerly optimal basic solution is no longer primal feasible (but still
satisfies the optimality test), you can immediately apply the dual simplex method by start-
ing with this dual feasible basic solution. Applying the dual simplex method in this way
usually leads to the new optimal solution much more quickly than would solving the new
problem from the beginning with the simplex method.

The dual simplex method also can be useful in solving huge linear programming prob-
lems from scratch because it is such an efficient algorithm. Recent computational expe-
rience with the latest versions of CPLEX indicates that the dual simplex method often is
more efficient than the simplex method for solving particularly massive problems en-
countered in practice.

The rules for the dual simplex method are very similar to those for the simplex method.
In fact, once the methods are started, the only difference between them is in the criteria
used for selecting the entering and leaving basic variables and for stopping the algorithm.

To start the dual simplex method (for a maximization problem), we must have all the
coefficients in Eq. (0) nonnegative (so that the basic solution is dual feasible). The basic
solutions will be infeasible (except for the last one) only because some of the variables
are negative. The method continues to decrease the value of the objective function, always
retaining nonnegative coefficients in Eq. (0), until all the variables are nonnegative. Such
a basic solution is feasible (it satisfies all the equations) and is, therefore, optimal by the
simplex method criterion of nonnegative coefficients in Eq. (0).

The details of the dual simplex method are summarized next.

Summary of the Dual Simplex Method.

1. Initialization: After converting any functional constraints in � form to � form (by
multiplying through both sides by �1), introduce slack variables as needed to con-
struct a set of equations describing the problem. Find a basic solution such that the co-
efficients in Eq. (0) are zero for basic variables and nonnegative for nonbasic variables
(so the solution is optimal if it is feasible). Go to the feasibility test.
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2. Feasibility test: Check to see whether all the basic variables are nonnegative. If they are,
then this solution is feasible, and therefore optimal, so stop. Otherwise, go to an iteration.

3. Iteration:
Step 1 Determine the leaving basic variable: Select the negative basic variable

that has the largest absolute value.
Step 2 Determine the entering basic variable: Select the nonbasic variable whose

coefficient in Eq. (0) reaches zero first as an increasing multiple of the equation con-
taining the leaving basic variable is added to Eq. (0). This selection is made by check-
ing the nonbasic variables with negative coefficients in that equation (the one contain-
ing the leaving basic variable) and selecting the one with the smallest absolute value
of the ratio of the Eq. (0) coefficient to the coefficient in that equation.

Step 3 Determine the new basic solution: Starting from the current set of equa-
tions, solve for the basic variables in terms of the nonbasic variables by Gaussian elim-
ination. When we set the nonbasic variables equal to zero, each basic variable (and Z)
equals the new right-hand side of the one equation in which it appears (with a coeffi-
cient of �1). Return to the feasibility test.

To fully understand the dual simplex method, you must realize that the method pro-
ceeds just as if the simplex method were being applied to the complementary basic solu-
tions in the dual problem. (In fact, this interpretation was the motivation for constructing
the method as it is.) Step 1 of an iteration, determining the leaving basic variable, is equiv-
alent to determining the entering basic variable in the dual problem. The negative vari-
able with the largest absolute value corresponds to the negative coefficient with the largest
absolute value in Eq. (0) of the dual problem (see Table 6.3). Step 2, determining the en-
tering basic variable, is equivalent to determining the leaving basic variable in the dual
problem. The coefficient in Eq. (0) that reaches zero first corresponds to the variable in
the dual problem that reaches zero first. The two criteria for stopping the algorithm are
also complementary.

We shall now illustrate the dual simplex method by applying it to the dual problem
for the Wyndor Glass Co. (see Table 6.1). Normally this method is applied directly to the
problem of concern (a primal problem). However, we have chosen this problem because
you have already seen the simplex method applied to its dual problem (namely, the primal
problem1) in Table 4.8 so you can compare the two. To facilitate the comparison, we shall
continue to denote the decision variables in the problem being solved by yi rather than xj.

In maximization form, the problem to be solved is

Maximize Z � �4y1 � 12y2 � 18y3,

subject to

y1 � 3y3 � 3
2y2 � 2y3 � 5

and

y1 � 0, y2 � 0, y3 � 0.
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problem.



Since negative right-hand sides are now allowed, we do not need to introduce artificial
variables to be the initial basic variables. Instead, we simply convert the functional con-
straints to � form and introduce slack variables to play this role. The resulting initial set
of equations is that shown for iteration 0 in Table 7.1. Notice that all the coefficients in
Eq. (0) are nonnegative, so the solution is optimal if it is feasible.

The initial basic solution is y1 � 0, y2 � 0, y3 � 0, y4 � �3, y5 � �5, with Z � 0,
which is not feasible because of the negative values. The leaving basic variable is y5 (5 � 3),
and the entering basic variable is y2 (12/2 � 18/2), which leads to the second set of equa-
tions, labeled as iteration 1 in Table 7.1. The corresponding basic solution is y1 � 0,
y2 � 	

5
2

	, y3 � 0, y4 � �3, y5 � 0, with Z � �30, which is not feasible.
The next leaving basic variable is y4, and the entering basic variable is y3 (6/3 � 4/1),

which leads to the final set of equations in Table 7.1. The corresponding basic solution is
y1 � 0, y2 � 	

3
2

	, y3 � 1, y4 � 0, y5 � 0, with Z � �36, which is feasible and therefore 
optimal.

Notice that the optimal solution for the dual of this problem1 is x*1 � 2, x*2 � 6,
x*3 � 2, x*4 � 0, x*5 � 0, as was obtained in Table 4.8 by the simplex method. We suggest
that you now trace through Tables 7.1 and 4.8 simultaneously and compare the comple-
mentary steps for the two mirror-image methods.
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TABLE 7.1 Dual simplex method applied to the Wyndor Glass Co. dual problem

Coefficient of:
Basic Right

Iteration Variable Eq. Z y1 y2 y3 y4 y5 Side

Z (0) 1 4 12 18 0 0 0
0 y4 (1) 0 �1 0 �3 1 0 �3

y5 (2) 0 0 �2 �2 0 1 �5

Z (0) 1 4 0 6 0 6 �30
1 y4 (1) 0 �1 0 �3 1 0 �3

y2 (2) 0 0 1 1 0 �	
1
2

	 	
5
2

	

Z (0) 1 2 0 0 2 6 �36

2 y3 (1) 0 	
1
3

	 0 1 �	
1
3

	 0 1

y2 (2) 0 �	
1
3

	 1 0 	
1
3

	 �	
1
2

	 	
3
2

	

At the end of Sec. 6.7 we described parametric linear programming and its use for con-
ducting sensitivity analysis systematically by gradually changing various model parame-
ters simultaneously. We shall now present the algorithmic procedure, first for the case
where the cj parameters are being changed and then where the bi parameters are varied.

7.2 PARAMETRIC LINEAR PROGRAMMING

1The complementary optimal basic solutions property presented in Sec. 6.3 indicates how to read the optimal so-
lution for the dual problem from row 0 of the final simplex tableau for the primal problem. This same conclu-
sion holds regardless of whether the simplex method or the dual simplex method is used to obtain the final tableau.



Systematic Changes in the cj Parameters

For the case where the cj parameters are being changed, the objective function of the or-
dinary linear programming model

Z � �
n

j�1
cjxj

is replaced by

Z(
) � �
n

j�1
(cj��j
)xj,

where the �j are given input constants representing the relative rates at which the coeffi-
cients are to be changed. Therefore, gradually increasing 
 from zero changes the coeffi-
cients at these relative rates.

The values assigned to the �j may represent interesting simultaneous changes of the
cj for systematic sensitivity analysis of the effect of increasing the magnitude of these
changes. They may also be based on how the coefficients (e.g., unit profits) would change
together with respect to some factor measured by 
. This factor might be uncontrollable,
e.g., the state of the economy. However, it may also be under the control of the decision
maker, e.g., the amount of personnel and equipment to shift from some of the activities
to others.

For any given value of 
, the optimal solution of the corresponding linear program-
ming problem can be obtained by the simplex method. This solution may have been ob-
tained already for the original problem where 
 � 0. However, the objective is to find the
optimal solution of the modified linear programming problem [maximize Z(
) subject to
the original constraints] as a function of 
. Therefore, in the solution procedure you need
to be able to determine when and how the optimal solution changes (if it does) as 
 in-
creases from zero to any specified positive number.

Figure 7.1 illustrates how Z*(
), the objective function value for the optimal solution
(given 
), changes as 
 increases. In fact, Z*(
) always has this piecewise linear and con-
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FIGURE 7.1
The objective function value
for an optimal solution as a
function of 
 for parametric
linear programming with
systematic changes in the 
cj parameters.



vex1 form (see Prob. 7.2-7). The corresponding optimal solution changes (as 
 increases)
just at the values of 
 where the slope of the Z*(
) function changes. Thus, Fig. 7.1 de-
picts a problem where three different solutions are optimal for different values of 
, the
first for 0 � 
 � 
1, the second for 
1 � 
 � 
2, and the third for 
 � 
2. Because the
value of each xj remains the same within each of these intervals for 
, the value of Z*(
)
varies with 
 only because the coefficients of the xj are changing as a linear function of

. The solution procedure is based directly upon the sensitivity analysis procedure for in-
vestigating changes in the cj parameters (Cases 2a and 3, Sec. 6.7). As described in the
last subsection of Sec. 6.7, the only basic difference with parametric linear programming
is that the changes now are expressed in terms of 
 rather than as specific numbers.

To illustrate, suppose that �1 � 2 and �2 � �1 for the original Wyndor Glass Co.
problem presented in Sec. 3.1, so that

Z(
) � (3 � 2
)x1 � (5 � 
)x2.

Beginning with the final simplex tableau for 
 � 0 (Table 4.8), we see that its Eq. (0)

(0) Z � 	
3
2

	x4 � x5 � 36

would first have these changes from the original (
 � 0) coefficients added into it on the
left-hand side:

(0) Z � 2
x1 � 
x2 � 	
3
2

	x4 � x5 � 36.

Because both x1 and x2 are basic variables [appearing in Eqs. (3) and (2), respectively],
they both need to be eliminated algebraically from Eq. (0):

Z � 2
x1 � 
x2 � 	
3
2

	x4 � x5 � 36

� 2
 times Eq. (3)
� 
 times Eq. (2)

(0) Z � �	
3
2

	 � 	
7
6

	
�x4 � �1 � 	
2
3

	
�x5 � 36 � 2
.

The optimality test says that the current BF solution will remain optimal as long as
these coefficients of the nonbasic variables remain nonnegative:

	
3
2

	 � 	
7
6

	
 � 0, for 0 � 
 � 	
9
7

	,

1 � 	
2
3

	
 � 0, for all 
 � 0.

