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ECONOMETRICS



EXPECTED OUTCOME
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 Know how to set up econometric models 

corresponding to real world economic problems

 Know how to use Stata to estimate the models

 Know how to interpret the estimated results

 Know how to use the results for policy purposes 



Course Contents
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 The Nature of Econometrics and Economic Data 

 The Simple Regression Model

 Multiple Regression Analysis: Estimation

 Multiple Regression Analysis: Inference

 Multiple Regression Analysis with Qualitative 

Information

 Specification and Data Problems: Cross-sectional 

Data

 Basic Regression Analysis with Time Series Data

 Basic Regression Analysis with Panel Data

 Application of Econometrics in Finance
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OUTLINE

1. What is Econometrics?

2. Steps in Empirical Economic Analysis

3. Examples

4. Economic Data

5. Causality and the notion of “Ceteris Paribus”

THE NATURE OF ECONOMETRICS 

AND ECONOMIC DATA
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INTRODUCTION
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 Example1: 

 Statisticians say: income and expenditure go in the 

same direction

 Economists say: an increase in income will raise 

expenditure, other things being equal 

 Econometricians say: 1usd increase in income will 

result in 0.70 cent increase in expenditure, other 

things being equal 
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• Combination of statistical methods, economics and data to 
answer empirical questions in economics.

• There are many different types of empirical questions in 
economics. Some examples:

• Forecasting:

Use current and past economic data to predict future values 
of variables such as inflation, GDP, stock prices, etc.

• Testing economic theories:

- Test of the Becker’s economic model of criminal behavior

- Test of the Capital Asset Pricing Model (CAPM) 

1. WHAT IS ECONOMETRICS?
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• Estimation of economic relationships:

- Demand and supply equations;

- Production functions;

- Wage equations, etc.

• Evaluating government policies:

- Employment effects of an increase in the minimum wage; 

- Effects of monetary policy on inflation.

• Evaluating business policies:

- Estimate the impact of job training on worker productivity; 

- Compare profits under two pricing policies.

1. WHAT IS ECONOMETRICS?
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• Econometrics is relevant in virtually every branch of applied 

economics: finance, labor, health, industrial, macro, development, 

international, trade, marketing, strategy, etc.

• There are two important features which distinguish Econometrics 

from other applications of statistics:

1. Economic data is non-experimental data. We cannot simply classify 

individuals or firms in an experimental group and a control group. 

Individuals are typically free to self-select themselves in a group (e.g., 

education, occupation, product market, etc). 

2. Economic models (either simple or sophisticated) are key to interpret the 

statistical results in econometric applications.

1. WHAT IS ECONOMETRICS?
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• The research process in applied econometrics is not simply 
linear, but it has “loops”.

• Keeping this in mind, it is useful to describe the different 
steps of the research process in econometrics:

1. Formulation of the question(s) of interest.
2. Construction of an economic model

3. Specification of the econometric model

4. Hypotheses postulated
5. Collection of data

6. Estimation, validation, hypotheses testing, prediction.

2. STEPS IN EMPIRICAL ECONOMIC ANALYSIS
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Step 1: Empirical question(s)

• Suppose that the government wants to evaluate the 
effectiveness of a publicly-funded job training program.

• Regulators : this is important for the decision to continue 
investments and organization of these the training program.

• Society: this is a solution to increase labor productivity, and 
subsequently economic development.

• Initial question: What is the impact of the job training 
program on worker productivity?

3. EXAMPLE: Job Training and Worker Productivity
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Step 2: Economic Model

• Verify economic factors that affect worker productivity: 
education, experience, training, etc. 

• Operationalize the variable of interest: Workers are paid 
commensurate with their productivity

3. EXAMPLE: Job Training and Worker Productivity



14

Step 3: Econometric Model

• An Econometric Model is an economic model where we take 
into account what is observable and not to the researcher.

• A researcher’s decision of which economic model to 
estimate depends critically on what is observable.

wage: hourly wage

educ: years of formal education

exper: year of workforce experience

training: weeks spent in job training 

• The β’s are parameters to estimate. 

• u represents unobservable inputs, e.g., ability.

3. EXAMPLE: Job Training and Worker Productivity



15

Step 4: Hypothesis

Other things kept constant, the workers who spent more 
weeks in job training have higher wage than those who spent 
less weeks in job training.

Step 5: Collection of data

 Data on hourly wage, years of education, years of 
experience, and weeks spent in job training of every 
worker in the sample are collected

 Data on control factors: family background, age, gender, 
etc. 

3. EXAMPLE: Job Training and Worker Productivity
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Step 4: Estimation, validation, hypotheses testing, prediction

• The parameters β are estimated by a relevant econometrics 
method. After estimation, we have to make specification 
tests in order to validate some of the specification 
assumptions that we have made for estimation.

• The results of these tests may imply a re-specification and 
re-estimation of the model.

• Once we have a validated model, we can interpret the results 
from an economic point of view, make tests, and predictions.

3. EXAMPLE: Job Training and Worker Productivity
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• Different types of datasets have their own issues, advantages 

and limitations.

• Some econometric methods may be valid for some types of 

data but not for others.

• We typically distinguish three types of datasets:

1. Cross-Sectional Data

2. Time Series Data

3. Panel Data or Longitudinal Data

4. Economic Data
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Cross-Sectional Data

• A cross-sectional dataset is a sample of individuals, or 

households, or firms, or cities, or states, or countries, …, 

taken at a given point in time.

• We often assume that these data have been obtained by 

random sampling.

• Sometimes we do not have a random sample: sample 

selection problem; spatial correlation.

4. Economic Data
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 Example of cross-section
obsno wage educ exper female married

1 3,10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

. . . . . .

. . . . . .

