
Contiki OS and IoT

Sam Nguyen-Xuan
Faculty of Information Technology No. 2

Posts and Telecoms of Institute and Technology

Ho Chi Minh City Campus, Vietnam

Source: EEEM048/COM3023- Internet of Things/Dr Payam Barnaghi, Dr Chuan H Foh 1

Contiki overview
 Contiki is an open source operating system for the Internet of Things.

 runs on networked embedded systems and wireless sensor nodes.

 It is designed for microcontrollers with small amounts of memory.

 A typical Contiki configuration is 2 kilobytes of RAM and 40 kilobytes of

ROM.

 Contiki provides IP communication, both for IPv4 and IPv6.

 It has an IPv6 stack that, combined with power-efficient radio mechanisms such

as ContikiMAC, allow battery-operated devices to participate in IPv6

networking.

 Contiki supports 6lowPAN header compression and the CoAP application layer

protocol.

 We will study 6LowPAN and CoAP protocols later in this module.

2
Source: http://www.contiki-os.org

Contiki- Functional aspects

 It’s kernel functions as an event-driven kernel; multithreading is supported

by an application library. In this sense it is a hybrid OS (monolithic and

microkernel).

 Contiki realises the separation of concern of the basic system support

form the rest of the dynamically loadable and programmable services

(called processes).

 The services communicate with each other through the kernel by posting

events.

 The ContikiOS kernel does not provide any hardware abstraction; but it

allows device drivers and application directly communicate with the

hardware.

 Each Contiki service manages its own state in a private memory space and

the kernel keeps a pointer to the process state.

3

The Contiki system

 A Contiki system includes the kernel, libraries and

applications or services, of which applications and

services are implemented as modules.

 All communication between processes are done through

the kernel.

 The ContikiOS kernel does not provide any hardware

abstraction. As a result of this, device drivers and

applications communicate directly with the hardware.

 All processes share the same address and space. This

enables Contiki to run in memory constrained devices.

4

The Contiki system

 A process runs when an event related to the process

occurs, such as a timer event or an external one.

 There are two types of execution modes in Contiki.

These are cooperative and preemptive modes.

 A process is defined by an event handler function and an

optional poll handler function.

 The Contiki process is a combination of two different

parts. These are process control block (The block is

defined via the process macro) and the process threat.
 The process control block is composed of information about each process such

as the state of the process, the pointer to the next process, name of the process,

a pointer to a process thread, the state of the proto thread and internal flags.

5

The Contiki OS

6

Kernel

Program Loader

Language runtime

Communication service

Loaded program

Core

Service Core: single binary

Usually never modified

Loadable programs

Can be easily updated

Contiki's kernel architecture

 Contiki is based on a modular kernel architecture.

Therefore, the kernel is minimal.

 In Contiki, all program execution is triggered either

through the polling mechanism or by events which are

sent by the kernel.

 the kernel supports two types of events, synchronous and

asynchronous.

 the polling mechanism behaves as high priority events that are

scheduled between asynchronous events.

 Contiki schedules all events using a single level

hierarchy, and events cannot be preempted by other

events. The only way to preempt an event is using

interrupts.

7

 When a program is loaded, the loader uses the

relocation information provided by the binary format to

allocate memory. In case that there is not enough

memory, the loading is aborted.

 In case of successful loading, the function for

initialization is called for starting or replacing other

processes.

8

Contiki's kernel architecture

Protothreads

 Protothreads can be seen as lightweight (stakless) threads.

 They can be also seen as interruptible tasks in event-based

programming.

 A protothread provides a conditional blocking “wait” statement

which takes a conditional statement and blocks the protothread

until the statement is evaluated true.

 By the time the protothread reaches the wait time if the

conditional statement is true, it continues executing without any

interruption.

 A protothread is invoked whenever a process receives a

message from another process or a timer event.

9

Protothreads- example

 For example consider a MAC protocol that turns off the radio subsystem

on a periodic basis; but you want to make sure that the radio subsystem

completes the communication before it goes to sleep state.