Therefore, after 
 is increased past 
 � 	
9
7

	, x4 would need to be the entering basic variable
for another iteration of the simplex method to find the new optimal solution. Then 
 would
be increased further until another coefficient goes negative, and so on until 
 has been in-
creased as far as desired.

This entire procedure is now summarized, and the example is completed in Table 7.2.
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Summary of the Parametric Linear Programming Procedure for 
Systematic Changes in the cj Parameters.

1. Solve the problem with 
 � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Cases 2a and 3, Sec. 6.7) to introduce the

�cj � �j
 changes into Eq. (0).
3. Increase 
 until one of the nonbasic variables has its coefficient in Eq. (0) go negative

(or until 
 has been increased as far as desired).
4. Use this variable as the entering basic variable for an iteration of the simplex method

to find the new optimal solution. Return to step 3.

Systematic Changes in the bi Parameters

For the case where the bi parameters change systematically, the one modification made
in the original linear programming model is that bi is replaced by bi � �i
, for i � 1,
2, . . . , m, where the �i are given input constants. Thus, the problem becomes

Maximize Z(
) � �
n

j�1
cjxj,
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TABLE 7.2 The cj parametric linear programming procedure applied to the 
Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z x1 x2 x3 x4 x5 Side Solution

Z(
) (0) 1 0 0 �0 	
9 �

6
7


	 	
3 �

3
2


	 36 � 2
 x4 � 0

x5 � 0

0 � 
 � 	
9
7

	 x3 (1) 0 0 0 �1 �	
1
3

	 �	
1
3

	 2 x3 � 2

x2 (2) 0 0 1 �0 �	
1
2

	 �0 6 x2 � 6

x1 (3) 0 1 0 �0 �	
1
3

	 �	
1
3

	 2 x1 � 2

Z(
) (0) 1 0 0 	
�9

2
� 7

	 0 	

5 �
2



	 27 � 5
 x3 � 0

x5 � 0

	
9
7

	 � 
 � 5 x4 (1) 0 0 0 �3 1 �1 6 x4 � 6

x2 (2) 0 0 1 �	
3
2

	 0 �	
1
2

	 3 x2 � 3

x1 (3) 0 1 0 �1 0 �0 4 x1 � 4

Z(
) (0) 1 0 �5 � 
 3 � 2
 0 �0 12 � 8
 x2 � 0
x3 � 0


 � 5 x4 (1) 0 0 2 �0 1 �0 12 x4 � 12
x5 (2) 0 0 2 �3 0 �1 6 x5 � 6
x1 (3) 0 1 0 �1 0 �0 4 x1 � 4



subject to

�
n

j�1
aijxj � bi � �i
 for i � 1, 2, . . . , m

and

xj � 0 for j � 1, 2, . . . , n.

The goal is to identify the optimal solution as a function of 
.
With this formulation, the corresponding objective function value Z*(
) always has

the piecewise linear and concave1 form shown in Fig. 7.2. (See Prob. 7.2-8.) The set of
basic variables in the optimal solution still changes (as 
 increases) only where the slope
of Z*(
) changes. However, in contrast to the preceding case, the values of these variables
now change as a (linear) function of 
 between the slope changes. The reason is that in-
creasing 
 changes the right-hand sides in the initial set of equations, which then causes
changes in the right-hand sides in the final set of equations, i.e., in the values of the final
set of basic variables. Figure 7.2 depicts a problem with three sets of basic variables that
are optimal for different values of 
, the first for 0 � 
 � 
1, the second for 
1 � 
 � 
2,
and the third for 
 � 
2. Within each of these intervals of 
, the value of Z*(
) varies with

 despite the fixed coefficients cj because the xj values are changing.

The following solution procedure summary is very similar to that just presented for
systematic changes in the cj parameters. The reason is that changing the bi values is equiv-
alent to changing the coefficients in the objective function of the dual model. Therefore,
the procedure for the primal problem is exactly complementary to applying simultane-
ously the procedure for systematic changes in the cj parameters to the dual problem. Con-
sequently, the dual simplex method (see Sec. 7.1) now would be used to obtain each new
optimal solution, and the applicable sensitivity analysis case (see Sec. 6.7) now is Case
1, but these differences are the only major differences.
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FIGURE 7.2
The objective function value
for an optimal solution as a
function of 
 for parametric
linear programming with
systematic changes in the 
bi parameters.



Summary of the Parametric Linear Programming Procedure for 
Systematic Changes in the bi Parameters.

1. Solve the problem with 
 � 0 by the simplex method.
2. Use the sensitivity analysis procedure (Case 1, Sec. 6.7) to introduce the �bi � �i


changes to the right side column.
3. Increase 
 until one of the basic variables has its value in the right side column go

negative (or until 
 has been increased as far as desired).
4. Use this variable as the leaving basic variable for an iteration of the dual simplex

method to find the new optimal solution. Return to step 3.

To illustrate this procedure in a way that demonstrates its duality relationship with
the procedure for systematic changes in the cj parameters, we now apply it to the dual
problem for the Wyndor Glass Co. (see Table 6.1). In particular, suppose that �1 � 2 and
�2 � �1 so that the functional constraints become

y1 � 3y3 � 3 � 2
 or �y1 � 3y3 � �3 � 2

2y2 � 2y3 � 5 � 
 or �2y2 � 2y3 � �5 � 
.

Thus, the dual of this problem is just the example considered in Table 7.2.
This problem with 
 � 0 has already been solved in Table 7.1, so we begin with the

final simplex tableau given there. Using the sensitivity analysis procedure for Case 1, Sec.
6.7, we find that the entries in the right side column of the tableau change to the values
given below.

Z* � y*b� � [2, 6] � � � �36 � 2
,

b* � S*b� � � � � .

Therefore, the two basic variables in this tableau

y3 � 	
3 �

3
2


	 and y2 � 	
9 �

6
7


	

remain nonnegative for 0 � 
 � 	
9
7

	. Increasing 
 past 
 � 	
9
7

	 requires making y2 a leaving
basic variable for another iteration of the dual simplex method, and so on, as summarized
in Table 7.3.

We suggest that you now trace through Tables 7.2 and 7.3 simultaneously to note the
duality relationship between the two procedures.








1 � 	
2
3


	

	
3
2

	 � 	
7
6


	








�3 � 2


�5 � 









0

�	
1
2

	

�	
1
3

	

	
1
3

	








�3 � 2


�5 � 
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It is fairly common in linear programming problems for some of or all the individual xj

variables to have upper bound constraints

xj � uj,

where uj is a positive constant representing the maximum feasible value of xj. We pointed
out in Sec. 4.8 that the most important determinant of computation time for the simplex
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method is the number of functional constraints, whereas the number of nonnegativity
constraints is relatively unimportant. Therefore, having a large number of upper bound
constraints among the functional constraints greatly increases the computational effort 
required.

The upper bound technique avoids this increased effort by removing the upper bound
constraints from the functional constraints and treating them separately, essentially like
nonnegativity constraints. Removing the upper bound constraints in this way causes no
problems as long as none of the variables gets increased over its upper bound. The only
time the simplex method increases some of the variables is when the entering basic vari-
able is increased to obtain a new BF solution. Therefore, the upper bound technique sim-
ply applies the simplex method in the usual way to the remainder of the problem (i.e.,
without the upper bound constraints) but with the one additional restriction that each new
BF solution must satisfy the upper bound constraints in addition to the usual lower bound
(nonnegativity) constraints.

To implement this idea, note that a decision variable xj with an upper bound con-
straint xj � uj can always be replaced by

xj � uj � yj,

where yj would then be the decision variable. In other words, you have a choice be-
tween letting the decision variable be the amount above zero (xj) or the amount below 
uj (yj � uj � xj). (We shall refer to xj and yj as complementary decision variables.) 
Because

0 � xj � uj
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TABLE 7.3 The bi parametric linear programming procedure applied to the dual of
the Wyndor Glass Co. example

Coefficient of:
Range Basic Right Optimal
of � Variable Eq. Z y1 y2 y3 y4 y5 Side Solution

Z(
) (0) 1 2 0 0 2 6 �36 � 2
 y1 � y4 � y5 � 0

0 � 
 � 	
9
7

	 y3 (1) 0 	
1
3

	 0 1 �	
1
3

	 0 	
3 �

3
2


	 y3 � 	
3 �

3
2


	

y2 (2) 0 �	
1
3

	 1 0 	
1
3

	 �	
1
2

	 	
9 �

6
7


	 y2 � 	
9 �

6
7


	

Z(
) (0) 1 0 6 0 4 3 �27 � 5
 y2 � y4 � y5 � 0

	
9
7

	 � 
 � 5 y3 (1) 0 0 1 1 0 �	
1
2

	 	
5 �

2



	 y3 � 	
5 �

2



	

y1 (2) 0 1 �3 0 �1 	
3
2

	 	
�9

2
� 7

	 y1 � 	

�9
2
� 7

	

Z(
) (0) 1 0 12 6 4 0 �12 � 8
 y2 � y3 � y4 � 0


 � 5 y5 (1) 0 0 �2 �2 0 1 �5 � 
 y5 � �5 � 

y1 (2) 0 1 0 3 �1 0 3 � 2
 y1 � 3 � 2




it also follows that

0 � yj � uj.

Thus, at any point during the simplex method, you can either

1. Use xj, where 0 � xj � uj,
or 2. Replace xj by uj � yj, where 0 � yj � uj.

The upper bound technique uses the following rule to make this choice:

Rule: Begin with choice 1.
Whenever xj � 0, use choice 1, so xj is nonbasic.
Whenever xj � uj, use choice 2, so yj � 0 is nonbasic.
Switch choices only when the other extreme value of xj is reached.

Therefore, whenever a basic variable reaches its upper bound, you should switch choices
and use its complementary decision variable as the new nonbasic variable (the leaving ba-
sic variable) for identifying the new BF solution. Thus, the one substantive modification
being made in the simplex method is in the rule for selecting the leaving basic variable.

Recall that the simplex method selects as the leaving basic variable the one that would
be the first to become infeasible by going negative as the entering basic variable is in-
creased. The modification now made is to select instead the variable that would be the
first to become infeasible in any way, either by going negative or by going over the up-
per bound, as the entering basic variable is increased. (Notice that one possibility is that
the entering basic variable may become infeasible first by going over its upper bound, so
that its complementary decision variable becomes the leaving basic variable.) If the leav-
ing basic variable reaches zero, then proceed as usual with the simplex method. However,
if it reaches its upper bound instead, then switch choices and make its complementary de-
cision variable the leaving basic variable.

To illustrate, consider this problem:

Maximize Z � 2x1 � x2 � 2x3,

subject to

4x1 � x2 � 12
�2x1 � x3 � 4

and

0 � x1 � 4, 0 � x2 � 15, 0 � x3 � 6.