. . . . . .

499 11.56 16 5 0 1

500 3.50 14 5 1 0

4. Economic Data
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Time Series Data

• A time series dataset consists of observations on a variable or several 

variables over several periods of time (days, weeks, months, years).

• A key feature of time series data is that, typically, observations are 

correlated across time. We do not have a random sample.

• This time correlation introduces very important issues in the estimation 

and testing of econometric models using time series data.

• Seasonality is other common feature in many weekly, monthly or 

quarterly time series data.

4. Economic Data
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 Example of time series dataset:

obsno year month exrate irate

1 1990 1 1.32 7.35

2 1990 2 1.30 7.30

3 1990 3 1.29 7.32

. . . . .

. . . . .

. . . . .

191 2005 11 1.11 4.26

192 2005 12 1.10 4.31

4. Economic Data
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Panel Data or Longitudinal Data

• In panel data we have a group of individuals (or households, 

firms, countries, …) who are observed at several points in 

time. That is, we have time series data for each individual 

in the sample.

• The key feature of panel data that distinguishes them from 

pooled cross sections is that the same individuals are 

followed over a given period of time.

• Using panel data we can control for time-invariant 

unobserved characteristics of individuals, firms, countries, 

…

4. Economic Data
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 Example of panel dataset: 150 cities over 2 years

obsno city Year murders population police

1 1 1999 5 350,000 440

2 1 2000 8 359,200 471

3 2 1999 2 64.300 75

4 2 2000 1 65,100 75

. . . . . .

. . . . . .

299 150 1999 25 543,000 520

300 150 2000 32 546,200 493

4. Economic Data
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• Most empirical questions in economics are associated to the 

identification of CAUSAL EFFECTS.

• The notion of ceteris paribus (i.e., “other factors being 

equal”) plays an important role in the analysis of causality.

• What we need to identify causal effects is to hold constant 

all the relevant factors which are not independent of the 

causal variable under study. 

5. Causality and the notion of “Ceteris Paribus”



Basic Statistical Concepts: A Review
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 E(X)

 If X is discrete: x1,..,xn:

 E(aX + bY) = aE(X) + bE(Y)

 Variance
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 Standard deviation:

 cov(X,Y)= E[(X-E(X))(Y-E(Y)]

 Correlation coefficient: 
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THE SIMPLE REGRESSION MODEL



1

Y

SIMPLE LINEAR REGRESSION MODEL

Suppose that a variable Y is a linear function of another variable X, with 

unknown parameters b1 and b2 that we wish to estimate.

XY
21
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b1

XX1 X2 X3 X4



Suppose that we have a sample of 4 observations with X values as shown.

SIMPLE LINEAR REGRESSION MODEL
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If the relationship were an exact one, the observations would lie on a 

straight line and we would have no trouble obtaining accurate estimates of b1

and b2.
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SIMPLE LINEAR REGRESSION MODEL
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P4

In practice, most economic relationships are not exact and the actual values 
of Y are different from those corresponding to the straight line.
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SIMPLE LINEAR REGRESSION MODEL
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To allow for such divergences, we will write the model as Y = b1 + b2X + u, 

where u is a disturbance term.
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SIMPLE LINEAR REGRESSION MODEL
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Each value of Y thus has a nonrandom component, b1 + b2X, and a random 

component, u.  The first observation has been decomposed into these two 
components.
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SIMPLE LINEAR REGRESSION MODEL
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In practice we can see only the P points.

P3
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SIMPLE LINEAR REGRESSION MODEL
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P4

Obviously, we can use the P points to draw a line which is an approximation 

to the line Y = b1 + b2X.  

If we write this line Y = b1 + b2X, b1 is an estimate of b1 and b2 is an estimate 

of b2.
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SIMPLE LINEAR REGRESSION MODEL
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The line is called the fitted model and the values of Y predicted by it are 
called the fitted values of Y.  They are given by the heights of the R points.
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SIMPLE LINEAR REGRESSION MODEL
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XX1 X2 X3 X4

The discrepancies between the actual and fitted values of Y are known as the 
residuals.
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Note that the values of the residuals are not the same as the values of the 
disturbance term.  The diagram now shows the true unknown relationship as 
well as the fitted line.

The disturbance term in each observation is responsible for the divergence 
between the nonrandom component of the true relationship and the actual 
observation.
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P4

The residuals are the discrepancies between the actual and the fitted values.

If the fit is a good one, the residuals and the values of the disturbance term 
will be similar, but they must be kept apart conceptually.
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SIMPLE LINEAR REGRESSION MODEL
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 Functional Relationship

If the other factors in disturbance term are held 

fixed, so that the change in   is zero, then 

independent variable has a linear effect on 

dependent variable

 Zero conditional mean assumption

 Population regression function (PRF)

A one-unit increase in x changes the expected 

value of y by the amount 

40
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This sequence shows how the regression coefficients for a simple regression model are 

derived, using the least squares criterion (OLS, for ordinary least squares)

We will start with a numerical example with just three observations: (1,3), (2,5), and (3,6)
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Writing the fitted regression as Y = b1 + b2X, we will determine the values of b1 and b2 that 

minimize RSS, the sum of the squares of the residuals.
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Least squares criterion:
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Minimize RSS (residual sum of squares), where

You would get an apparently perfect fit by drawing a horizontal line through 
the mean value of Y.  The sum of the residuals would be zero.