1. At t=t0 set the radio ON

2. The radio remains on for a period of tawake seconds

3. Once tawake is over, the radio has to be switched off, but any on-going communication needs to

be completed.

4. If there is an on-going communication, the MAC protocol will wait for a period, twait_max before

switching off the radio.

5. If the communication is completed or the maximum wait time is over, then the radio will go off

and will remain in the off state for a period of tsleep.

6. The process is repeated.

10
Source: Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Protothreads: simplifying event-driven programming of memory-constrained embedded systems.

In Proceedings of the 4th international conference on Embedded networked sensor systems (SenSys '06). ACM.

Radio sleep cycle code with events

11

Event driven code can be

messy and complex

Source: Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Protothreads: simplifying event-driven programming of memory-constrained embedded systems.

In Proceedings of the 4th international conference on Embedded networked sensor systems (SenSys '06). ACM.

Radio sleep cycle with Protothreads

12
Source: Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. 2006. Protothreads: simplifying event-driven programming of memory-constrained embedded systems.

In Proceedings of the 4th international conference on Embedded networked sensor systems (SenSys '06). ACM.

Sensor Network Programming

 Sensor Network programming can be: node centric or it can be application

centric.

 Node-centric approaches focus on development of a software for nodes

(on a per-node level).

 Application-centric approaches focus on developing software for a part or

all of the network as one entity.

 The application centric programming will require collaboration among

different nodes in the network for collection, dissemination, analysis and/or

processing of the generated and collected data.

 While in node centric programming the main focus is on developing a

software on a per-node level.

13

The Contiki code

#include "contiki.h"

PROCESS(sample_process, "My sample process");

AUTOSTART_PROCESSES(&sample_process);

PROCESS_THREAD(sample_process, ev, data) {

PROCESS_BEGIN();

while(1) {

PROCESS_WAIT_EVENT();

}

PROCESS_END();

}

Header files

Defines the name of

the process

Defines the process

will be started every

time module is

loaded

contains the process

code

Threads must have

an end statement
Event parameter;

process can respond to

events

process can receive data

during an event

The Contiki code

#include "contiki.h"

PROCESS(sample_process, "My sample process");

AUTOSTART_PROCESSES(&sample_process, &LED_process);

PROCESS_THREAD(sample_process, ev, data) {

static struct etimer t;

static int c = 0;

PROCESS_BEGIN();

etimer_set(&t, CLOCK_CONF_SECOND);

while(1) {

PROCESS_WAIT_EVENT();

if(ev == PROCESS_EVENT_TIMER) {

printf(“Timer event #%i\n", c);

c++;

etimer_reset(&t);

}
}

PROCESS_END();

}

PROCESS_THREAD(LED_process, ev, data) {

static uint8_t leds_state = 0;

PROCESS_BEGIN();

leds_off(0xFF);

leds_on(leds_state);

PROCESS_END();

}

Process thread

names

Process thread 1

Process thread 2

Running Contiki on a Hardware

 Write your code

 Compile Contiki and the application

 make TARGET=XM1000 sample_process

 Make file

 If you plan to compile your code on the chosen platfrom more than once;

 make TARGE=XM1000 savetarget

 Upload your code

 make simple_process.upload

 Login to the device

 make login

16

CONTIKI = ../..

all: simple_process

include $(CONTIKI)/Makefile.include

Nodes and Applications in

Wireless Sensor Networks
 Sensor Networks consist of nodes with different

capabilities.

 Large number of heterogeneous sensor nodes

 Spread over a physical location

 It includes physical sensing, data processing and

networking

 In ad-hoc networks, sensors can join and leave

due to mobility, failure etc.

 Data can be processed in-network, or it can be

directly communicated to the endpoints.

