Introductory Econometrics:
A modern approach (Wooldridge)

—N Chapter 2

The Simple Regression Model
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2.1 Definition of Simple Regression Model

o Applied econometric analysis often begins with 2 variables y and x.
We are interested in “studying how y varies with changes in x”".

E.g., x is years of education, y is hourly wage.
x is number of police officers, y is a community crime rate.

In the simple linear regression model:

o y=p,+Bx+u (2.1)

y is called the dependent variable, the explained variable, or the
regressand.

x is called the independent variable, the explanatory variable, or the
regressor.

u, called error term or disturbance, represents factors other than x
that affect y. u stands for “unobserved”.

a
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2.1 Definition of Simple Regression Model

o If the other factors in u are held fixed, Au =0, then x has a linear
effecton y: Ay = BAX

o P is the slope parameter. This is of primary interest in applied
economics.

o One-unit change in x has the same effect on y, regardless of the
initial value of x. - Unrealistic.

o E.g., wage-education example, we might want to allow for
increasing returns.
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2.1 Definition of Simple Regression Model

o An assumption: the average value of u in the population is zero.
E(u) =0 (2.5)
This assumption is not restrictive since we can always use 5, to
normalize E(u) to 0.

o Because u and x are random variables, we can define conditional
distribution of u given any value of x.

o Crucial assumption: average value of u does not depend on x.
E(ulx) = E(u) (2.6)

o (2.5) + (2.6) > the zero conditional mean assumption.

o This implies E(y[X) = By + BiX
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2.1 Definition of Simple Regression Model

o Population regression function (PRF): E(y|x) is a linear function of x.
For any value of x, the distribution of y is centered about E(y|x).

V
f(y) /

T

E(y[X) =B+ BX

X1 X2
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2.2 Ordinary Least Squares

& How to estimate population parameters 5, and S, from a sample?

o Let{(x,y):i=1,2, ..., n} denote a random sample of size n from the
population.

o For each observation in this sample, it will be the case that
Vi =Bt BX+u,
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2.2 Ordinary Least Squares
==
o PRF, sample data points and the associated error terms:
y
Y4
Y3 E(y1% =4, + Ax
Y3 }ug
Y2 u2{ /
Yy e
iX; X, X3 X 4 X
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2.2 Ordinary Least Squares
|
o To derive the OLS estimates, we need to realize that our main
assumption of E(u|x) = E(u) = 0 also implies that
Cov(x,u) = E(xu) =0 (2.11)
Why? Cov(x,u) = E(xu) — E(X)E(u) = E,[E(xu|x)] = E,[XE(u[x)] = 0.
o We can write 2 restrictions (2.5) and (2.11) in terms of x, y, S,and 3,
E(y-B,-5x)=0 (2.12)
E[x(y=B,~Bx)]=0 (2.13)
o (2.12) and (2.13) are 2 moment restrictions with 2 unknown
parameters. > They can be used to obtain good estimators of 53,
and 5.
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2.2 Ordinary Least Squares
==

o Method of moments approach to estimation implies imposing the
population moment restrictions on the sample moments.

o Given a sample, we choose estimates 3, and /3, to solve the
sample versions:

(i =B=Bx)=0 (2.14)

M- o=

Sk 5|k

X (% =B~ B%)=0 (2.15)

T
o

o Given the properties of summation, (2.14) can be rewritten as
V=5,+Bx (2.16)
or By =Y-BX (2.17)
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2.2 Ordinary Least Squares

o Drop 1/nin (2.15) and plug (2.17) into (2.15):
S %y -[7-Bx1-Bx)=0

u
Iy

x(x-?)=iﬁix(x-i)

M- 114

(=00~ = B3 ~?

o Provided that

M-

(X -X)2>0 (2.18)

M- E

Y- -9
the estimated slope is g ="+ (2.19)

2 =%)?
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2.2 Ordinary Least Squares

o Summary of OLS slope estimate:

- Slope estimate is the sample covariance between x and y divided
by the sample variance of x.

- If x and y are positively correlated, the slope will be positive.
- If x and y are negatively correlated, the slope will be negative.
-Only need x to vary in the sample.

o ﬁg and ﬁl givenin (2.17) and (2.19) are called the ordinary least
squares (OLS) estimates of S,and f, .

Dr. Lé Van Chon — FTU, 2011

2.2 Ordinary Least Squares

o To justify this name, for any ,30 and [31 define a fitted value for y
given x = x;: 9 = l}o o /}Pﬂ (2.20)

a

The residual for observation i is the difference between the actual y;
and its fitted value: G =Yy -9 =Y -B,-BX

o Intuitively, OLS is fitting a line through the sample points such that
the sum of squared residuals is as small as possible > term
“ordinary least squares”.