You must prevent negative residuals from cancelling positive ones, and one 
way to do this is to use the squares of the residuals. 19
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Given our choice of b1 and b2, the residuals are as shown.
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SIMPLE REGRESSION ANALYSIS
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The first-order conditions give us two equations in two unknowns. Solving them, we find 
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The fitted line and the fitted values of Y are as shown.
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DERIVING LINEAR REGRESSION COEFFICIENTS

XXnX1

Y

XbbY

uXY

21

21

ˆ   :line Fitted

   :model True



 bb

1
Y

n
Y

Now we will do the same thing for the general case with n observations.
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DERIVING LINEAR REGRESSION COEFFICIENTS
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Given our choice of b1 and b2, we will obtain a fitted line as shown.
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DERIVING LINEAR REGRESSION COEFFICIENTS

The residual for the first observation is defined.

Similarly we define the residuals for the remaining observations.  That for the last one is 

marked.
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DERIVING LINEAR REGRESSION COEFFICIENTS
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We chose the parameters of the fitted line so as to minimize the sum of the squares of the 

residuals.  As a result, we derived the expressions for b1 and b2  using the first order 

condition
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INTERPRETATION OF A REGRESSION EQUATION

The scatter diagram shows hourly earnings in 2002 plotted against years of 
schooling for a sample of 540 respondents from the National Longitudinal 
Survey of Youth.

-20

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Years of schooling

H
o

u
rl

y
 e

a
rn

in
g

s
 (

$
)



. reg EARNINGS S

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  1,   538) =  112.15

Model |  19321.5589     1  19321.5589           Prob > F      =  0.0000

Residual |  92688.6722   538  172.283777           R-squared     =  0.1725

-------------+------------------------------ Adj R-squared =  0.1710

Total |  112010.231   539  207.811189           Root MSE      =  13.126

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.455321   .2318512    10.59   0.000     1.999876    2.910765

_cons |  -13.93347   3.219851    -4.33   0.000    -20.25849   -7.608444

------------------------------------------------------------------------------

INTERPRETATION OF A REGRESSION EQUATION

This is the output from a regression of earnings on years of schooling, using 
Stata. 

In this case there is only one variable, S, and its coefficient is 2.46.  _cons, in 
Stata, refers to the constant.  The estimate of the intercept is -13.93. 
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Here is the scatter diagram again, with the regression line shown.

S is measured in years (strictly speaking, grades completed), EARNINGS in 
dollars per hour.  So the slope coefficient implies that hourly earnings 
increase by $2.46 for each extra year of schooling.

INTERPRETATION OF A REGRESSION EQUATION

SEARNINGS 46.293.13 
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Geometrical representation: The regression line indicates that completing 
12th grade instead of 11th grade would increase earnings by $2.46, from 
$13.07 to $15.53, as a general tendency. 

INTERPRETATION OF A REGRESSION EQUATION

One 
year

$2.46$13.07

$15.53
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INTERPRETATION OF A REGRESSION EQUATION

SEARNINGS 46.293.13 
^

Literally, the constant indicates that an individual with no years of education 
would have to pay $13.93 per hour to be allowed to work. => it does not 
make any sense



INTERPRETATION OF A REGRESSION EQUATION

A safe solution to the problem is to limit the interpretation to the range of 
the sample data, and to refuse to extrapolate on the ground that we have no 
evidence outside the data range. 
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Another solution is to explore the possibility that the true relationship is 
nonlinear and that we are approximating it with a linear regression.  We will 
soon extend the regression technique to fit nonlinear models. 

INTERPRETATION OF A REGRESSION EQUATION
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BASIC ASSUMPTION OF THE OLS

58

 zero systematic error: E(ui) =0

 Homoscedasticity: var(ui) = δ2 for all i

 No autocorrelation: cov(ui; uj) = 0 for all i #j

 X is non-stochastic

 u~ N(0, δ2)



Useful results:

GOODNESS OF FIT
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The main criterion of goodness of fit, formally described as the coefficient of 
determination, but usually referred to as R2, is defined to be the ratio of ESS
to TSS, that is, the proportion of the variance of Y explained by the 
regression equation.
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The OLS regression coefficients are chosen in such a way as to minimize the 
sum of the squares of the residuals.  Thus it automatically follows that they 
maximize R2.  

     
2

22 ˆ
iii

eYYYY RSSESSTSS 



Simple regression model: Y = b1 + b2X + u

We will now demonstrate that the ordinary least squares (OLS) estimator of the slope 
coefficient in a simple regression model is unbiased.

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS

  

 












ii

i

ii

ua

XX

YYXX
b

222
b



Simple regression model: Y = b1 + b2X + u

We saw in a previous slideshow that the slope coefficient may be decomposed into the 
true value and a weighted sum of the values of the disturbance term.

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS
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Simple regression model: Y = b1 + b2X + u

Hence the expected value of b2 is equal to the expected value of b2 and the expected 

value of the weighted sum of the values of the disturbance term.

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS
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Simple regression model: Y = b1 + b2X + u

b2 is fixed so it is unaffected by taking expectations.  The first expectation rule states 

that the expectation of a sum of several quantities is equal to the sum of their 
expectations.

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS
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Simple regression model: Y = b1 + b2X + u

Now for each i, E(aiui) = aiE(ui)

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS
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Simple regression model: Y = b1 + b2X + u

Under zero conditional mean, E(ui) = 0 for all i, and so the estimator is unbiased

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS
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Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

In this sequence we will see that we can also obtain estimates of the 
standard deviations of the distributions.  These will give some idea of their 
likely reliability and will provide a basis for tests of hypotheses.

probability 
density
function of b2

b2

standard deviation 
of density function 
of b2

b2



Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

Expressions (which will not be derived) for the variances of their 
distributions are shown above.  

We will focus on the implications of the expression for the variance of b2.  
Looking at the numerator, we see that the variance of b2 is proportional to 

u
2.  This is as we would expect.  The more noise there is in the model, the 

less precise will be our estimates.
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Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

This is illustrated by the diagrams above.  The nonstochastic component of 
the relationship, Y = 3.0 + 0.8X, represented by the dotted line, is the same 
in both diagrams.