Types of nodes

 Sensor nodes

 Low power

 Consist of sensing device, memory, processor and

radio

 Resource-constrained

 Sink nodes

 Another sensor node or a different wireless node

 Normally more powerful/better resources

 Gateway

 A more powerful node

 Connection to core network

Types of applications

 Event detection

 Reporting occurrences of events

 Reporting abnormalities and changes

 Could require collaboration of other nearby or remote nodes

 Event definition and classification is an issue

 Periodic measurements

 Sensors periodically measure and report the observation and measurement
data

 Reporting period is application dependent

 Approximation and pattern detection

 Sending messages along the boundaries of patterns in both space/time

 Tracking

 When the source of an event is mobile

 Sending event updates with location information

Requirements and challenges

 Fault tolerance

 The nodes can get damaged, run out of power, the

wireless communication between two nodes can be

interrupted, etc.

 To tolerate node failures, redundant deployments can

be necessary.

 Lifetime

 The nodes could have a limited energy supply;

 Sometimes replacing the energy sources is not

practical (e.g. underwater deployment, large/remote

field deployments).

 Energy efficient operation can be a necessity.

Requirements and challenges –

Cont’d
 Scalability

 A WSN can consists of a large number of nodes

 The employed architectures and protocols should

scale to these numbers.

 Wide range of densities

 Density of the network can vary

 Different applications can have different node densities

 Density does not need to be homogeneous in the

entire network and network should adapt to such

variations.

Requirements and challenges –

Cont’d
 Programmability

 Nodes should be flexible and their tasks could change

 The programmes should be also changeable during

operation.

 Maintainability

 WSN and environment of a WSN can change;

 The system should be adaptable to the changes.

 The operational parameters can change to choose

different trade-offs (e.g. to provide lower quality when

energy efficiency is more important)

Required mechanisms

 Multi-hop wireless communications

 Communication over long distances can require
intermediary nodes as relay (instead of using high
transmission power for long range communications).

 Energy-efficient operation

 To support long lifetime

 Energy efficient communication/dissemination of
information

 Energy efficient determination of a requested
information

 Auto-configuration

 Self-xxx functionalities

 Tolerating node failures

Required mechanisms

 Collaboration and in-network processing

 In some applications a single sensor node is not able to handle the given task or

provide the requested information.

 Instead of sending the information form various source to an external

network/node, the information can be processed in the network itself.

 e.g. data aggregation, summarisation and then propagating the processed data with

reduced size (hence improving energy efficiency by reducing the amount of data to

be transmitted).

 Data-centric

 Conventional networks often focus on sending data between two specific

nodes each equipped with an address.

 Here what is important is data and the observations and measurements not the

node that provides it.

Communication and Network

Protocol Support

Communication Protocols

 Wired

 USB, Ethernet

 Wireless

 Wifi, Bluetooth, ZigBee, IEEE 802.15.x

 Single-hop or multi-hop

 Sink nodes, cluster heads…

 Point-to-Point or Point-to-Multi Point

 (Energy) efficient routing

ZigBee

 It is supposed to be a low cost, low power mesh network protocol.

 ZigBee operation range is in the industrial, scientific and medical radio

bands;

 ZigBee’s physical layer and media access control defined in defined based

on the IEEE 802.15.4 standard.

 ZigBee nodes can go from sleep to active mode in 30 ms or less, the

latency can be low and in result the devices can be responsive, in particular

compared to Bluetooth devices that wake-up time can be longer (typically

around three seconds).

[source: Gary Legg, ZigBee: Wireless Technology for Low-Power Sensor Networks,

http://www.eetimes.com/document.asp?doc_id=1275760]

http://www.eetimes.com/document.asp?doc_id=1275760

ZigBee

[source: Gary Legg, ZigBee: Wireless Technology for Low-Power Sensor Networks,

http://www.eetimes.com/document.asp?doc_id=1275760]

http://www.eetimes.com/document.asp?doc_id=1275760

Network protocols

 The network (or OSI Layer 3 abstraction)

provides an abstraction of the physical world.

 Communication protocols

 Most of the IP-based communications are based on the

IPV.4 (and often via gateway middleware solutions)

 IP overhead makes it inefficient for embedded devices

with low bit rate and constrained power.