Thus, all three variables have upper bound constraints (u1 � 4, u2 � 15, u3 � 6).
The two equality constraints are already in proper form from Gaussian elimination for

identifying the initial BF solution (x1 � 0, x2 � 12, x3 � 4), and none of the variables in
this solution exceeds its upper bound, so x2 and x3 can be used as the initial basic variables
without artificial variables being introduced. However, these variables then need to be elim-
inated algebraically from the objective function to obtain the initial Eq. (0), as follows:

Z � 2(� (2x1 � x2 � 2x3 � 0
Z � 2(� (4x1 � x2 � 2x3 � 12)
Z � 2(� (2x1 � x2 � x3 � 4)

(0) Z � 2(� (2x1 � x2 � 2x3 � 20.
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To start the first iteration, this initial Eq. (0) indicates that the initial entering basic
variable is x1. Since the upper bound constraints are not to be included, the entire initial
set of equations and the corresponding calculations for selecting the leaving basic vari-
ables are those shown in Table 7.4. The second column shows how much the entering ba-
sic variable x1 can be increased from zero before some basic variable (including x1) be-
comes infeasible. The maximum value given next to Eq. (0) is just the upper bound
constraint for x1. For Eq. (1), since the coefficient of x1 is positive, increasing x1 to 3 de-
creases the basic variable in this equation (x2) from 12 to its lower bound of zero. For Eq.
(2), since the coefficient of x1 is negative, increasing x1 to 1 increases the basic variable
in this equation (x3) from 4 to its upper bound of 6.

Because Eq. (2) has the smallest maximum feasible value of x1 in Table 7.4, the ba-
sic variable in this equation (x3) provides the leaving basic variable. However, because x3

reached its upper bound, replace x3 by 6 � y3, so that y3 � 0 becomes the new nonbasic
variable for the next BF solution and x1 becomes the new basic variable in Eq. (2). This
replacement leads to the following changes in this equation:

(2) � 2x1 � x3 � 4
→ � 2x1 � 6 � y3 � 4
→ � 2x1 � y3 � �2

→ x1 � y3 � 1

Therefore, after we eliminate x1 algebraically from the other equations, the second com-
plete set of equations becomes

(0) Zx2x2 � y3 � 22
(1) Zx2x2 � 2y3 � 8

(2) Zx1x2 � 	
1
2

	y3 � 1.

The resulting BF solution is x1 � 1, x2 � 8, y3 � 0. By the optimality test, it also is an
optimal solution, so x1 � 1, x2 � 8, x3 � 6 � y3 � 6 is the desired solution for the orig-
inal problem.

1
	
2

320 7 OTHER ALGORITHMS FOR LINEAR PROGRAMMING

TABLE 7.4 Equations and calculations for the initial leaving basic variable in the
example for the upper bound technique

Initial Set of Equations Maximum Feasible Value of x1

(0) Z � 2x1 � x2 � x3 � 20 x1 � 4 (since u1 � 4)

(1) Z � 4x1 � x2 � x3 � 12 x1 � 	
1
4
2
	 � 3

(2) Z � 2x1 � x2 � x3 � 4 x1 � 	
6 �

2
4

	 � 1 � minimum (because u3 � 6)

In Sec. 4.9 we discussed a dramatic development in linear programming that occurred in
1984, the invention by Narendra Karmarkar of AT&T Bell Laboratories of a powerful al-
gorithm for solving huge linear programming problems with an approach very different
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from the simplex method. We now introduce the nature of Karmarkar’s approach by de-
scribing a relatively elementary variant (the “affine” or “affine-scaling” variant) of his al-
gorithm.1 (Your OR Courseware also includes this variant under the title, Solve Automat-
ically by the Interior-Point Algorithm.)

Throughout this section we shall focus on Karmarkar’s main ideas on an intuitive
level while avoiding mathematical details. In particular, we shall bypass certain details
that are needed for the full implementation of the algorithm (e.g., how to find an initial
feasible trial solution) but are not central to a basic conceptual understanding. The ideas
to be described can be summarized as follows:

Concept 1: Shoot through the interior of the feasible region toward an optimal solution.
Concept 2: Move in a direction that improves the objective function value at the fastest

possible rate.
Concept 3: Transform the feasible region to place the current trial solution near its cen-

ter, thereby enabling a large improvement when concept 2 is implemented.

To illustrate these ideas throughout the section, we shall use the following example:

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.

This problem is depicted graphically in Fig. 7.3, where the optimal solution is seen to be
(x1, x2) � (0, 8) with Z � 16.

The Relevance of the Gradient for Concepts 1 and 2

The algorithm begins with an initial trial solution that (like all subsequent trial solutions)
lies in the interior of the feasible region, i.e., inside the boundary of the feasible region.
Thus, for the example, the solution must not lie on any of the three lines (x1 � 0, x2 � 0,
x1 � x2 � 8) that form the boundary of this region in Fig. 7.3. (A trial solution that lies
on the boundary cannot be used because this would lead to the undefined mathematical
operation of division by zero at one point in the algorithm.) We have arbitrarily chosen
(x1, x2) � (2, 2) to be the initial trial solution.

To begin implementing concepts 1 and 2, note in Fig. 7.3 that the direction of move-
ment from (2, 2) that increases Z at the fastest possible rate is perpendicular to (and to-
ward) the objective function line Z � 16 � x1 � 2x2. We have shown this direction by the
arrow from (2, 2) to (3, 4). Using vector addition, we have

(3, 4) � (2, 2) � (1, 2),
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1The basic approach for this variant actually was proposed in 1967 by a Russian mathematician I. I. Dikin and
then rediscovered soon after the appearance of Karmarkar’s work by a number of researchers, including E. R.
Barnes, T. M. Cavalier, and A. L. Soyster. Also see R. J. Vanderbei, M. S. Meketon, and B. A. Freedman, “A
Modification of Karmarkar’s Linear Programming Algorithm,” Algorithmica, 1(4) (Special Issue on New Ap-
proaches to Linear Programming): 395–407, 1986.



where the vector (1, 2) is the gradient of the objective function. (We will discuss gradi-
ents further in Sec. 13.5 in the broader context of nonlinear programming, where algo-
rithms similar to Karmarkar’s have long been used.) The components of (1, 2) are just the
coefficients in the objective function. Thus, with one subsequent modification, the gradi-
ent (1, 2) defines the ideal direction to which to move, where the question of the distance
to move will be considered later.

The algorithm actually operates on linear programming problems after they have been
rewritten in augmented form. Letting x3 be the slack variable for the functional constraint
of the example, we see that this form is

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � x3 � 8

and

x1 � 0, x2 � 0, x3 � 0.

In matrix notation (slightly different from Chap. 5 because the slack variable now is in-
corporated into the notation), the augmented form can be written in general as

Maximize Z � cTx,

subject to

Ax � b
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FIGURE 7.3
Example for the interior-point
algorithm.



and

x � 0,

where

c � , x � , A � [1, 1, 1], b � [8], 0 �

for the example. Note that cT � [1, 2, 0] now is the gradient of the objective function.
The augmented form of the example is depicted graphically in Fig. 7.4. The feasible

region now consists of the triangle with vertices (8, 0, 0), (0, 8, 0), and (0, 0, 8). Points
in the interior of this feasible region are those where x1 � 0, x2 � 0, and x3 � 0. Each of
these three xj � 0 conditions has the effect of forcing (x1, x2) away from one of the three
lines forming the boundary of the feasible region in Fig. 7.3.

Using the Projected Gradient to Implement Concepts 1 and 2

In augmented form, the initial trial solution for the example is (x1, x2, x3) � (2, 2, 4).
Adding the gradient (1, 2, 0) leads to

(3, 4, 4) � (2, 2, 4) � (1, 2, 0).

However, now there is a complication. The algorithm cannot move from (2, 2, 4) toward
(3, 4, 4), because (3, 4, 4) is infeasible! When x1 � 3 and x2 � 4, then x3 � 8 � x1 �
x2 � 1 instead of 4. The point (3, 4, 4) lies on the near side as you look down on the fea-
sible triangle in Fig. 7.4. Therefore, to remain feasible, the algorithm (indirectly) projects
the point (3, 4, 4) down onto the feasible triangle by dropping a line that is perpendicu-
lar to this triangle. A vector from (0, 0, 0) to (1, 1, 1) is perpendicular to this triangle, so
the perpendicular line through (3, 4, 4) is given by the equation

(x1, x2, x3) � (3, 4, 4) � 
(1, 1, 1),

where 
 is a scalar. Since the triangle satisfies the equation x1 � x2 � x3 � 8, this per-
pendicular line intersects the triangle at (2, 3, 3). Because

(2, 3, 3) � (2, 2, 4) � (0, 1, �1),

the projected gradient of the objective function (the gradient projected onto the feasible
region) is (0, 1, �1). It is this projected gradient that defines the direction of movement
for the algorithm, as shown by the arrow in Fig. 7.4.

A formula is available for computing the projected gradient directly. By defining the
projection matrix P as

P � I � AT(AAT)�1A,

the projected gradient (in column form) is

cp � Pc.
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Thus, for the example,

P � � �[1 1 1] �
�1

[1 1 1]

� � 	
1
3
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FIGURE 7.4
Example in augmented form
for the interior-point
algorithm.



so

cp � � .

Moving from (2, 2, 4) in the direction of the projected gradient (0, 1, �1) involves
increasing � from zero in the formula

x � � 4�cp � � 4� ,

where the coefficient 4 is used simply to give an upper bound of 1 for � to maintain fea-
sibility (all xj � 0). Note that increasing � to � � 1 would cause x3 to decrease to 
x3 � 4 � 4(1)(�1) � 0, where � � 1 yields x3 � 0. Thus, � measures the fraction used
of the distance that could be moved before the feasible region is left.

How large should � be made for moving to the next trial solution? Because the in-
crease in Z is proportional to �, a value close to the upper bound of 1 is good for giv-
ing a relatively large step toward optimality on the current iteration. However, the prob-
lem with a value too close to 1 is that the next trial solution then is jammed against a
constraint boundary, thereby making it difficult to take large improving steps during sub-
sequent iterations. Therefore, it is very helpful for trial solutions to be near the center of
the feasible region (or at least near the center of the portion of the feasible region in the
vicinity of an optimal solution), and not too close to any constraint boundary. With this
in mind, Karmarkar has stated for his algorithm that a value as large as � � 0.25 should
be “safe.” In practice, much larger values (for example, � � 0.9) sometimes are used.
For the purposes of this example (and the problems at the end of the chapter), we have
chosen � � 0.5. (Your OR Courseware uses � � 0.5 as the default value, but also has
� � 0.9 available.)

A Centering Scheme for Implementing Concept 3

We now have just one more step to complete the description of the algorithm, namely, a
special scheme for transforming the feasible region to place the current trial solution near
its center. We have just described the benefit of having the trial solution near the center,
but another important benefit of this centering scheme is that it keeps turning the direc-
tion of the projected gradient to point more nearly toward an optimal solution as the al-
gorithm converges toward this solution.

