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Contiki overview 
 Contiki is an open source operating system for the Internet of Things. 

 runs on networked embedded systems and wireless sensor nodes.

 It is designed for microcontrollers with small amounts of memory. 

 A typical Contiki configuration is 2 kilobytes of RAM and 40 kilobytes of 

ROM.

 Contiki provides IP communication, both for IPv4 and IPv6. 

 It has an IPv6 stack that, combined with power-efficient radio mechanisms such 

as ContikiMAC, allow battery-operated devices to participate in IPv6 

networking. 

 Contiki supports 6lowPAN header compression and the CoAP application layer 

protocol.

 We will study 6LowPAN and CoAP protocols later in this module. 
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Contiki- Functional aspects

 It’s kernel functions as an event-driven kernel; multithreading is supported 

by an application library. In this sense it is a hybrid OS (monolithic and 

microkernel).

 Contiki realises the separation of concern of the basic system support 

form the rest of the dynamically loadable and programmable services 

(called processes).

 The services communicate with each other through the kernel by posting 

events. 

 The ContikiOS kernel does not provide any hardware abstraction; but it 

allows device drivers and application directly communicate with the 

hardware. 

 Each Contiki service manages its own state in a private memory space and 

the kernel keeps a pointer to the process state. 
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The Contiki system

 A Contiki system includes the kernel, libraries and 

applications or services, of which applications and 

services are implemented as modules.

 All communication between processes are done through 

the kernel.

 The ContikiOS kernel does not provide any hardware 

abstraction. As a result of this, device drivers and 

applications communicate directly with the hardware. 

 All processes share the same address and space. This 

enables Contiki to run in memory constrained devices.
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The Contiki system

 A process runs when an event related to the process 

occurs, such as a timer event or an external one.

 There are two types of execution modes in Contiki. 

These are cooperative and preemptive modes.

 A process is defined by an event handler function and an 

optional poll handler function.

 The Contiki process is a combination of two different 

parts. These are process control block (The block is 

defined via the process macro) and the process threat.
 The process control block is composed of information about each process such 

as the state of the process, the pointer to the next process, name of the process, 

a pointer to a process thread, the state of the proto thread and internal flags. 
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The Contiki OS
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Contiki's kernel architecture 

 Contiki is based on a modular kernel architecture. 

Therefore, the kernel is minimal. 

 In Contiki, all program execution is triggered either 

through the polling mechanism or by events which are 

sent by the kernel. 

 the kernel supports two types of events, synchronous and 

asynchronous. 

 the polling mechanism behaves as high priority events that are 

scheduled between asynchronous events.

 Contiki schedules all events using a single level 

hierarchy, and events cannot be preempted by other 

events. The only way to preempt an event is using 

interrupts.
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 When a program is loaded, the loader uses the 

relocation information provided by the binary format to 

allocate memory. In case that there is not enough 

memory, the loading is aborted. 

 In case of successful loading, the function for 

initialization is called for starting or replacing other 

processes. 
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Protothreads

 Protothreads can be seen as lightweight (stakless) threads. 

 They can be also seen as interruptible tasks in event-based 

programming. 

 A protothread provides a conditional blocking “wait” statement 

which takes a conditional statement and blocks the protothread 

until the statement is evaluated true. 

 By the time the protothread reaches the wait time if the 

conditional statement is true, it continues executing without any 

interruption. 

 A protothread is invoked whenever a process receives a 

message from another process or a timer event.    
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Protothreads- example

 For example consider a MAC protocol that turns off the radio subsystem 

on a periodic basis; but you want to make sure that the radio subsystem 

completes the communication before it goes to sleep state. 

1. At t=t0 set the radio ON

2. The radio remains on for a period of tawake seconds 

3. Once tawake is over, the radio has to be switched off, but any on-going communication needs to 

be completed.

4. If there is an on-going communication, the MAC protocol will wait for a period, twait_max before 

switching off the radio.