 However, IPv6.0 is increasingly being introduced for

embedded devices

 6LowPAN

IPv6 over Low power Wireless Personal Area Networks

(6LowPAN)

 6LoWPAN typically includes devices that work together to connect the

physical environment to real-world applications, e.g., wireless sensors.

 Small packet size

 the maximum physical layer packet is 127 bytes

 81 octets (81 * 8 bits) for data packets.

 Header compression

 Fragmentation and reassembly
 6LoWPAN defines a header encoding to support fragmentation when

IPv6 datagrams do not fit within a single frame and compresses IPv6
headers to reduce header overhead.

 Support for both 16-bit short or IEEE 64-bit extended media access

control addresses.

 Low bandwidth

 Data rates of 250 kbps, 40 kbps, and 20 kbps for each of the currently defined

physical layers (2.4 GHz, 915 MHz, and 868 MHz, respectively).

Source: Jonathan W. Hui and David E. Culler, IPv6 in Low-Power Wireless Networks, Proceedings of the IEEE (Volume:98 , Issue: 11).

6LowPAN

 IPv6 requires the link to carry a payload of up to

1280 Bytes.

 Low-power radio links often do not support such

a large payload - IEEE 802.15.4 frame only

supports 127 Bytes of payload and around 80 B in

the worst case (with extended addressing and full

security information).

 the IPv6 base header, as shown, is relatively large

at 40 Bytes.

Source: Jonathan W. Hui and David E. Culler, IPv6 in Low-Power Wireless Networks, Proceedings of the IEEE (Volume:98 , Issue: 11).

Using gateway and middleware

 It is unlikely that everything will be IP enabled

and/or will run IP protocol stack

 Gateway and middleware solutions can interfaces

between low-level sensor island protocols and IP-

based networks.

 The gateway can also provide other components

such as QoS support, caching, mechanisms to

address heterogeneity and interoperability issues.

Gateway and IP networks

Gateway

Frieder Ganz, Payam Barnaghi, Francois Carrez and Klaus Moessner, "Context-aware Management for

Sensor Networks", in the Fifth International Conference on COMmunication System softWAre and

middlewaRE (COMSWARE11), July 2011.

Service interfaces to WSN

 Supporting high-level request/response interactions

 Asynchronous event notifications

 Identifying and accessing data

 By location, by observed entity,

 By semantically meaningful representations – “Room 35BA01”

 Accessibility of in-network processing functions

 Accessing node/network status information (e.g., battery level)

 Security, management functionality, …

 There are emerging solutions and standards in this domain supported by

Semantic Web technologies and Linked-data (we study some of these next

week).

Service interfaces and Web

connectivity
 WSN nodes are typically resource constrained

 Memory and process limitations

 Communication load

 Often none-IP or use 6LowPAN

 Using gateway and middleware is a clear solution

 Or can the nodes directly connect to the Web

and or support service interfaces?

Constrained Application Protocol

(CoAP)
 CoAP is a transfer protocol for constrained nodes and networks.

 CoAP uses the Representational State Transfer (REST) architecture.

 REST make information available as resources that are identified by URIs.

 Applications communication by exchanging representation of these resources
using a transfer protocol such as HTTP.

 Clients access servicer controlled resources using synchronous
request/response mechanisms.

 Such as GET, PUT, POST and DELETE.

 CoAp uses UDP instead of TCP and has a simple “message layer” for re-
transmitting lost packets.

 It also uses compression techniques.

C. Bormann, A. P. Castellani, Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing,

vol. 16, no. 2, pp. 62-67, Feb. 2012, doi:10.1109/MIC.2012.29

Constrained Application Protocol (CoAP)

Client

GET/temperature,

Room A

Server

200 OK

Txt/plain

17, Celsius

CoAP protocol stack and interactions

C. Bormann, A. P. Castellani, Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet Nodes," IEEE Internet Computing,

vol. 16, no. 2, pp. 62-67, Feb. 2012, doi:10.1109/MIC.2012.29