The basic idea of the centering scheme is straightforward—simply change the scale
(units) for each of the variables so that the trial solution becomes equidistant from the
constraint boundaries in the new coordinate system. (Karmarkar’s original algorithm uses
a more sophisticated centering scheme.)

For the example, there are three constraint boundaries in Fig. 7.3, each one corre-
sponding to a zero value for one of the three variables of the problem in augmented form,
namely, x1 � 0, x2 � 0, and x3 � 0. In Fig. 7.4, see how these three constraint boundaries
intersect the Ax � b (x1 � x2 � x3 � 8) plane to form the boundary of the feasible re-
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gion. The initial trial solution is (x1, x2, x3) � (2, 2, 4), so this solution is 2 units away
from the x1 � 0 and x2 � 0 constraint boundaries and 4 units away from the x3 � 0 con-
straint boundary, when the units of the respective variables are used. However, whatever
these units are in each case, they are quite arbitrary and can be changed as desired with-
out changing the problem. Therefore, let us rescale the variables as follows:

x~1 � 	
x
2
1	, x~2 � 	

x
2
2	, x~3 � 	

x
4
3	

in order to make the current trial solution of (x1, x2, x3) � (2, 2, 4) become

(x~1, xx~2, xx~3) � (1, 1, 1).

In these new coordinates (substituting 2x~1 for x1, 2x~2 for x2, and 4x~3 for x3), the problem
becomes

Maximize Z � 2x~1 � 4x~2,

subject to

2x~1 � 2xx~2 � 4x~3 � 8

and

x~1 � 0, x~2 � 0, x~3 � 0,

as depicted graphically in Fig. 7.5.
Note that the trial solution (1, 1, 1) in Fig. 7.5 is equidistant from the three constraint

boundaries xx~1 � 0, x~2 � 0, x~3 � 0. For each subsequent iteration as well, the problem is
rescaled again to achieve this same property, so that the current trial solution always is
(1, 1, 1) in the current coordinates.

326 7 OTHER ALGORITHMS FOR LINEAR PROGRAMMING

(      )

4

2

4

(1, 1, 1)

5, 7, 1
4  4  2

0

~x3

~x1

~x2

(0, 4, 0) optimal

FIGURE 7.5
Example after rescaling for
iteration 1.



Summary and Illustration of the Algorithm

Now let us summarize and illustrate the algorithm by going through the first iteration for
the example, then giving a summary of the general procedure, and finally applying this
summary to a second iteration.

Iteration 1. Given the initial trial solution (x1, x2, x3) � (2, 2, 4), let D be the corre-
sponding diagonal matrix such that x � Dx~, so that

D � .

The rescaled variables then are the components of

x~ � D�1x � � .

In these new coordinates, A and c have become

Ã � AD � [1 1 1] � [2 2 4],

c~ � Dc � � .

Therefore, the projection matrix is

P � I � ÃT(ÃÃT)�1Ã

P � � �[2 2 4] �
�1

[2 2 4]

P � � 	
2
1
4
	 � ,

so that the projected gradient is

cp � Pc~ � � .

Define v as the absolute value of the negative component of cp having the largest absolute
value, so that v � �2 � 2 in this case. Consequently, in the current coordinates, the
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algorithm now moves from the current trial solution (x~1, x~2, x~3) � (1, 1, 1) to the next
trial solution

x~ � � 	
�
v

	cp � � 	
0
2
.5
	 � ,

as shown in Fig. 7.5. (The definition of v has been chosen to make the smallest compo-
nent of x~ equal to zero when � � 1 in this equation for the next trial solution.) In the orig-
inal coordinates, this solution is

� Dx~ � � .

This completes the iteration, and this new solution will be used to start the next iteration.
These steps can be summarized as follows for any iteration.

Summary of the Interior-Point Algorithm.
1. Given the current trial solution (x1, x2, . . . , xn), set

D �

2. Calculate Ã � AD and c~ � Dc.
3. Calculate P � I � ÃT(ÃÃT)�1Ã and cp � Pc~.
4. Identify the negative component of cp having the largest absolute value, and set v equal

to this absolute value. Then calculate

x~ � � 	
�
v

	cp,

where � is a selected constant between 0 and 1 (for example, � � 0.5).
5. Calculate x � Dx~ as the trial solution for the next iteration (step 1). (If this trial solu-

tion is virtually unchanged from the preceding one, then the algorithm has virtually
converged to an optimal solution, so stop.)

Now let us apply this summary to iteration 2 for the example.

Iteration 2.
Step 1:
Given the current trial solution (x1, x2, x3) � (	

5
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	, 	
7
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	, 2), set

D � .
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(Note that the rescaled variables are

� D�1x � � ,

so that the BF solutions in these new coordinates are

x~ � D�1 � , x~ � D�1 � ,

and

x~ � D�1 � ,

as depicted in Fig. 7.6.)
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FIGURE 7.6
Example after rescaling for
iteration 2.



Step 3:

P � and cp � .

Step 4:

�	
4
1
1
5
	 � �	

1
1
1
2
	, so v � 	

4
1
1
5
	 and

x~ � � � � .

Step 5:

x � Dx~ � �

is the trial solution for iteration 3.
Since there is little to be learned by repeating these calculations for additional itera-

tions, we shall stop here. However, we do show in Fig. 7.7 the reconfigured feasible re-
gion after rescaling based on the trial solution just obtained for iteration 3. As always, the
rescaling has placed the trial solution at (x~1, x~2, x~3) � (1, 1, 1), equidistant from the x~1 �
0, x~2 � 0, and x~3 � 0 constraint boundaries. Note in Figs. 7.5, 7.6, and 7.7 how the se-
quence of iterations and rescaling have the effect of “sliding” the optimal solution toward
(1, 1, 1) while the other BF solutions tend to slide away. Eventually, after enough itera-
tions, the optimal solution will lie very near (x~1, x~2, x~3) � (0, 1, 0) after rescaling, while
the other two BF solutions will be very far from the origin on the x~1 and x~3 axes. Step 5
of that iteration then will yield a solution in the original coordinates very near the opti-
mal solution of (x1, x2, x3) � (0, 8, 0).

Figure 7.8 shows the progress of the algorithm in the original x1 � x2 coordinate sys-
tem before the problem is augmented. The three points—(x1, x2) � (2, 2), (2.5, 3.5), and
(2.08, 4.92)—are the trial solutions for initiating iterations 1, 2, and 3, respectively. We
then have drawn a smooth curve through and beyond these points to show the trajectory
of the algorithm in subsequent iterations as it approaches (x1, x2) � (0, 8).

The functional constraint for this particular example happened to be an inequality
constraint. However, equality constraints cause no difficulty for the algorithm, since it
deals with the constraints only after any necessary augmenting has been done to convert
them to equality form (Ax � b) anyway. To illustrate, suppose that the only change in the
example is that the constraint x1 � x2 � 8 is changed to x1 � x2 � 8. Thus, the feasible
region in Fig. 7.3 changes to just the line segment between (8, 0) and (0, 8). Given an ini-
tial feasible trial solution in the interior (x1 � 0 and x2 � 0) of this line segment—say,
(x1, x2) � (4, 4)—the algorithm can proceed just as presented in the five-step summary
with just the two variables and A � [1, 1]. For each iteration, the projected gradient points
along this line segment in the direction of (0, 8). With � � 	
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to (2, 6), iteration 2 leads from (2, 6) to (1, 7), etc. (Problem 7.4-3 asks you to verify these
results.)

Although either version of the example has only one functional constraint, having
more than one leads to just one change in the procedure as already illustrated (other than
more extensive calculations). Having a single functional constraint in the example meant
that A had only a single row, so the (ÃÃT)�1 term in step 3 only involved taking the re-
ciprocal of the number obtained from the vector product ÃÃT. Multiple functional con-
straints mean that A has multiple rows, so then the (ÃÃT)�1 term involves finding the in-
verse of the matrix obtained from the matrix product ÃÃT.

To conclude, we need to add a comment to place the algorithm into better perspec-
tive. For our extremely small example, the algorithm requires relatively extensive calcu-
lations and then, after many iterations, obtains only an approximation of the optimal so-
lution. By contrast, the graphical procedure of Sec. 3.1 finds the optimal solution in Fig.
7.3 immediately, and the simplex method requires only one quick iteration. However, do
not let this contrast fool you into downgrading the efficiency of the interior-point algo-
rithm. This algorithm is designed for dealing with big problems having many hundreds
or thousands of functional constraints. The simplex method typically requires thousands
of iterations on such problems. By “shooting” through the interior of the feasible region,
the interior-point algorithm tends to require a substantially smaller number of iterations
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FIGURE 7.7
Example after rescaling for
iteration 3.



(although with considerably more work per iteration). Therefore, interior-point algorithms
similar to the one presented here should play an important role in the future of linear 
programming.

See Sec. 4.9 for a further discussion of this role and a comparison of the interior-
point approach with the simplex method.
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FIGURE 7.8
Trajectory of the interior-
point algorithm for the
example in the original 
x1-x2 coordinate system.

We have assumed throughout the preceding chapters that the objectives of the organiza-
tion conducting the linear programming study can be encompassed within a single over-
riding objective, such as maximizing total profit or minimizing total cost. However, this
assumption is not always realistic. In fact, as we discussed in Sec. 2.1, studies have found
that the management of U.S. corporations frequently focuses on a variety of other objec-
tives, e.g., to maintain stable profits, increase (or maintain) market share, diversify prod-
ucts, maintain stable prices, improve worker morale, maintain family control of the busi-
ness, and increase company prestige. Goal programming provides a way of striving toward
several such objectives simultaneously.

The basic approach of goal programming is to establish a specific numeric goal for
each of the objectives, formulate an objective function for each objective, and then seek
a solution that minimizes the (weighted) sum of deviations of these objective functions
from their respective goals. There are three possible types of goals:

1. A lower, one-sided goal sets a lower limit that we do not want to fall under (but ex-
ceeding the limit is fine).
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2. An upper, one-sided goal sets an upper limit that we do not want to exceed (but falling
under the limit is fine).

3. A two-sided goal sets a specific target that we do not want to miss on either side.

Goal programming problems can be categorized according to the type of mathemat-
ical programming model (linear programming, integer programming, nonlinear program-
ming, etc.) that it fits except for having multiple goals instead of a single objective. In
this book, we only consider linear goal programming—those goal programming problems
that fit linear programming otherwise (each objective function is linear, etc.) and so we
will drop the adjective linear from now on.

Another categorization is according to how the goals compare in importance. In one
case, called nonpreemptive goal programming, all the goals are of roughly comparable
importance. In another case, called preemptive goal programming, there is a hierarchy
of priority levels for the goals, so that the goals of primary importance receive first-
priority attention, those of secondary importance receive second-priority attention, and so
forth (if there are more than two priority levels).