5. If the communication is completed or the maximum wait time is over, then the radio will go off 

and will remain in the off state for a period of tsleep.

6. The process is repeated. 
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Radio sleep cycle code with events
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Event driven code can be

messy and complex

Source: Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Protothreads: simplifying event-driven programming of memory-constrained embedded systems. 

In Proceedings of the 4th international conference on Embedded networked sensor systems (SenSys '06). ACM.



Radio sleep cycle with Protothreads
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Sensor Network Programming

 Sensor Network programming can be: node centric or it can be application 

centric. 

 Node-centric approaches focus on development of a software for nodes 

(on a per-node level).

 Application-centric approaches focus on developing software for a part or 

all of the network as one entity. 

 The application centric programming will require collaboration among 

different nodes in the network for collection, dissemination, analysis and/or 

processing of the generated and collected data. 

 While in node centric programming the main focus is on developing a 

software on a per-node level.  
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The Contiki code

#include "contiki.h" 

PROCESS(sample_process, "My sample process"); 

AUTOSTART_PROCESSES(&sample_process); 

PROCESS_THREAD(sample_process, ev, data) { 

PROCESS_BEGIN(); 

while(1) { 

PROCESS_WAIT_EVENT(); 

} 

PROCESS_END(); 

}

Header files

Defines the name of 

the process

Defines the process 

will be started every 

time module is 

loaded

contains the process 

code

Threads must have 

an end statement
Event parameter; 

process can respond to 

events

process can receive data 

during an event



The Contiki code

#include "contiki.h" 

PROCESS(sample_process, "My sample process"); 

AUTOSTART_PROCESSES(&sample_process, &LED_process); 

PROCESS_THREAD(sample_process, ev, data) { 

static struct etimer t; 

static int c = 0;

PROCESS_BEGIN(); 

etimer_set(&t, CLOCK_CONF_SECOND); 

while(1) { 

PROCESS_WAIT_EVENT();

if(ev == PROCESS_EVENT_TIMER)  {

printf(“Timer event #%i\n", c);

c++;

etimer_reset(&t); 

} 
} 

PROCESS_END(); 

}

PROCESS_THREAD(LED_process, ev, data) {

static uint8_t leds_state = 0; 

PROCESS_BEGIN(); 

leds_off(0xFF); 

leds_on(leds_state);

PROCESS_END(); 

}

Process thread 

names

Process thread 1

Process thread 2



Running Contiki on a Hardware

 Write your code

 Compile Contiki and the application

 make TARGET=XM1000 sample_process

 Make file

 If you plan to compile your code on the chosen platfrom more than once;

 make  TARGE=XM1000 savetarget

 Upload your code

 make simple_process.upload

 Login to the device

 make login
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CONTIKI = ../.. 

all: simple_process

include $(CONTIKI)/Makefile.include



Nodes and Applications in 

Wireless Sensor Networks
 Sensor Networks consist of nodes with different 

capabilities.

 Large number of heterogeneous sensor nodes

 Spread over a physical location 

 It includes physical sensing, data processing and  

networking  

 In ad-hoc networks, sensors can join and leave

due to mobility, failure etc.

 Data can be processed in-network, or it can be 

directly communicated to the endpoints.



Types of nodes

 Sensor nodes

 Low power 

 Consist of sensing device, memory, processor and 

radio

 Resource-constrained

 Sink nodes

 Another sensor node or a different wireless node

 Normally more powerful/better resources 

 Gateway

 A more powerful node

 Connection to core network



Types of applications

 Event detection

 Reporting occurrences of events

 Reporting abnormalities and changes 

 Could require collaboration of other nearby or remote nodes

 Event definition and classification is an issue

 Periodic measurements

 Sensors periodically measure and report the observation and measurement 
data 

 Reporting period is application dependent

 Approximation and pattern detection

 Sending messages along the boundaries of patterns in both space/time

 Tracking

 When the source of an event is mobile

 Sending event updates with location information



Requirements and challenges

 Fault tolerance

 The nodes can get damaged, run out of power, the 

wireless communication between two nodes can be 

interrupted, etc.