Formal minimization problem:
o minY 67 =>"(y, - B, - Bx)? (2.22)
i=1

hos &

o
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2.2 Ordinary Least Squares

o Sample regression line, sample data points and residuals:
y
Y4 pA

4 g’:ﬁo*'/}lx

y
yi /

Y1

X, X3 Xy X
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2.2 Ordinary Least Squares

o To solve (2.22), we obtain 2 first order conditions, which are the
same as (2.14) and (2.15), multiplied by n.

o Once we have determined the OLS ,50 and ﬁl, we have the OLS

regression line: f’:ﬁo*'l}lx (2.23)

o (2.23) is also called the sample regression function (SRF) because
it is the estimated version of the population regression function
(PRF) E(y[X) =B, + BX.

o Remember that PRF is fixed but unknown.
Different samples generate different SRFs.
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2.2 Ordinary Least Squares

o Slope estimate /3’1 is of primary interest. It tells us the amount by
which ¥ changes when x increases by 1 unit.

Ay = BAx
o E.g., we study the relationship between firm performance and CEO
compensation.
salary = B,+ Broe +u
salary = CEO'’s annual salary in thousands of dollars,
roe = average return (%) on the firm'’s equity for previous 3 years.
= Because a higher roe is good for the firm, we think 3, > 0.

o Data set CEOSALL contains information on 209 CEOs in 1990.
o OLS regression line: salary = 963.191 + 18.501roe (2.26)
Dr. L& Van Chon — FTU, 2011
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2.2 Ordinary Least Squares

o E.g., for the population of the workforce in 1976, let
y = wage, $ per hour,
x = educ, years of schooling.

o Using data in WAGE1 with 526 observations, we obtain the OLS
regression line:

wéage =-0.90 + 0.54educ (2.27)

o Implication of the intercept? Why?

Only 18 people in the sample have less than 8 years of education.
-> the regression line does poorly at very low levels.

o Implication of the slope?

Dr. Lé Van Chon — FTU, 2011
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2.3 Mechanics of OLS

Fitted Values and Residuals

o Given ,[?0 and [?1 , we can obtain the fitted value ¥ for each
observation. Each ¥, is on the OLS regression line.

© OLS residual associated with observation i, G, is the difference
between y; and its fitted value.

If 0, is positive, the line underpredicts ;.
If G, is negative, the line overpredicts y;.

o In most cases, every U, #0, none of the data points lie on the OLS
line.
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2.3 Mechanics of OLS

Algebraic Properties of OLS Statistics

(1) The sum and thus the sample average of the OLS residuals is zero.

L. 1.
>0,=0and thus =G, =0
i=1 ni=

(2) The sample covariance between the regressors and the OLS
residuals is zero. n
> xd,=0
i=1

(3) The OLS regression line always goes through the mean of the
sample. V=B, +BX
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2.3 Mechanics of OLS

o We can think of each observation i as being made up of an
explained part and an unexplained part y, =y, +0;.

o We define the following:

Z(Y. ~¥)? is the total sum of squares (SST),

(9 - ¥)? is the explained sum of squares (SSE),

-

-
I

7 is the residual sum of squares (SSR).
i=1

= Then SST = SSE + SSR (2.36)
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2.3 Mechanics of OLS

o Proof:
> = -5+ 59 = 306+ (5, -9
=30 42) 05 -D) X -9
=SR2 (7, ~5) +SE

i=1

and we know that Y 0,(§, -y)=0

i=1
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2.3 Mechanics of OLS

Goodness-of-Fit
o How well the OLS regression line fits the data?

o Divide (2.36) by SST to get:
1= SSE/SST + SSR/SST

o The R-squared of the regression or the coefficient of

determination ,_SE SR

R=—=1-—
SsT SST (2.38)
Itimplies the fraction of the sample variation in y that is explained
by the model.
0<R’<1
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2.3 Mechanics of OLS

o E.g., CEOSALL. roe explains only about 1.3% of the variation in
salaries for this sample.

o = 98.7% of the salary variations for these CEOs is left unexplained!

o Notice that a seemingly low R? does not mean that an OLS
regression equation is useless.

o Itis still possible that (2.26) is a good estimate of the ceteris paribus
relationship between salary and roe.
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2.4 Units of Measurement

o OLS estimates change when the units of measurement of the
dependent and independent variables change.

o E.g., CEOSALL. Rather than measuring salary in $'000, we
measure it in $, salardol = 1,000.salary.