We begin with an example that illustrates the basic features of nonpreemptive goal
programming and then discuss the preemptive case.

Prototype Example for Nonpreemptive Goal Programming

The DEWRIGHT COMPANY is considering three new products to replace current mod-
els that are being discontinued, so their OR department has been assigned the task of de-
termining which mix of these products should be produced. Management wants primary
consideration given to three factors: long-run profit, stability in the workforce, and the
level of capital investment that would be required now for new equipment. In particular,
management has established the goals of (1) achieving a long-run profit (net present value)
of at least $125 million from these products, (2) maintaining the current employment level
of 4,000 employees, and (3) holding the capital investment to less than $55 million. How-
ever, management realizes that it probably will not be possible to attain all these goals si-
multaneously, so it has discussed priorities with the OR department. This discussion has
led to setting penalty weights of 5 for missing the profit goal (per $1 million under), 2 for
going over the employment goal (per 100 employees), 4 for going under this same goal,
and 3 for exceeding the capital investment goal (per $1 million over). Each new product’s
contribution to profit, employment level, and capital investment level is proportional to
the rate of production. These contributions per unit rate of production are shown in Table
7.5, along with the goals and penalty weights.

Formulation. The Dewright Company problem includes all three possible types of goals:
a lower, one-sided goal (long-run profit); a two-sided goal (employment level); and an up-
per, one-sided goal (capital investment). Letting the decision variables x1, x2, x3 be the pro-
duction rates of products 1, 2, and 3, respectively, we see that these goals can be stated as

12x1 � 9x2 � 15x3 � 125 profit goal
5x1 � 3x2 � 4x3 � 40 employment goal
5x1 � 7x2 � 8x3 � 55 investment goal.
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More precisely, given the penalty weights in the rightmost column of Table 7.5, let
Z be the number of penalty points incurred by missing these goals. The overall objective
then is to choose the values of x1, x2, and x3 so as to

Minimize Z � 5(amount under the long-run profit goal)
� 2(amount over the employment level goal)
� 4(amount under the employment level goal)
� 3(amount over the capital investment goal),

where no penalty points are incurred for being over the long-run profit goal or for being
under the capital investment goal. To express this overall objective mathematically, we in-
troduce some auxiliary variables (extra variables that are helpful for formulating the
model) y1, y2, and y3, defined as follows:

y1 � 12x1 � 9x2 � 15x3 � 125 (long-run profit minus the target).
y2 � 5x1 � 3x2 � 4x3 � 40 (employment level minus the target).
y3 � 5x1 � 7x2 � 8x3 � 55 (capital investment minus the target).

Since each yi can be either positive or negative, we next use the technique described at
the end of Sec. 4.6 for dealing with such variables; namely, we replace each one by the
difference of two nonnegative variables:

y1 � y1
� � y1

�, where y1
� � 0, y1

� � 0,
y2 � y2

� � y2
�, where y2

� � 0, y2
� � 0,

y3 � y3
� � y3

�, where y3
� � 0, y3

� � 0.

As discussed in Sec. 4.6, for any BF solution, these new auxiliary variables have the in-
terpretation

yj if yj � 0,
yj

� � 	0 otherwise;

yj if yj � 0,
yj

� � 	0 otherwise;

so that yj
� represents the positive part of the variable yj and yj

� its negative part (as sug-
gested by the superscripts).

Given these new auxiliary variables, the overall objective can be expressed mathe-
matically as

Minimize Z � 5y1
� � 2y2

� � 4y2
� � 3y3

�,
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TABLE 7.5 Data for the Dewright Co. nonpreemptive goal programming problem

Unit Contribution

Product:
Penalty

Factor 1 2 3 Goal (Units) Weight

Long-run profit 12 9 15 � 125 (millions of dollars) 5
Employment level 5 3 4 � 40 (hundreds of employees) 2(�), 4(�)
Capital investment 5 7 8 � 55 (millions of dollars) 3



which now is a legitimate objective function for a linear programming model. (Because
there is no penalty for exceeding the profit goal of 125 or being under the investment goal
of 55, neither y1

� nor y3
� should appear in this objective function representing the total

penalty for deviations from the goals.)
To complete the conversion of this goal programming problem to a linear program-

ming model, we must incorporate the above definitions of the yj
� and yj

� directly into the
model. (It is not enough to simply record the definitions, as we just did, because the sim-
plex method considers only the objective function and constraints that constitute the
model.) For example, since y1

� � y1
� � y1, the above expression for y1 gives

12x1 � 9x2 � 15x3 � 125 � y1
� � y1

�.

After we move the variables (y1
� � y1

�) to the left-hand side and the constant (125) to the
right-hand side,

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125

becomes a legitimate equality constraint for a linear programming model. Furthermore,
this constraint forces the auxiliary variables (y1

� � y1
�) to satisfy their definition in terms

of the decision variables (x1, x2, x3).
Proceeding in the same way for y2

� � y2
� and y3

� � y3
�, we obtain the following lin-

ear programming formulation of this goal programming problem:

Minimize Z � 5y1
� � 2y2

� � 4y2
� � 3y3

�,

subject to

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125
5x1 � 3x2 � 4x3 � (y2

� � y2
�) � 40

5x1 � 7x2 � 8x3 � (y3
� � y3

�) � 55

and

xj � 0, yk
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 1, 2, 3).

(If the original problem had any actual linear programming constraints, such as constraints
on fixed amounts of certain resources being available, these would be included in the
model.)

Applying the simplex method to this formulation yields an optimal solution x1 � 	
2
3
5
	,

x2 � 0, x3 � 	
5
3

	, with y1
� � 0, y1

� � 0, y2
� � 	

2
3
5
	, y2

� � 0, y3
� � 0, and y3

� � 0. Therefore,
y1 � 0, y2 � 	

2
3
5
	, and y3 � 0, so the first and third goals are fully satisfied, but the em-

ployment level goal of 40 is exceeded by 8	
1
3

	 (833 employees). The resulting penalty for
deviating from the goals is Z � 16	

2
3

	.
As usual, you can see how Excel, LINGO/LINDO, and MPL/CPLEX are used to set

up and solve this example by referring to their files for this chapter in your OR Courseware.

Preemptive Goal Programming

In the preceding example we assume that all the goals are of roughly comparable impor-
tance. Now consider the case of preemptive goal programming, where there is a hierar-
chy of priority levels for the goals. Such a case arises when one or more of the goals
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clearly are far more important than the others. Thus, the initial focus should be on achiev-
ing as closely as possible these first-priority goals. The other goals also might naturally
divide further into second-priority goals, third-priority goals, and so on. After we find an
optimal solution with respect to the first-priority goals, we can break any ties for the op-
timal solution by considering the second-priority goals. Any ties that remain after this re-
optimization can be broken by considering the third-priority goals, and so on.

When we deal with goals on the same priority level, our approach is just like the one
described for nonpreemptive goal programming. Any of the same three types of goals
(lower one-sided, two-sided, upper one-sided) can arise. Different penalty weights for de-
viations from different goals still can be included, if desired. The same formulation tech-
nique of introducing auxiliary variables again is used to reformulate this portion of the
problem to fit the linear programming format.

There are two basic methods based on linear programming for solving preemptive
goal programming problems. One is called the sequential procedure, and the other is the
streamlined procedure. We shall illustrate these procedures in turn by solving the follow-
ing example.

Example. Faced with the unpleasant recommendation to increase the company’s work-
force by more than 20 percent, the management of the Dewright Company has reconsid-
ered the original formulation of the problem that was summarized in Table 7.5. This in-
crease in workforce probably would be a rather temporary one, so the very high cost of
training 833 new employees would be largely wasted, and the large (undoubtedly well-
publicized) layoffs would make it more difficult for the company to attract high-quality
employees in the future. Consequently, management has concluded that a very high pri-
ority should be placed on avoiding an increase in the workforce. Furthermore, manage-
ment has learned that raising more than $55 million for capital investment for the new
products would be extremely difficult, so a very high priority also should be placed on
avoiding capital investment above this level.

Based on these considerations, management has concluded that a preemptive goal
programming approach now should be used, where the two goals just discussed should
be the first-priority goals, and the other two original goals (exceeding $125 million in
long-run profit and avoiding a decrease in the employment level) should be the second-
priority goals. Within the two priority levels, management feels that the relative penalty
weights still should be the same as those given in the rightmost column of Table 7.5. This
reformulation is summarized in Table 7.6, where a factor of M (representing a huge pos-
itive number) has been included in the penalty weights for the first-priority goals to em-
phasize that these goals preempt the second-priority goals. (The portions of Table 7.5 that
are not included in Table 7.6 are unchanged.)

The Sequential Procedure for Preemptive Goal Programming

The sequential procedure solves a preemptive goal programming problem by solving a
sequence of linear programming models.

At the first stage of the sequential procedure, the only goals included in the linear
programming model are the first-priority goals, and the simplex method is applied in the
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usual way. If the resulting optimal solution is unique, we adopt it immediately without
considering any additional goals.

However, if there are multiple optimal solutions with the same optimal value of Z
(call it Z*), we prepare to break the tie among these solutions by moving to the second
stage and adding the second-priority goals to the model. If Z* � 0, all the auxiliary vari-
ables representing the deviations from first-priority goals must equal zero (full achieve-
ment of these goals) for the solutions remaining under consideration. Thus, in this case,
all these auxiliary variables now can be completely deleted from the model, where the
equality constraints that contain these variables are replaced by the mathematical expres-
sions (inequalities or equations) for these first-priority goals, to ensure that they continue
to be fully achieved. On the other hand, if Z* � 0, the second-stage model simply adds
the second-priority goals to the first-stage model (as if these additional goals actually were
first-priority goals), but then it also adds the constraint that the first-stage objective func-
tion equals Z* (which enables us again to delete the terms involving first-priority goals
from the second-stage objective function). After we apply the simplex method again, if
there still are multiple optimal solutions, we repeat the same process for any lower-
priority goals.

Example. We now illustrate this procedure by applying it to the example summarized
in Table 7.6.

At the first stage, only the two first-priority goals are included in the linear pro-
gramming model. Therefore, we can drop the common factor M for their penalty weights,
shown in Table 7.6. By proceeding just as for the nonpreemptive model if these were the
only goals, the resulting linear programming model is

Minimize Z � 2y2
� � 3y3

�,

subject to

5x1 � 3x2 � 4x3 � (y2
� � y2

�) � 40
5x1 � 7x2 � 8x3 � (y3

� � y3
�) � 55

and

xj � 0, yk
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 2, 3).