However, in the right-hand diagram the random numbers have been 
multiplied by a factor of 5.  As a consequence, the regression line, the solid 
line, is a much poorer approximation to the nonstochastic relationship.
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Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

Looking at the denominator, the larger is the sum of the squared deviations 
of X, the smaller is the variance of b2. 

  


















2

2

22 1

1

XX

X

n
i

ub


  )(MSD 

2

2

2

2

2

XnXX

u

i

u

b


 









Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

In the diagrams above, the nonstochastic component of the relationship is 
the same and the same random numbers have been used for the 20 values of 
the disturbance term.
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Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

However, MSD(X) is much smaller in the right-hand diagram because the 
values of X are much closer together.
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Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS

Hence in that diagram the position of the regression line is more sensitive to 
the values of the disturbance term, and as a consequence the regression line 
is likely to be relatively inaccurate.
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Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS
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We cannot calculate the variances exactly because we do not know the 
variance of the disturbance term.  However, we can derive an estimator of u

2

from the residuals.



Simple regression model: Y = b1 + b2X + u

PRECISION OF THE REGRESSION COEFFICIENTS
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Clearly the scatter of the residuals around the regression line will reflect the 
unseen scatter of u about the line Yi = b1 + b2Xi, although in general the 
residual and the value of the disturbance term in any given observation are 
not equal to one another.
One measure of the scatter of the residuals is their mean square error, 
MSD(e), defined as shown.    



PRECISION OF THE REGRESSION COEFFICIENTS

The standard errors of the coefficients always appear as part of the output of 
a regression.  The standard errors appear in a column to the right of the 
coefficients.

. reg EARNINGS S

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  1,   538) =  112.15

Model |  19321.5589     1  19321.5589           Prob > F      =  0.0000

Residual |  92688.6722   538  172.283777           R-squared     =  0.1725

-------------+------------------------------ Adj R-squared =  0.1710

Total |  112010.231   539  207.811189           Root MSE      =  13.126

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.455321   .2318512    10.59   0.000     1.999876    2.910765

_cons |  -13.93347   3.219851    -4.33   0.000    -20.25849   -7.608444

------------------------------------------------------------------------------



Simple regression model: Y = b1 + b2X + u

Efficiency

PRECISION OF THE REGRESSION COEFFICIENTS

The Gauss–Markov theorem states that, provided that the regression model 
assumptions are valid, the OLS estimators are BLUE: Linear, Unbiased, Minimum 

variance in the class of all unbiased estimators

probability 
density
function of b2

OLS

other unbiased 
estimator

b2 b2



Summing up

78

 Simple Linear Regression model:

 Verify dependent, independent variables, parameters, 

and the error terms

 Interpret estimated parameters b1 & b2 as they show 

the relationship between X and Y.

 OLS provides BUE estimators for the parameters 

under 5 Gauss-Makov ass.

 What next:

Estimation of multiple regression model
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MULTIPLE REGRESSION 

ANALYSIS: ESTIMATION



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

EARNINGS

EXP

S

b1

EARNINGS = b1 + b2S + b3EXP + u

Literally the intercept gives EARNINGS for those respondents who have no 
schooling and no work experience.  However, there were no respondents 
with less than 6 years of schooling.  Hence a literal interpretation of b1 would 
be unwise.

The model has three dimensions, one each for EARNINGS, S, and EXP.  The starting 
point for investigating the determination of EARNINGS is the intercept, b1.



MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

EARNINGS

EXP

The next term on the right side of the equation gives the effect of variations 
in S.  A one year increase in S causes EARNINGS to increase by b2 dollars, 
holding EXP constant.

S

b1

pure S
effect

b1 + b2S

EARNINGS = b1 + b2S + b3EXP + u



pure EXP effect

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

S

b1

b1 + b3EXP

EARNINGS

EXP

EARNINGS = b1 + b2S + b3EXP + u

Similarly, the third term gives the effect of variations in EXP.  A one year 
increase in EXP causes earnings to increase by b3 dollars, holding S constant.



pure EXP effect

pure S
effect

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

S

b1

b1 + b3EXP

b1 + b2S + b3EXP

EARNINGS

EXP

b1 + b2S

combined effect of S
and EXP

EARNINGS = b1 + b2S + b3EXP + u

b1 + b2S

Different combinations of S and EXP give rise to values of EARNINGS which 
lie on the plane shown in the diagram, defined by the equation EARNINGS = 
b1 + b2S + b3EXP.



pure EXP effect

pure S
effect

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

S

b1

b1 + b3EXP

b1 + b2S + b3EXP

b1 + b2S + b3EXP + u

EARNINGS

EXP

b1 + b2S

combined effect of S
and EXP

u

EARNINGS = b1 + b2S + b3EXP + u

b1 + b2S

The final element of the model is the disturbance term, u.  This causes the 
actual values of EARNINGS to deviate from the plane.  In  this observation, u
happens to have a positive value. 
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MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

The regression coefficients are derived using the same least squares principle 
used in simple regression analysis.  The fitted value of Y in observation i
depends on our choice of b1, b2, and b3.

The residual ei in observation i is the difference between the actual and fitted 
values of Y.