 To tolerate node failures, redundant deployments can 

be necessary.

 Lifetime

 The nodes could have a limited energy supply;

 Sometimes replacing the energy sources is not 

practical (e.g. underwater deployment, large/remote 

field deployments).

 Energy efficient operation can be a necessity.  



Requirements and challenges –

Cont’d
 Scalability

 A WSN can consists of a large number of nodes

 The employed architectures and protocols should 

scale to these numbers. 

 Wide range of densities

 Density of the network can vary

 Different applications can have different node densities

 Density does not need to be homogeneous in the 

entire network and network should adapt to such 

variations.



Requirements and challenges –

Cont’d
 Programmability 

 Nodes should be flexible and their tasks could change

 The programmes should be also changeable during 

operation. 

 Maintainability

 WSN and environment of a WSN can change;

 The system should be adaptable to the changes.

 The operational parameters can change to choose 

different trade-offs (e.g. to provide lower quality when 

energy efficiency is more important)



Required mechanisms 

 Multi-hop wireless communications

 Communication over long distances can require 
intermediary nodes as relay (instead of using high 
transmission power for long range communications).

 Energy-efficient operation

 To support long lifetime

 Energy efficient communication/dissemination of 
information

 Energy efficient determination of a requested 
information

 Auto-configuration

 Self-xxx functionalities

 Tolerating node failures



Required mechanisms

 Collaboration and in-network processing

 In some applications a single sensor node is not able to handle the given task or 

provide the requested information.

 Instead of sending the information form various source to an external 

network/node, the information can be processed in the network itself. 

 e.g. data aggregation, summarisation and then propagating the processed data with 

reduced size (hence improving energy efficiency by reducing the amount of data to 

be transmitted).

 Data-centric

 Conventional networks often focus on sending data between two specific 

nodes each equipped with an address. 

 Here what is important is data and the observations and measurements not the 

node that provides it. 



Communication and Network 

Protocol Support 



Communication Protocols

 Wired 

 USB, Ethernet

 Wireless

 Wifi, Bluetooth, ZigBee, IEEE 802.15.x

 Single-hop or multi-hop

 Sink nodes, cluster heads…

 Point-to-Point or Point-to-Multi Point

 (Energy) efficient routing



ZigBee

 It is supposed to be a low cost, low power mesh network protocol.

 ZigBee operation range is in the industrial, scientific and medical radio 

bands; 

 ZigBee’s physical layer and media access control defined in defined based 

on the IEEE 802.15.4 standard.

 ZigBee nodes can go from sleep to active mode in 30 ms or less, the 

latency can be low and in result the devices can be responsive, in particular 

compared to Bluetooth devices that wake-up time can be longer (typically 

around three seconds). 

[source: Gary Legg, ZigBee: Wireless Technology for Low-Power Sensor Networks,

http://www.eetimes.com/document.asp?doc_id=1275760] 

http://www.eetimes.com/document.asp?doc_id=1275760


ZigBee

[source: Gary Legg, ZigBee: Wireless Technology for Low-Power Sensor Networks,

http://www.eetimes.com/document.asp?doc_id=1275760] 

http://www.eetimes.com/document.asp?doc_id=1275760


Network protocols

 The network (or OSI Layer 3 abstraction) 

provides an abstraction of the physical world.

 Communication protocols

 Most of the IP-based communications are based on the 

IPV.4 (and often via gateway middleware solutions)

 IP overhead makes it inefficient for embedded devices 

with low bit rate and constrained power. 

 However, IPv6.0 is increasingly being introduced for 

embedded devices

 6LowPAN



IPv6 over Low power Wireless Personal Area Networks 

(6LowPAN)

 6LoWPAN typically includes devices that work together to connect the 

physical environment to real-world applications, e.g., wireless sensors.