Without regression, we know that
salardol = 963,191 + 18,501roe. (2.40)

o Multiply the intercept and the slope in (2.26) by 1,000 - (2.26) and
(2.40) have the same interpretations.

o Define roedec = roe/100 where roedec is a decimal.
salary = 963.191 + 1850.1roedec. (2.41)
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2.4 Units of Measurement

o What happens to R? when units of measurement change?
Nothing.
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a

2.4 Nonlinearities in Simple Regression

o Itis rather easy to incorporate many nonlinearities into simple

regression analysis by appropriately defining y and x.

o E.g., WAGEL. /3’1 of 0.54 means that each additional year of

education increases wage by 54 cents. - maybe not reasonable.

Suppose that the percentage increase in wage is the same given
one more year of education.

(2.27) does not imply a constant percentage increase.

= New model: log(wage) = B,+ £, educ +u (2.42)

where log(.) denotes the natural logarithm.
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2.4 Nonlinearities in Simple Regression

For each additional year of education, the percentage change in
wage is the same. - the change in wage increases.

(2.42) implies an increasing return to education.

a

o

Estimating this model and the mechanics of OLS are the same:
o l6g(wage) = 0.584 + 0.083educ (2.44)
o wage increases by 8.3 percent for every additional year of educ.

a
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2.4 Nonlinearities in Simple Regression

o Another important use of the natural log is in obtaining a constant
elasticity model.

o E.g., CEOSAL1L. We can estimate a constant elasticity model
relating CEO salary ($'000) to firm sales ($ mil):

log(salary) = B, + 3 log(sales) + u (2.45)
where B is the elasticity of salary with respect to sales.

If we change the units of measurement of y, what happens to 5,?

a

Nothing.
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2.4 Meaning of Linear Regression

o We have seen a model that allows for nonlinear relationships. So
what does “linear” mean?

o Anequation 'y = B+ Bix + uis linear in parameters, B3, and ;.

There are no restrictions on how y and x relate to the original
dependent and independent variables.

o Plenty of models cannot be cast as linear regression models
because they are not linear in their parameters.

E.g., cons = 1/( B,+ B, inc) +u

Dr. Lé Van Chon — FTU, 2011
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2.5 Unbiasedness of OLS

Unbiasedness of OLS is established under a set of assumptions:
o Assumption SLR.1 (Linear in Parameters)
The population model is linear in parameters as
y=B+tBx+u (2.47)
where S, and g, are the population intercept and slope parameters.

o Realistically, y, x, u are all viewed as random variables.

o Assumption SLR.2 (Random Sampling)

We can use a random sample of size n, {(x;,y)):i=1, 2, ..., n}, from
the population model.

Dr. Lé Van Chon — FTU, 2011

2.5 Unbiasedness of OLS

o Not all cross-sectional samples can be viewed as random samples,
but many may be.

o We can write (2.47) in terms of the random sample as
Vi =Bt BX+U, i=1,2 ..,n (2.48)

o To obtain unbiased estimators of 4, and £, , we need to impose
o Assumption SLR.3 (Zero Conditional Mean)
E(ulx) =0

This assumption implies E(ulx) =0 foralli=1,2, ..., n.

Dr. Lé Van Chon — FTU, 2011
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2.5 Unbiasedness of OLS

o Assumption SLR.4 (Sample Variation in the Independent Variable)
In the sample, x;, i = 1, 2, ..., n are not all equal to a constant.

n
This assumption is equivalent to Z(X -X)*>0
i=1

CFom@219): Y0¥~y D00y,
A=

Y- Y x-%
o Plug (2.48) into this: - -

n

YRR U) D5
PUCEEE :
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2.5 Unbiasedness of OLS

o Errors u;'s are generally different from 0. > [31 differs from £,.

o The first important statistical property of OLS:
Theorem 2.1 (Unbiasedness of OLS)
Using Assumptions SLR.1 through SLR.4,
E(B) =5, and E(B) = 4 (2.53)
The OLS estimates of 5, and £, are unbiased.