We define RSS, the sum of the squares of the residuals, and choose b1, b2, and 
b3 so as to minimize it, using first order condition.
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. reg EARNINGS S EXP

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  2,   537) =   67.54

Model |  22513.6473     2  11256.8237           Prob > F      =  0.0000

Residual |  89496.5838   537  166.660305           R-squared     =  0.2010

-------------+------------------------------ Adj R-squared =  0.1980

Total |  112010.231   539  207.811189           Root MSE      =   12.91

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.678125   .2336497    11.46   0.000     2.219146    3.137105

EXP |   .5624326   .1285136     4.38   0.000     .3099816    .8148837

_cons |  -26.48501    4.27251    -6.20   0.000    -34.87789   -18.09213

------------------------------------------------------------------------------

MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: 
EXAMPLE

EXPSINGSNEAR 56.068.249.26ˆ 

It indicates that earnings increase by $2.68 for every extra year of schooling 
and by $0.56 for every extra year of work experience.



A.1:  The model is linear in parameters and correctly 
specified.

A.2:  There does not exist an exact linear relationship 
among the regressors in the sample.

A.3 The disturbance term has zero expectation

A.4 The disturbance term is homoskedastic

A.5 The values of the disturbance term have 
independent distributions

A.6 The disturbance term has a normal distribution

PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS
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Provided that the regression model assumptions are valid, the OLS 
estimators in the multiple regression model are unbiased and efficient, as in 
the simple regression model.



MULTICOLLINEARITY
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What would happen if you tried to run a regression when there is an 
exact linear relationship among the explanatory variables? The 
coefficient is not defined

uEXPSQEXPSEARNINGS 
4321

bbbb

For example, when relating earnings to schooling and work experience, it if often 
reasonable to suppose that the effect of work experience is subject to 
diminishing returns. b4 should be negative



. reg EARNINGS S EXP EXPSQ

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  3,   536) =   45.57

Model |  22762.4472     3  7587.48241           Prob > F      =  0.0000

Residual |  89247.7839   536  166.507059           R-squared     =  0.2032

-------------+------------------------------ Adj R-squared =  0.1988

Total |  112010.231   539  207.811189           Root MSE      =  12.904

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.754372   .2417286    11.39   0.000     2.279521    3.229224

EXP |  -.2353907    .665197    -0.35   0.724    -1.542103    1.071322

EXPSQ |   .0267843   .0219115     1.22   0.222    -.0162586    .0698272

_cons |  -22.21964   5.514827    -4.03   0.000    -33.05297   -11.38632

------------------------------------------------------------------------------

MULTICOLLINEARITY

The schooling component of the regression results is not much affected by the 
inclusion of the EXPSQ term. Another year of schooling increases earnings by 2.75 usd   

By contrast, the inclusion of the new term has had a dramatic effect on the coefficient 
of EXP.  Now it is negative, which makes little sense, and insignificant.
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. reg EARNINGS S EXP EXPSQ

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.754372   .2417286    11.39   0.000     2.279521    3.229224

EXP |  -.2353907    .665197    -0.35   0.724    -1.542103    1.071322

EXPSQ |   .0267843   .0219115     1.22   0.222    -.0162586    .0698272

_cons |  -22.21964   5.514827    -4.03   0.000    -33.05297   -11.38632

------------------------------------------------------------------------------

. reg EARNINGS S EXP

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.678125   .2336497    11.46   0.000     2.219146    3.137105

EXP |   .5624326   .1285136     4.38   0.000     .3099816    .8148837

_cons |  -26.48501    4.27251    -6.20   0.000    -34.87789   -18.09213

------------------------------------------------------------------------------

MULTICOLLINEARITY

The high correlation causes the standard error of EXP to be larger than it would have 
been if EXP and EXPSQ had been less highly correlated, warning us that the point 
estimate is unreliable.

When high correlations among the explanatory variables lead to erratic point 
estimates of the coefficients, large standard errors and unsatisfactorily low t statistics, 
the regression is said to be suffering from multicollinearity.



. reg EARNINGS S EXP

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  2,   537) =   67.54

Model |  22513.6473     2  11256.8237           Prob > F      =  0.0000

Residual |  89496.5838   537  166.660305           R-squared     =  0.2010

-------------+------------------------------ Adj R-squared =  0.1980

Total |  112010.231   539  207.811189           Root MSE      =   12.91

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.678125   .2336497    11.46   0.000     2.219146    3.137105

EXP |   .5624326   .1285136     4.38   0.000     .3099816    .8148837

_cons |  -26.48501    4.27251    -6.20   0.000    -34.87789   -18.09213

------------------------------------------------------------------------------

MULTICOLLINEARITY

In the specification without EXPSQ it is 2.68, not much different.

But experience is positive and highly significant.
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MULTIPLE REGRESSION ANALYSIS: 
INFERENCE



Model: Y = b1 + b2X + u

Null hypothesis:

Alternative hypothesis:

TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

0

220
: bb H

0

221
: bb H

We will suppose that we have the standard simple regression model and that 
we wish to test the hypothesis H0 that the slope coefficient is equal to some 

value b2
0. We test it against the alternative hypothesis H1, which is simply 

that b2 is not equal to b2
0



Model: Y = b1 + b2X + u

Null hypothesis:

Alternative hypothesis:

Example model: p = b1 + b2w + u

Null hypothesis:

Alternative hypothesis:

TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

As an illustration, we will consider a model relating price inflation to wage 
inflation.  p is the rate of growth of prices and w is the rate of growth of 
wages.

We will test the hypothesis that the rate of price inflation is equal to the rate 

of wage inflation.  The null hypothesis is therefore H0: b2 = 1.0.
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We will assume that we know  the standard deviation and that it is equal to 
0.1.  This is a very unrealistic assumption.  In practice you have to estimate 
it.

TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

1.0 1.10.90.80.70.6 1.2 1.3 1.4

probability 
density
function of b2

b2

Distribution of b2 under the null 
hypothesis H0: b2 =1.0 is true 
(standard deviation equals 0.1 taken 
as given)



TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

Suppose that we have a sample of data for the price inflation/wage inflation 
model and the estimate of the slope coefficient, b2, is 0.9.  Would this be 

evidence against the null hypothesis b2 = 1.0?