(For ease of comparison with the nonpreemptive model with all four goals, we have kept
the same subscripts on the auxiliary variables.)
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TABLE 7.6 Revised formulation for the Dewright Co. preemptive goal
programming problem

Priority Level Factor Goal Penalty Weight

Employment level �40 2M
First priority

Capital investment �55 3M

Long-run profit �125 5M
Second priority

Employment level �40 4M



By using the simplex method (or inspection), an optimal solution for this linear pro-
gramming model has y2

� � 0 and y3
� � 0, with Z � 0 (so Z* � 0), because there are in-

numerable solutions for (x1, x2, x3) that satisfy the relationships

5x1 � 3x2 � 4x3 � 40
5x1 � 7x2 � 8x3 � 55

as well as the nonnegativity constraints. Therefore, these two first-priority goals should
be used as constraints hereafter. Using them as constraints will force y2

� and y3
� to remain

zero and thereby disappear from the model automatically.
If we drop y2

� and y3
� but add the second-priority goals, the second-stage linear pro-

gramming model becomes

Minimize Z � 5y1
� � 4y2

�,

subject to

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125
5x1 � 3x2 � 4x3 � y2

� � 40
5x1 � 7x2 � 8x3 � y3

� � 55

and

xj � 0, y1
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 1, 2, 3).

Applying the simplex method to this model yields the unique optimal solution x1 � 5,
x2 � 0, x3 � 3	

3
4

	, y1
� � 0, y1

� � 8	
3
4

	, y2
� � 0, and y3

� � 0, with Z � 43	
3
4

	.
Because this solution is unique (or because there are no more priority levels), the pro-

cedure can now stop, with (x1, x2, x3) � (5, 0, 3	
3
4

	) as the optimal solution for the overall
problem. This solution fully achieves both first-priority goals as well as one of the 
second-priority goals (no decrease in employment level), and it falls short of the other
second-priority goal (long-run profit � 125) by just 8	

3
4

	.

The Streamlined Procedure for Preemptive Goal Programming

Instead of solving a sequence of linear programming models, like the sequential proce-
dure, the streamlined procedure finds an optimal solution for a preemptive goal pro-
gramming problem by solving just one linear programming model. Thus, the streamlined
procedure is able to duplicate the work of the sequential procedure with just one run of
the simplex method. This one run simultaneously finds optimal solutions based just on
first-priority goals and breaks ties among these solutions by considering lower-priority
goals. However, this does require a slight modification of the simplex method.

If there are just two priority levels, the modification of the simplex method is one you
already have seen, namely, the form of the Big M method illustrated throughout Sec. 4.6.
In this form, instead of replacing M throughout the model by some huge positive number
before running the simplex method, we retain the symbolic quantity M in the sequence of
simplex tableaux. Each coefficient in row 0 (for each iteration) is some linear function
aM � b, where a is the current multiplicative factor and b is the current additive term.
The usual decisions based on these coefficients (entering basic variable and optimality
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test) now are based solely on the multiplicative factors, except that any ties would be bro-
ken by using the additive terms. This is how the OR Courseware operates when solving
interactively by the simplex method (and choosing the Big M method).

The linear programming formulation for the streamlined procedure with two priority
levels would include all the goals in the model in the usual manner, but with basic penalty
weights of M and 1 assigned to deviations from first-priority and second-priority goals,
respectively. If different penalty weights are desired within the same priority level, these
basic penalty weights then are multiplied by the individual penalty weights assigned within
the level. This approach is illustrated by the following example.

Example. For the Dewright Co. preemptive goal programming problem summarized in
Table 7.6, note that (1) different penalty weights are assigned within each of the two pri-
ority levels and (2) the individual penalty weights (2 and 3) for the first-priority goals
have been multiplied by M. These penalty weights yield the following single linear pro-
gramming model that incorporates all the goals.

Minimize Z � 5y1
� � 2My2

� � 4y2
� � 3My3

�,

subject to

12x1 � 9x2 � 15x3 � (y1
� � y1

�) � 125
5x1 � 3x2 � 4x3 � (y2

� � y2
�) � 40

5x1 � 7x2 � 8x3 � (y3
� � y3

�) � 55

and

xj � 0, yk
� � 0, yk

� � 0 ( j � 1, 2, 3; k � 1, 2, 3).

Because this model uses M to symbolize a huge positive number, the simplex method can
be applied as described and illustrated throughout Sec. 4.6. Alternatively, a very large pos-
itive number can be substituted for M in the model and then any software package based
on the simplex method can be applied. Doing either naturally yields the same unique op-
timal solution obtained by the sequential procedure.

More than Two Priority Levels. When there are more than two priority levels (say,
p of them), the streamlined procedure generalizes in a straightforward way. The basic
penalty weights for the respective levels now are M1, M2, . . . , Mp�1, 1, where M1 repre-
sents a number that is vastly larger than M2, M2 is vastly larger than M3, . . . , and Mp�1

is vastly larger than 1. Each coefficient in row 0 of each simplex tableau is now a linear
function of all of these quantities, where the multiplicative factor of M1 is used to make
the necessary decisions, with tie breakers beginning with the multiplicative factor of M2

and ending with the additive term.
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The dual simplex method and parametric linear programming are especially valuable for
postoptimality analysis, although they also can be very useful in other contexts.

The upper bound technique provides a way of streamlining the simplex method for
the common situation in which many or all of the variables have explicit upper bounds.
It can greatly reduce the computational effort for large problems.
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Mathematical-programming computer packages usually include all three of these pro-
cedures, and they are widely used. Because their basic structure is based largely upon the
simplex method as presented in Chap. 4, they retain the exceptional computational effi-
ciency to handle very large problems of the sizes described in Sec. 4.8.

Various other special-purpose algorithms also have been developed to exploit the spe-
cial structure of particular types of linear programming problems (such as those to be dis-
cussed in Chaps. 8 and 9). Much research is currently being done in this area.

Karmarkar’s interior-point algorithm has been an exciting development in linear pro-
gramming. Variants of this algorithm now provide a powerful approach for efficiently solv-
ing some very large problems.

Linear goal programming and its solution procedures provide an effective way of
dealing with problems where management wishes to strive toward several goals simulta-
neously. The key is a formulation technique of introducing auxiliary variables that enable
converting the problem into a linear programming format.
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The symbols to the left of some of the problems (or their parts)
have the following meaning:

I: We suggest that you use the above interactive routines (the print-
out records your work). For parametric linear programming,
this only applies to 
 � 0, after which you should proceed 
manually.

C: Use the computer to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

7.1-1. Consider the following problem.

Maximize Z � �x1 � x2,

subject to

x1 � x2 � 8
x2 � 3

�x1 � x2 � 2

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Use the dual simplex method manually to solve this problem.
(c) Trace graphically the path taken by the dual simplex method.

7.1-2.* Use the dual simplex method manually to solve the fol-
lowing problem.

Minimize Z � 5x1 � 2x2 � 4x3,

subject to

3x1 � x2 � 2x3 � 4
6x1 � 3x2 � 5x3 � 10

and

x1 � 0, x2 � 0, x3 � 0.

7.1-3. Use the dual simplex method manually to solve the following
problem.

Minimize Z � 7x1 � 2x2 � 5x3 � 4x4,

subject to

2x1 � 4x2 � 7x3 � x4 � 5
8x1 � 4x2 � 6x3 � 4x4 � 8
3x1 � 8x2 � x3 � 4x4 � 4

and

xj � 0, for j � 1, 2, 3, 4.

7.1-4. Consider the following problem.

Maximize Z � 3x1 � 2x2,

subject to

3x1 � x2 � 12
x1 � x2 � 6

5x1 � 3x2 � 27

and

x1 � 0, x2 � 0.

I (a) Solve by the original simplex method (in tabular form). Iden-
tify the complementary basic solution for the dual problem
obtained at each iteration.

(b) Solve the dual of this problem manually by the dual simplex
method. Compare the resulting sequence of basic solutions
with the complementary basic solutions obtained in part (a).

7.1-5. Consider the example for case 1 of sensitivity analysis given
in Sec. 6.7, where the initial simplex tableau of Table 4.8 is mod-
ified by changing b2 from 12 to 24, thereby changing the respec-
tive entries in the right-side column of the final simplex tableau to
54, 6, 12, and �2. Starting from this revised final simplex tableau,
use the dual simplex method to obtain the new optimal solution
shown in Table 6.21. Show your work.
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7.2-3. Consider the following problem.

Maximize Z(
) � (10 � 
)x1 � (12 � 
)x2 � (7 � 2
)x3,

subject to

x1 � 2x2 � 2x3 � 30
x1 � x2 � x3 � 20

and

x1 � 0, x2 � 0, x3 � 0.

I (a) Use parametric linear programming to find an optimal so-
lution for this problem as a function of 
, for 
 � 0.

(b) Construct the dual model for this problem. Then find an opti-
mal solution for this dual problem as a function of 
, for 
 �
0, by the method described in the latter part of Sec. 7.2. Indi-
cate graphically what this algebraic procedure is doing. Com-
pare the basic solutions obtained with the complementary ba-
sic solutions obtained in part (a).

I 7.2-4.* Use the parametric linear programming procedure for
making systematic changes in the bi parameters to find an opti-
mal solution for the following problem as a function of 
, for 
0 � 
 � 25.

Maximize Z(
) � 2x1 � x2,

subject to

x1 � 10 � 2

x1 � x2 � 25 � 


x2 � 10 � 2


and

x1 � 0, x2 � 0.

Indicate graphically what this algebraic procedure is doing.

I 7.2-5. Use parametric linear programming to find an optimal so-
lution for the following problem as a function of 
, for 0 � 
 � 30.

Maximize Z(
) � 5x1 � 6x2 � 4x3 � 7x4,

subject to

3x1 � 2x2 � x3 � 3x4 � 135 � 2

2x1 � 4x2 � x3 � 2x4 � 78 � 

x1 � 2x2 � x3 � 2x4 � 30 � 


and

xj � 0, for j � 1, 2, 3, 4.

Then identify the value of 
 that gives the largest optimal value 
of Z(
).

7.1-6.* Consider parts (a) and (b) of Prob. 6.7-1. Use the dual sim-
plex method manually to reoptimize for each of these two cases,
starting from the revised final tableau.

7.2-1.* Consider the following problem.

Maximize Z � 8x1 � 24x2,

subject to

x1 � 2x2 � 10
2x1 � x2 � 10

and

x1 � 0, x2 � 0.

Suppose that Z represents profit and that it is possible to modify
the objective function somewhat by an appropriate shifting of key
personnel between the two activities. In particular, suppose that
the unit profit of activity 1 can be increased above 8 (to a maxi-
mum of 18) at the expense of decreasing the unit profit of activ-
ity 2 below 24 by twice the amount. Thus, Z can actually be rep-
resented as

Z(
) � (8 � 
)x1 � (24 � 2
)x2,

where 
 is also a decision variable such that 0 � 
 � 10.
(a) Solve the original form of this problem graphically. Then ex-

tend this graphical procedure to solve the parametric extension
of the problem; i.e., find the optimal solution and the optimal
value of Z(
) as a function of 
, for 0 � 
 � 10.