-+ Proof: E(B)= A+ EIWSST)Y (x ~9u]
= A+ WSST)Y(x ~REW) =4,

Dr. Lé Van Chon — FTU, 2011

2.5 Unbiasedness of OLS

o (2.17) implies
ﬁo = y_ﬂ1i :180 +ﬂ1i+u_ﬂli :/30+(l31‘ﬂ1)i+5
E(B) =B, +El(B-B)XI= 5,
o Remember unbiasedness is a feature of the sampling distributions

of [30 and f,.It says nothing about the estimate we obtain for a
given sample.

o If any of four assumptions fails, then OLS is not necessarily
unbiased.

o When u contains factors affecting y that are also correlated with x
can result in spurious correlation.
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2.5 Unbiasedness of OLS

o E.g., let math10 denote % of tenth graders at a high school

receiving a passing score on a standardized math exam.

Let Inchprg denote % of students eligible for the federally funded

school lunch program.

We expect the lunch program has a positive effect on performance:
math10= 3, + S, Inchprg +u

o

o MEAP93 has data on 408 Michigan high school for the 1992-1993
school year.

math10 = 32.14 — 0.319Inchprg
o Why? u contains such as the poverty rate of children attending
school, which affects student performance and is highly correlated
with eligibility in the lunch program.
Dr. L& Vin Chon — FTU, 2011

2.5 Variances of the OLS Estimators

o Now we know that the sampling distribution of our estimate is
centered about the true parameter.

How spread out is this distribution? - the variance.

o We need to add an assumption.
Assumption SLR.5 (Homoskedasticity)
Var(ulx) = o*

This assumption is distinct from Assumption SLR.3: E(u|x) =0.

This assumption simplifies the variance calculations for 3, and 5,
and it implies OLS has certain efficiency properties.

o

o

Dr. Lé Van Chon — FTU, 2011

2.5 Variances of the OLS Estimators

o Var(ulx) = Eu2|x) — [EQUIX)]2 = EW?[X) = 0° = Var(u) = E(w) = 0°

2 . .
o 0" is often called the error variance.
o O, the square root of the error variance, is called the standard
deviation of the error.

o We can say that
E(y[X) =B+ Bx (2.55)
Var (y|x) =o? (2.56)

Dr. Lé Van Chon — FTU, 2011
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2.5 Variances of the OLS Estimators
o Homoskedastic case:

flylx)

I

Elylx)= 5, + Bix

X1 X2 X
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2.5 Variances of the OLS Estimators

o Heteroskedastic case:

flylx) )

1
Elylx) = B, + Bix

X7 X9 X3 X
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2.5 Variances of the OLS Estimators

o Theorem 2.2 (Sampling variances of the OLS estimators)

Under Assumptions SLR.1 through SLR.5,
2

~ 0'2 a’
Va]’(,q)="7:
S (@2.57)
lZ:l)(& %)
0.2} N X2
and Var (f) =5 — (258)
Z(x -x%)?
var(2)=—L 3 (x —3)2 =SS e O
o Proof: Var(ﬁl)—ssrng(x X)2Var (u;) XZJ =3
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2.5 Variances of the OLS Estimators

o (2.57) and (2.58) are invalid in the presence of heteroskedasticity.

o (2.57) and (2.58) imply that:
(i) The larger the error variance, the larger are Var( ,5’]) .

(i) The larger the variability in the x;, the smaller are Var( B ).

 Problem: the error variance 0 is unknown because we don't
observe the errors, u;.

Dr. Lé Van Chon — FTU, 2011
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2.5 Estimating the Error Variance

o What we observe are the residuals, U;. We can use the residuals to
form an estimate of the error variance.

o We write the residuals as a function of the errors:

G =¥ = By=Bx = (Bo+ B +U) = Bo= B

04 =u-(B-B)-(B-B)x 259
o An unbiased estimator of 07 is
&= 1 iﬁf _SR (2.61)

n-247 n-2

Dr. Lé Van Chon — FTU, 2011

2.5 Estimating the Error Variance

o G=8? = standard error of the regression (SER).

[2)

o Recall that Sd(l}l):ﬁ

X

, if we substitute 6> for o, then we

have the standard error of /}1:

_ 0 a

=(4) —
JSST, h
! (Z(x —i)zj

=

Dr. Lé Van Chon — FTU, 2011

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

14


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2.6 Regression through the Origin

o Inrare cases, we impose the restriction that when x = 0, E(y|0) = 0.
E.g., if income (X) is zero, income tax revenues (y) must also be

zero.

o Equation y= ,E’1x+ a

Obtaining (2.63) is called regression through the origin.

(2.63)

o We still use OLS method with the corresponding first order condition

; < DR
2x(Ax)=0 >  [=-
i=1 ZXZ

If 8,20, then [?1 is a biased estimator of f,.
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(2.66)
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