And what if b2 =1.4?

1.0 1.10.90.80.70.6 1.2 1.3 1.4

probability 
density
function of b2

b2

Distribution of b2 under the null 
hypothesis H0: b2 =1.0 is true 
(standard deviation equals 0.1 taken 
as given)



TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

The usual procedure for making decisions is to reject the null hypothesis if it 
implies that the probability of getting such an extreme estimate is less than 
some (small) probability p.

probability 
density
function of b2

b2

Distribution of b2 under the null 
hypothesis H0: b2 =b2 is true 
(standard deviation taken as given)

0

b2 b2+sd b2+2sdb2-sdb2-2sd b2+3sdb2-3sdb2-4sd b2+4sd
0

0000 0 0 0 0



TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

For example, we might choose to reject the null hypothesis if it implies that 
the probability of getting such an extreme estimate is less than 0.05 (5%).

According to this decision rule, we would reject the null hypothesis if the 
estimate fell in the upper or lower 2.5% tails.

probability 
density
function of b2

b2

Distribution of b2 under the null 
hypothesis H0: b2 =b2 is true 
(standard deviation taken as given)

0

b2 b2+sd b2+2sdb2-sdb2-2sd b2+3sdb2-3sdb2-4sd b2+4sd
0

0000 0 0 0 0

2.5% 2.5%



TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

The 2.5% tails of a normal distribution always begin 1.96 standard 
deviations from its mean. Thus we would reject H0 if the estimate were 1.96 
standard deviations (or more) above or below the hypothetical mean.

Or if the difference, expressed in terms of standard deviations, were more 
than 1.96 in absolute terms (positive or negative).

2.5%2.5%

probability 
density
function of b2

b2b2+1.96sdb2-1.96sd b2
0b2-sd b2+sd00 00

Decision rule (5% significance level):
reject

(1) if (2) if
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TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

2.5%2.5%

Decision rule (5% significance level):
reject

(1) if (2) if

(1) if z > 1.96 (2) if z < -1.96

s.d.

0

22
b


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z

probability 
density
function of b2

b2b2+1.96sdb2-1.96sd
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0b2-sd b2+sd0
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The range of values of b2 that do not lead to the rejection of the null 
hypothesis is known as the acceptance region.

The limiting values of z for the acceptance region are 1.96 and -1.96 (for a 
5% significance test).

acceptance region for b2:

s.d. 96.1s.d. 96.1
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TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

2.5%2.5%

probability density
function of b2

b2b2+1.96sdb2-1.96sd
b2

0b2-sd b2+sd0
0 0

0

acceptance region for b2

reject 0
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Rejection of the null hypothesis when it is in fact true is described as a Type I 
error.

With the present test, if the null hypothesis is true, a Type I error will occur 
5% of the time because 5% of the time we will get estimates in the upper or 
lower 2.5% tails. The significance level of a test is defined to be the 
probability of making a Type I error if the null hypothesis is true.

Type I error:  rejection of H0 when it is in fact true.

Probability of Type I error: in this case, 5%

Significance level of the test is 5%.



TESTING A HYPOTHESIS RELATING TO A REGRESSION 
COEFFICIENT

2.5%2.5%

probability density
function of b2

b2b2+1.96sdb2-1.96sd
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0b2-sd b2+sd0
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reject 0
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We could change the decision rule to “reject the null hypothesis if it implies that the 
probability of getting the sample estimate is less than 0.01 (1%)”.

The rejection region now becomes the upper and lower 0.5% tails

5% level

1% level



t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

We replace the standard deviation in its denominator with the standard 
error, the test statistic has a t distribution instead of a normal distribution. 

We look up the critical value of t and if the t statistic is greater than it, 
positive or negative, we reject the null hypothesis.  If it is not, we do not.

s.d. of b2 known

discrepancy between 

hypothetical value and sample 

estimate, in terms of s.d.:

s.d.
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5% significance test:

reject H0: b2 = b2 if

z > 1.96  or  z < –1.96

s.d. of b2 not known

discrepancy between 
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estimate, in terms of s.e.:
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5% significance test:

reject H0: b2 = b2 if

t > tcrit or  t < –tcrit

0 0



A graph of a t distribution with 10 degrees of freedom. When the number of 
degrees of freedom is large, the t distribution looks very much like a normal 
distribution 
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t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT



t distribution has longer tails than the normal distribution, the difference 
being the greater, the smaller the number of degrees of freedom

This means that the rejection regions have to start more standard deviations 
away from zero for a t distribution than for a normal distribution.

normal
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The 2.5% tail of a t distribution with 10 degrees of freedom starts 2.33 
standard deviations from its mean.

That for a t distribution with 5 degrees of freedom starts 2.57 standard 
deviations from its mean.

normal

0
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-2.57

t, 10 d.f.

t, 5 d.f.

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT
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t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT

For this reason we need to refer to a table of critical values of t when 
performing significance tests on the coefficients of a regression equation.



t Distribution: Critical values of t

Degrees of  Two-sided test     10%         5%        2%          1%       0.2%      0.1%
freedom     One-sided test       5%      2.5%        1%       0.5%      0.1%     0.05%

1 6.314 12.706 31.821 63.657 318.31 636.62
2 2.920 4.303 6.965 9.925 22.327 31.598
3 2.353 3.182 4.541 5.841 10.214 12.924
4 2.132 2.776 3.747 4.604 7.173 8.610
5 2.015 2.571 3.365 4.032 5.893 6.869
… … … … … … …
… … … … … … …

18 1.734 2.101 2.552 2.878 3.610 3.922
19 1.729 2.093 2.539 2.861 3.579 3.883
20 1.725 2.086 2.528 2.845 3.552 3.850
… … … … … … …
… … … … … … …

600 1.647 1.964 2.333 2.584 3.104 3.307
1.645 1.960 2.326 2.576 3.090 3.291

Number of degrees of freedom in a regression

= number of observations – number of parameters estimated.