I (b) Find an optimal solution for the original form of the prob-
lem by the simplex method. Then use parametric linear pro-
gramming to find an optimal solution and the optimal value
of Z(
) as a function of 
, for 0 � 
 � 10. Plot Z(
).

(c) Determine the optimal value of 
. Then indicate how this op-
timal value could have been identified directly by solving only
two ordinary linear programming problems. (Hint: A convex
function achieves its maximum at an endpoint.)

I 7.2-2. Use parametric linear programming to find the optimal so-
lution for the following problem as a function of 
, for 0 � 
 � 20.

Maximize Z(
) � (20 � 4
)x1 � (30 � 3
)x2 � 5x3,

subject to

3x1 � 3x2 � x3 � 30
8x1 � 6x2 � 4x3 � 75
6x1 � x2 � x3 � 45

and

x1 � 0, x2 � 0, x3 � 0.
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7.3-1. Use the upper bound technique manually to solve the Wyn-
dor Glass Co. problem presented in Sec. 3.1.

7.3-2. Consider the following problem.

Maximize Z � 2x1 � x2,

subject to

x1 � x2 � 5
x1 � 10

x2 � 10

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically.
(b) Use the upper bound technique manually to solve this 

problem.
(c) Trace graphically the path taken by the upper bound technique.

7.3-3.* Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � x1 � 3x2 � 2x3,

subject to

x2 � 2x3 � 1
2x1 � x2 � 2x3 � 8
x1 � 1

x2 � 3
x3 � 2

and

x1 � 0, x2 � 0, x3 � 0.

7.3-4. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 3x2 � 2x3 � 5x4,

subject to

2x1 � 2x2 � x3 � 2x4 � 5
x1 � 2x2 � 3x3 � 4x4 � 5

and

0 � xj � 1, for j � 1, 2, 3, 4.

7.3-5. Use the upper bound technique manually to solve the fol-
lowing problem.

Maximize Z � 2x1 � 5x2 � 3x3 � 4x4 � x5,

7.2-6. Consider Prob. 6.7-2. Use parametric linear programming
to find an optimal solution as a function of 
 over the following
ranges of 
.
(a) 0 � 
 � 20.
(b) �20 � 
 � 0. (Hint: Substitute �
� for 
, and then increase


� from zero.)

7.2-7. Consider the Z*(
) function shown in Fig. 7.1 for para-
metric linear programming with systematic changes in the cj pa-
rameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be convex.

7.2-8. Consider the Z*(
) function shown in Fig. 7.2 for para-
metric linear programming with systematic changes in the bi pa-
rameters.
(a) Explain why this function is piecewise linear.
(b) Show that this function must be concave.

7.2-9. Let

Z* � max 	�
n

j�1
cjxj
,

subject to

�
n

j�1
aijxj � bi, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n

(where the aij, bi, and cj are fixed constants), and let (y1*, y2*, . . . ,
y*m) be the corresponding optimal dual solution. Then let

Z** � max 	�
n

j�1
cjxj
,

subject to

�
n

j�1
aijxj � bi � ki, for i � 1, 2, . . . , m,

and

xj � 0, for j � 1, 2, . . . , n,

where k1, k2, . . . , km are given constants. Show that

Z** � Z* � �
m

i�1
kiyi*.
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C (a) Near the end of Sec. 7.4, there is a discussion of what the
interior-point algorithm does on this problem when starting
from the initial feasible trial solution (x1, x2) � (4, 4). Ver-
ify the results presented there by performing two iterations
manually. Then use the automatic routine in your OR
Courseware to check your work.

(b) Use these results to predict what subsequent trial solutions
would be if additional iterations were to be performed.

(c) Suppose that the stopping rule adopted for the algorithm in this
application is that the algorithm stops when two successive
trial solutions differ by no more than 0.01 in any component.
Use your predictions from part (b) to predict the final trial so-
lution and the total number of iterations required to get there.
How close would this solution be to the optimal solution 
(x1, x2) � (0, 8)?

7.4-4. Consider the following problem.

Maximize Z � x1 � x2,

subject to

x1 � 2x2 � 9
2x1 � x2 � 9

and

x1 � 0, x2 � 0.

(a) Solve the problem graphically.
(b) Find the gradient of the objective function in the original 

x1-x2 coordinate system. If you move from the origin in the di-
rection of the gradient until you reach the boundary of the fea-
sible region, where does it lead relative to the optimal solution?

C (c) Starting from the initial trial solution (x1, x2) � (1, 1), use
your OR Courseware to perform 10 iterations of the inte-
rior-point algorithm presented in Sec. 7.4.

C (d) Repeat part (c) with � � 0.9.

7.4-5. Consider the following problem.

Maximize Z � 2x1 � 5x2 � 7x3,

subject to

x1 � 2x2 � 3x3 � 6

and

x1 � 0, x2 � 0, x3 � 0.

(a) Graph the feasible region.
(b) Find the gradient of the objective function, and then find the

projected gradient onto the feasible region.
(c) Starting from the initial trial solution (x1, x2, x3) � (1, 1, 1),

perform two iterations of the interior-point algorithm presented
in Sec. 7.4 manually.

subject to

x1 � 3x2 � 2x3 � 3x4 � x5 � 6
4x1 � 6x2 � 5x3 � 7x4 � x5 � 15

and

0 � xj � 1, for j � 1, 2, 3, 4, 5.

7.3-6. Simultaneously use the upper bound technique and the dual
simplex method manually to solve the following problem.

Minimize Z � 3x1 � 4x2 � 2x3,

subject to

x1 � x2 � x3 � 15
x2 � x3 � 10

and

0 � x1 � 25, 0 � x2 � 5, 0 � x3 � 15.

C 7.4-1. Reconsider the example used to illustrate the interior-
point algorithm in Sec. 7.4. Suppose that (x1, x2) � (1, 3) were
used instead as the initial feasible trial solution. Perform two iter-
ations manually, starting from this solution. Then use the automatic
routine in your OR Courseware to check your work.

7.4-2. Consider the following problem.

Maximize Z � 3x1 � x2,

subject to

x1 � x2 � 4

and

x1 � 0, x2 � 0.

(a) Solve this problem graphically. Also identify all CPF solutions.
C (b) Starting from the initial trial solution (x1, x2) � (1, 1), per-

form four iterations of the interior-point algorithm presented
in Sec. 7.4 manually. Then use the automatic routine in your
OR Courseware to check your work.

(c) Draw figures corresponding to Figs. 7.4, 7.5, 7.6, 7.7, and 7.8
for this problem. In each case, identify the basic (or corner-
point) feasible solutions in the current coordinate system. (Trial
solutions can be used to determine projected gradients.)

7.4-3. Consider the following problem.

Maximize Z � x1 � 2x2,

subject to

x1 � x2 � 8

and

x1 � 0, x2 � 0.
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7.5-3. The Research and Development Division of the Emax Cor-
poration has developed three new products. A decision now needs
to be made on which mix of these products should be produced.
Management wants primary consideration given to three factors:
total profit, stability in the workforce, and achieving an increase in
the company’s earnings next year from the $75 million achieved
this year. In particular, using the units given in the following table,
they want to

Maximize Z � P � 6C � 3D,

where P � total (discounted) profit over the life of the new prod-
ucts,

C � change (in either direction) in the current level of em-
ployment,

D � decrease (if any) in next year’s earnings from the cur-
rent year’s level.

The amount of any increase in earnings does not enter into Z, be-
cause management is concerned primarily with just achieving some
increase to keep the stockholders happy. (It has mixed feelings
about a large increase that then would be difficult to surpass in sub-
sequent years.)

The impact of each of the new products (per unit rate of pro-
duction) on each of these factors is shown in the following table:

C (d) Starting from this same initial trial solution, use your OR
Courseware to perform 10 iterations of this algorithm.

C 7.4-6. Starting from the initial trial solution (x1, x2) � (2, 2),
use your OR Courseware to apply 15 iterations of the interior-point
algorithm presented in Sec. 7.4 to the Wyndor Glass Co. problem
presented in Sec. 3.1. Also draw a figure like Fig. 7.8 to show the
trajectory of the algorithm in the original x1-x2 coordinate system.

7.5-1. One of management’s goals in a goal programming prob-
lem is expressed algebraically as

3x1 � 4x2 � 2x3 � 60,

where 60 is the specific numeric goal and the left-hand side gives
the level achieved toward meeting this goal.
(a) Letting y� be the amount by which the level achieved exceeds

this goal (if any) and y� the amount under the goal (if any),
show how this goal would be expressed as an equality con-
straint when reformulating the problem as a linear program-
ming model.

(b) If each unit over the goal is considered twice as serious as each
unit under the goal, what is the relationship between the coef-
ficients of y� and y� in the objective function being minimized
in this linear programming model.

7.5-2. Management of the Albert Franko Co. has established goals
for the market share it wants each of the company’s two new prod-
ucts to capture in their respective markets. Specifically, manage-
ment wants Product 1 to capture at least 15 percent of its market
and Product 2 to capture at least 10 percent of its market. Three
advertising campaigns are being planned to try to achieve these
market shares. One is targeted directly on the first product. The
second targets the second product. The third is intended to en-
hance the general reputation of the company and its products. Let-
ting x1, x2, and x3 be the amount of money allocated (in millions
of dollars) to these respective campaigns, the resulting market
share (expressed as a percentage) for the two products are esti-
mated to be

Market share for Product 1 � 0.5x1 � 0.2x3,
Market share for Product 2 � 0.3x2 � 0.2x3.

A total of $55 million is available for the three advertising cam-
paigns, but management wants at least $10 million devoted to the
third campaign. If both market share goals cannot be achieved,
management considers each 1 percent decrease in the market share
from the goal to be equally serious for the two products. In this
light, management wants to know how to most effectively allocate
the available money to the three campaigns.
(a) Formulate a goal programming model for this problem.
(b) Reformulate this model as a linear programming model.
C (c) Use the simplex method to solve this model.
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(a) Define y1
� and y1

�, respectively, as the amount over (if any)
and the amount under (if any) the employment level goal. De-
fine y2

� and y2
� in the same way for the goal regarding earn-

ings next year. Define x1, x2, and x3 as the production rates of
Products 1, 2, and 3, respectively. With these definitions, use
the goal programming technique to express y1

�, y1
�, y2

�, and y2
�

algebraically in terms of x1, x2, and x3. Also express P in terms
of x1, x2, and x3.

(b) Express management’s objective function in terms of x1, x2,
x3, y1

�, y1
�, y2

�, and y2
�.

(c) Formulate a linear programming model for this problem.
C (d) Use the simplex method to solve this model.