 Small packet size

 the maximum physical layer packet is 127 bytes 

 81 octets (81 * 8 bits) for data packets.

 Header compression

 Fragmentation and reassembly 
 6LoWPAN defines a header encoding to support fragmentation when 

IPv6 datagrams do not fit within a single frame and compresses IPv6 
headers to reduce header overhead.

 Support for both 16-bit short or IEEE 64-bit extended media access 

control addresses. 

 Low bandwidth

 Data rates of 250 kbps, 40 kbps, and 20 kbps for each of the currently defined 

physical layers (2.4 GHz, 915 MHz, and 868 MHz, respectively). 

Source: Jonathan W. Hui and David E. Culler, IPv6 in Low-Power Wireless Networks, Proceedings of the IEEE  (Volume:98 ,  Issue: 11 ).



6LowPAN

 IPv6 requires the link to carry a payload of up to 

1280 Bytes.

 Low-power radio links often do not support such 

a large payload - IEEE 802.15.4 frame only 

supports 127 Bytes of payload and around 80 B in 

the worst case (with extended addressing and full 

security information).

 the IPv6 base header, as shown, is relatively large 

at 40 Bytes.

Source: Jonathan W. Hui and David E. Culler, IPv6 in Low-Power Wireless Networks, Proceedings of the IEEE  (Volume:98 ,  Issue: 11 ).



Using gateway and middleware

 It is unlikely that everything will be IP enabled 

and/or will run IP protocol stack

 Gateway and middleware solutions can interfaces 

between low-level sensor island protocols and IP-

based networks.

 The gateway can also provide other components 

such as QoS support, caching, mechanisms to 

address heterogeneity and interoperability issues. 



Gateway and IP networks

Gateway

Frieder Ganz, Payam Barnaghi, Francois Carrez and Klaus Moessner, "Context-aware Management for 

Sensor Networks", in the Fifth International Conference on COMmunication System softWAre and 

middlewaRE (COMSWARE11), July 2011.



Service interfaces to WSN

 Supporting high-level request/response interactions

 Asynchronous event notifications

 Identifying and accessing data

 By location, by observed entity, 

 By semantically meaningful representations – “Room 35BA01”

 Accessibility of in-network processing functions

 Accessing node/network status information (e.g., battery level)

 Security, management functionality, … 

 There are emerging solutions and standards in this domain supported by 

Semantic Web technologies and Linked-data (we study some of these next 

week).



Service interfaces and Web 

connectivity
 WSN nodes are typically resource constrained

 Memory and process limitations

 Communication load

 Often none-IP or use 6LowPAN

 Using gateway and middleware is a clear solution

 Or can the nodes directly connect to the Web 

and or support service interfaces?



Constrained Application Protocol 

(CoAP)
 CoAP is a transfer protocol for constrained nodes and networks.

 CoAP uses the Representational State Transfer (REST) architecture. 

 REST make information available as resources that are identified by URIs.

 Applications communication by exchanging representation of these resources 
using a transfer protocol such as HTTP. 

 Clients access servicer controlled resources using synchronous 
request/response mechanisms.

 Such as GET, PUT, POST and DELETE.

 CoAp uses UDP instead of TCP and has a simple “message layer” for re-
transmitting lost packets.

 It also uses compression techniques. 

C. Bormann, A. P. Castellani, Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing, 

vol. 16, no. 2, pp. 62-67, Feb. 2012, doi:10.1109/MIC.2012.29 



Constrained Application Protocol (CoAP)

Client

GET/temperature,

Room A

Server

200 OK

Txt/plain

17, Celsius 



CoAP protocol stack and interactions

C. Bormann, A. P. Castellani, Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing, 

vol. 16, no. 2, pp. 62-67, Feb. 2012, doi:10.1109/MIC.2012.29 