Example:
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The critical value of t with 18 degrees of freedom is 2.101 at the 5% level.  
The absolute value of the t statistic is less than this, so we do not reject the 
null hypothesis. 

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT



. reg EARNINGS S

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  1,   538) =  112.15

Model |  19321.5589     1  19321.5589           Prob > F      =  0.0000

Residual |  92688.6722   538  172.283777           R-squared     =  0.1725

-------------+------------------------------ Adj R-squared =  0.1710

Total |  112010.231   539  207.811189           Root MSE      =  13.126

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   2.455321   .2318512    10.59   0.000     1.999876    2.910765

_cons |  -13.93347   3.219851    -4.33   0.000    -20.25849   -7.608444

------------------------------------------------------------------------------

You can see that the t statistic for the coefficient of S is enormous.  We would 
reject the null hypothesis that schooling does not affect earnings at the 0.1% 
significance level without even looking at the table of critical values of t.

The next column in the output gives what are known as the p values for each 
coefficient.  This is the probability of obtaining the corresponding t statistic as a 
matter of chance, if the null hypothesis H0: b = 0 is true.

In the present case p = 0.  This means that we can reject the null hypothesis H0: b2

= 0 at the 0.1% level.

t TEST OF A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT



probability density function of b2

(1) conditional on b2 = b2 being true

(2) conditional on b2 = b2 being true

CONFIDENCE INTERVALS

b2b2b2  -sdb2  -1.96sd b2  

+sd

min minminmin

min

max

The diagram shows the limiting values of the hypothetical values of b2, together with 

their associated probability distributions for b2.

b2 b2 + 1.96sdb2 - sd b2 + 
sd

max max maxmax

(1)(2)



CONFIDENCE INTERVALS

b2b2b2  -sdb2  -1.96sd b2  
+sd

min minminmin

b2 b2 + 1.96sdb2 - sd b2+sd
max max maxmax

(1)(2)

Any hypothesis lying in the interval from b2
min to b2

max would be compatible with the 

sample estimate (not be rejected by it).  We call this interval the 95% confidence 
interval.

reject any b2 > b2 = b2 + 1.96 sd

reject any b2 < b2 = b2 - 1.96 sd

95% confidence interval:

b2 - 1.96 sd < b2 < b2 + 1.96 sd

max

min



CONFIDENCE INTERVALS

b2
min and b2

max will now be 2.58 standard deviations to the left and to the right of b2 

for 99% confidence interval

In practice, the t distribution has to be used instead of the normal distribution when 

locating b2
min and b2

max.

This implies that the standard error should be multiplied by the critical value of t, 
given the significance level and number of degrees of freedom, when determining the 
limits of the interval.

Standard deviation known

95% confidence interval

b2 - 1.96 sd < b2 < b2 + 1.96 sd

99% confidence interval

b2 - 2.58 sd < b2 < b2 + 2.58 sd

Standard deviation estimated by standard error

95% confidence interval

b2 - tcrit (5%) se < b2 < b2 + tcrit (5%) se

99% confidence interval

b2 - tcrit (1%) se < b2 < b2 + tcrit (1%) se
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MULTIPLE REGRESSION WITH 
QUALITATIVE INFORMATION



DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES

Suppose that you have data on the annual recurrent expenditure, COST, and 
the number of students enrolled, N, for a sample of secondary schools, of 
which there are two types: regular and occupational.

One way of dealing with the difference in the costs would be to run separate 
regressions for the two types of school. This is unadvisable. 

N

C
O

S
T

Occupational schools

Regular schools



OCC = 0  Regular school COST = b1 + b2N + u

OCC = 1  Occupational school COST = b1' + b2N + u

DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES

Another way of handling the difference would be to hypothesize that the cost 
function for occupational schools has an intercept b1' that is greater than that 
for regular schools, the marginal cost is the same.

Let us define d to be the difference in the intercepts:  d = b1' – b1

N
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T

Occupational schools

Regular schools

b1

b1'
d



Combined equation COST = b1 + d OCC + b2N + u

OCC = 0  Regular school COST = b1 + b2N + u

OCC = 1  Occupational school COST = b1 + d + b2N + u

DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES

Then b1' = b1 + d. We can now combine the two cost functions by defining a 
dummy variable OCC that has value 0 for regular schools and 1 for 
occupational schools.
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. reg COST N OCC

Source |       SS       df       MS                  Number of obs =      74

---------+------------------------------ F(  2,    71) =   56.86

Model |  9.0582e+11     2  4.5291e+11               Prob > F      =  0.0000

Residual |  5.6553e+11    71  7.9652e+09               R-squared     =  0.6156

---------+------------------------------ Adj R-squared =  0.6048

Total |  1.4713e+12    73  2.0155e+10               Root MSE      =   89248

------------------------------------------------------------------------------

COST |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

N |   331.4493   39.75844      8.337   0.000       252.1732    410.7254

OCC |   133259.1   20827.59      6.398   0.000       91730.06    174788.1

_cons |  -33612.55   23573.47     -1.426   0.158      -80616.71    13391.61

------------------------------------------------------------------------------

DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES

We now run the regression of COST on N and OCC, treating OCC just like any 
other explanatory variable, despite its artificial nature.  The Stata output is 
shown.