Unit
Contribution

Product:

Factor 1 2 3 Goal Units

Total profit 20 15 25 Maximize Millions of dollars
Employment Hundreds of 
level 6 4 5 � 50 employees

Earnings next 
year 8 7 5 � 75 Millions of dollars



first-priority goal is citizens fed � 1,750,000, the second-
priority goal is foreign capital � $70,000,000, and the third-
priority goal is citizens employed � 200,000. Use the goal pro-
gramming technique to formulate one complete linear pro-
gramming model for this problem.

(e) Use the streamlined procedure to solve the problem as formu-
lated in part (d ).

C (f) Use the sequential procedure to solve the problem as pre-
sented in part (d ).

7.5-6.* Consider a preemptive goal programming problem with
three priority levels, just one goal for each priority level, and just
two activities to contribute toward these goals, as summarized in
the following table:

7.5-4. Reconsider the original version of the Dewright Co. prob-
lem presented in Sec. 7.5 and summarized in Table 7.5. After fur-
ther reflection about the solution obtained by the simplex method,
management now is asking some what-if questions.
(a) Management wonders what would happen if the penalty

weights in the rightmost column of Table 7.5 were to be
changed to 7, 4, 1, and 3, respectively. Would you expect the
optimal solution to change? Why?

C (b) Management is wondering what would happen if the total
profit goal were to be increased to wanting at least $140
million (without any change in the original penalty weights).
Solve the revised model with this change.

C (c) Solve the revised model if both changes are made.

7.5-5. Montega is a developing country which has 15,000,000
acres of publicly controlled agricultural land in active use. Its gov-
ernment currently is planning a way to divide this land among three
basic crops (labeled 1, 2, and 3) next year. A certain percentage of
each of these crops is exported to obtain badly needed foreign cap-
ital (dollars), and the rest of each of these crops is used to feed the
populace. Raising these crops also provides employment for a sig-
nificant proportion of the population. Therefore, the main factors
to be considered in allocating the land to these crops are (1) the
amount of foreign capital generated, (2) the number of citizens fed,
and (3) the number of citizens employed in raising these crops.
The following table shows how much each 1,000 acres of each
crop contributes toward these factors, and the last column gives the
goal established by the government for each of these factors.
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In evaluating the relative seriousness of not achieving these
goals, the government has concluded that the following deviations
from the goals should be considered equally undesirable: (1) each
$100 under the foreign-capital goal, (2) each person under the cit-
izens-fed goal, and (3) each deviation of one (in either direction)
from the citizens-employed goal. 
(a) Formulate a goal programming model for this problem.
(b) Reformulate this model as a linear programming model.
C (c) Use the simplex method to solve this model.
(d) Now suppose that the government concludes that the impor-

tance of the various goals differs greatly so that a preemptive
goal programming approach should be used. In particular, the

Contribution per 
1,000 Acres

Crop:

Factor 1 2 3 Goal

Foreign capital $3,000 $5,000 $4,000 � $70,000,000
Citizens fed 150 75 100 � 1,750,000
Citizens employed 10 15 12 � 200,000

(a) Use the goal programming technique to formulate one com-
plete linear programming model for this problem.

(b) Construct the initial simplex tableau for applying the stream-
lined procedure. Identify the initial BF solution and the initial
entering basic variable, but do not proceed further.

(c) Starting from (b), use the streamlined procedure to solve the
problem.

(d) Use the logic of preemptive goal programming to solve the
problem graphically by focusing on just the two decision vari-
ables. Explain the logic used.

(e) Use the sequential procedure to solve this problem. After us-
ing the goal programming technique to formulate the linear
programming model (including auxiliary variables) at each
stage, solve the model graphically by focusing on just the two
decision variables. Identify all optimal solutions obtained for
each stage.

7.5-7. Redo Prob. 7.5-6 with the following revised table:

Unit Contribution

Activity:

Priority Level 1 2 Goal

First priority 1 2 � 20
Second priority 1 1 � 15
Third priority 2 1 � 40

Unit Contribution

Activity:

Priority Level 1 2 Goal

First priority 1 1 �20
Second priority 1 1 �30
Third priority 1 2 �50



Minimize the sum of the absolute deviations of the data from
the line; that is,

Minimize �
n

i�1
yi � (a � bxi).

(Hint: Note that this problem can be viewed as a nonpreemptive
goal programming problem where each data point represents a
“goal” for the regression line.)

7.5-8. One of the most important problems in the field of statis-
tics is the linear regression problem. Roughly speaking, this prob-
lem involves fitting a straight line to statistical data represented by
points—(x1, y1), (x2, y2), . . . , (xn, yn)—on a graph. If we denote
the line by y � a � bx, the objective is to choose the constants a
and b to provide the “best” fit according to some criterion. The cri-
terion usually used is the method of least squares, but there are
other interesting criteria where linear programming can be used to
solve for the optimal values of a and b.

Formulate a linear programming model for this problem un-
der the following criterion:
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Fulgencio Batista led Cuba with a cold heart and iron fist—greedily stealing from poor
citizens, capriciously ruling the Cuban population that looked to him for guidance, and
violently murdering the innocent critics of his politics. In 1958, tired of watching his
fellow Cubans suffer from corruption and tyranny, Fidel Castro led a guerilla attack
against the Batista regime and wrested power from Batista in January 1959. Cubans,
along with members of the international community, believed that political and eco-
nomic freedom had finally triumphed on the island. The next two years showed, how-
ever, that Castro was leading a Communist dictatorship—killing his political opponents
and nationalizing all privately held assets. The United States responded to Castro’s
leadership in 1961 by invoking a trade embargo against Cuba. The embargo forbade
any country from selling Cuban products in the United States and forbade businesses
from selling American products to Cuba. Cubans did not feel the true impact of the
embargo until 1989 when the Soviet economy collapsed. Prior to the disintegration of
the Soviet Union, Cuba had received an average of $5 billion in annual economic as-
sistance from the Soviet Union. With the disappearance of the economy that Cuba had
almost exclusively depended upon for trade, Cubans had few avenues from which to
purchase food, clothes, and medicine. The avenues narrowed even further when the
United States passed the Torricelli Act in 1992 that forbade American subsidiaries in
third countries from doing business with Cuba that had been worth a total of $700 mil-
lion annually.

Since 1989, the Cuban economy has certainly felt the impact from decades of
frozen trade. Today poverty ravages the island of Cuba. Families do not have money
to purchase bare necessities, such as food, milk, and clothing. Children die from
malnutrition or exposure. Disease infects the island because medicine is unavail-
able. Optical neuritis, tuberculosis, pneumonia, and influenza run rampant among
the population.

Few Americans hold sympathy for Cuba, but Robert Baker, director of Helping
Hand, leads a handful of tender souls on Capitol Hill who cannot bear to see politics
destroy so many human lives. His organization distributes humanitarian aid annually
to needy countries around the world. Mr. Baker recognizes the dire situation in Cuba,
and he wants to allocate aid to Cuba for the coming year.
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Mr. Baker wants to send numerous aid packages to Cuban citizens. Three differ-
ent types of packages are available. The basic package contains only food, such as grain
and powdered milk. Each basic package costs $300, weighs 120 pounds, and aids 30
people. The advanced package contains food and clothing, such as blankets and fab-
rics. Each advanced package costs $350, weighs 180 pounds, and aids 35 people. The
supreme package contains food, clothing, and medicine. Each supreme package costs
$720, weighs 220 pounds, and aids 54 people.

Mr. Baker has several goals he wants to achieve when deciding upon the number
and types of aid packages to allocate to Cuba. First, he wants to aid at least 20 percent
of Cuba’s 11 million citizens. Second, because disease runs rampant among the Cuban
population, he wants at least 3,000 of the aid packages sent to Cuba to be the supreme
packages. Third, because he knows many other nations also require humanitarian aid,
he wants to keep the cost of aiding Cuba below $20 million.

Mr. Baker places different levels of importance on his three goals. He believes the
most important goal is keeping costs down since low costs mean that his organization
is able to aid a larger number of needy nations. He decides to penalize his plan by 1
point for every $1 million above his $20 million goal. He believes the second most im-
portant goal is ensuring that at least 3,000 of the aid packages sent to Cuba are supreme
packages, since he does not want to see an epidemic develop and completely destroy
the Cuban population. He decides to penalize his plan by 1 point for every 1,000 pack-
ages below his goal of 3,000 packages. Finally, he believes the least important goal is
reaching at least 20 percent of the population, since he would rather give a smaller
number of individuals all they need to thrive instead of a larger number of individuals
only some of what they need to thrive. He therefore decides to penalize his plan by 7
points for every 100,000 people below his 20 percent goal.

Mr. Baker realizes that he has certain limitations on the aid packages that he de-
livers to Cuba. Each type of package is approximately the same size, and because only
a limited number of cargo flights from the United States are allowed into Cuba, he is
only able to send a maximum of 40,000 packages. Along with a size limitation, he also
encounters a weight restriction. He cannot ship more that 6 million pounds of cargo.
Finally, he has a safety restriction. When sending medicine, he needs to ensure that the
Cubans know how to use the medicine properly. Therefore, for every 100 supreme
packages, Mr. Baker must send one doctor to Cuba at a cost of $33,000 per doctor.

(a) Identify one of the techniques described in this chapter that is applicable to Mr. Baker’s
problem.

(b) How many basic, advanced, and supreme packages should Mr. Baker send to Cuba?
(c) Mr. Baker reevaluates the levels of importance he places on each of the three goals. To sell

his efforts to potential donors, he must show that his program is effective. Donors gener-
ally judge the effectiveness of a program on the number of people reached by aid pack-
ages. Mr. Baker therefore decides that he must put more importance on the goal of reach-
ing at least 20 percent of the population. He decides to penalize his plan by 10 points for
every half a percentage point below his 20 percent goal. The penalties for his other two
goals remain the same. Under this scenario, how many basic, advanced, and supreme pack-
ages should Mr. Baker send to Cuba? How sensitive is the plan to changes in the penalty
weights?
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(d) Mr. Baker realizes that sending more doctors along with the supreme packages will im-
prove the proper use and distribution of the packages’ contents, which in turn will increase
the effectiveness of the program. He therefore decides to send one doctor with every 75
supreme packages. The penalties for the goals remain the same as in part (c). Under this
scenario, how many basic, advanced, and supreme packages should Mr. Baker send to Cuba?

(e) The aid budget is cut, and Mr. Baker learns that he definitely cannot allocate more than
$20 million in aid to Cuba. Due to the budget cut, Mr. Baker decides to stay with his orig-
inal policy of sending one doctor with every 100 supreme packages. How many basic, ad-
vanced, and supreme packages should Mr. Baker send to Cuba assuming that the penalties
for not meeting the other two goals remain the same as in part (b)?
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