COST = –34,000 + 133,000OCC + 331N

COSTregular = –34,000 + 331N
^

COSToccupational = –34,000 + 133,000 + 331N = 99,000 + 331N
^



DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES

The scatter diagram shows the data and the two cost functions derived from 
the regression results.

-100000

0

100000

200000

300000

400000

500000

600000

700000

0 200 400 600 800 1000 1200 1400

N

C
O

S
T

Occupational schools Regular schools



COST =  b1 + dTTECH + dWWORKER + dVVOC + b2N + u

General School COST =  b1 + b2N + u
(TECH = WORKER = VOC = 0)

Technical School COST =  (b1 + dT) + b2N + u
(TECH = 1; WORKER = VOC = 0)

Skilled Workers’ School COST =  (b1 + dW) + b2N + u
(WORKER = 1; TECH = VOC = 0)

Vocational School COST =  (b1 + dV) + b2N + u

(VOC = 1; TECH = WORKER = 0)

DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES

The reference category: General School (do not include a dummy variable for 
the reference category)

The regression model simplifies in a similar manner in the case of 
observations relating to skilled workers’ schools and vocational schools.
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DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES

The diagram illustrates the model graphically.  The d coefficients are the 

extra overhead costs of running technical, skilled workers’, and vocational 
schools, relative to the overhead cost of general schools.

Technical

General



DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES

The scatter diagram shows the data for the entire sample, differentiating by 
type of school.
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. reg COST N TECH WORKER VOC

Source |       SS       df       MS                  Number of obs =      74

---------+------------------------------ F(  4,    69) =   29.63

Model |  9.2996e+11     4  2.3249e+11               Prob > F      =  0.0000

Residual |  5.4138e+11    69  7.8461e+09               R-squared     =  0.6320

---------+------------------------------ Adj R-squared =  0.6107

Total |  1.4713e+12    73  2.0155e+10               Root MSE      =   88578

------------------------------------------------------------------------------

COST |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

N |   342.6335    40.2195      8.519   0.000       262.3978    422.8692

TECH |   154110.9   26760.41      5.759   0.000       100725.3    207496.4

WORKER |   143362.4    27852.8      5.147   0.000       87797.57    198927.2

VOC |   53228.64   31061.65      1.714   0.091      -8737.646    115194.9

_cons |  -54893.09   26673.08     -2.058   0.043      -108104.4   -1681.748

------------------------------------------------------------------------------

DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES

The coefficient of N indicates that the marginal cost per student per year is 
343 yuan. 

The coefficients of TECH, WORKER, and VOC are 154,000, 143,000, and 
53,000, respectively, and should be interpreted as the additional annual 
overhead costs, relative to those of general schools.



DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES

Note that in each case the annual marginal cost per student is estimated at 
343 yuan.  The model specification assumes that this figure does not differ 
according to type of school.

^
COST= –55,000 + 154,000TECH + 143,000WORKER + 53,000VOC +343N

General School COST =  –55,000 + 343N
(TECH = WORKER = VOC = 0)

Technical School COST = –55,000 + 154,000 + 343N
(TECH = 1; WORKER = VOC = 0) =  99,000 + 343N

Skilled Workers’ School COST = –55,000 + 143,000 + 343N
(WORKER = 1; TECH = VOC = 0) =  88,000 + 343N

Vocational School COST = –55,000 + 53,000 + 343N

(VOC = 1; TECH = WORKER = 0) =  –2,000 + 343N

^

^

^

^



DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES

The four cost functions are illustrated graphically.
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SLOPE DUMMY VARIABLES

Previously, we have the assumption that the marginal cost per student is the same 
for occupational and regular schools.  Hence the cost functions are parallel. This is 
unrealistic.

In practice, the cost function for the occupational schools should be steeper, and 
that for the regular schools should be flatter.
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SLOPE DUMMY VARIABLES

We will relax the assumption of  the same marginal cost by introducing what 
is known as a slope dummy variable.  This is NOCC, defined as the product of 
N and OCC.

The model now allows the marginal cost per student to be an amount 
greater than that in regular schools, as well as allowing the overhead costs 
to be different.

COST =  b1 + dOCC + b2N + NOCC + u

Regular school COST =  b1 + b2N + u
(OCC = NOCC = 0)

Occupational school COST =  (b1 + d) + (b2 + N + u
(OCC = 1; NOCC = N)
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SLOPE DUMMY VARIABLES

The diagram illustrates the model graphically.



SLOPE DUMMY VARIABLES

Here is the regression in equation form.

COST =  51,000 – 4,000OCC + 152N + 284NOCC

Regular school COST =  51,000 + 152N
(OCC = NOCC = 0)

Occupational school COST =  51,000 – 4,000 + 152N + 284N

(OCC = 1; NOCC = N) =  47,000 + 436N

^

^

^



SLOPE DUMMY VARIABLES

You can see that the cost functions fit the data much better than before and 
that the real difference is in the marginal cost, not the overhead cost.
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SLOPE DUMMY VARIABLES

The assumption of the same marginal cost led to an estimate of the marginal cost 
that was a compromise between the marginal costs of occupational and regular 
schools.

The cost function for regular schools was too steep and as a consequence the 
intercept was underestimated, actually becoming negative and indicating that 
something must be wrong with the specification of the model.

-100000

0

100000

200000

300000

400000

500000

600000

700000

0 200 400 600 800 1000 1200 1400

N

C
O

S
T

Occupational schools Regular schools



131

SPECIFICATION AND DATA 
PROBLEMS



Consequences of Variable Misspecification

True Model
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VARIABLE MISSPECIFICATION I:  OMISSION OF A RELEVANT 
VARIABLE

To keep the analysis simple, we will assume that there are only two 
possibilities.  Either Y depends only on X2, or it depends on both X2 and X3.



Consequences of Variable Misspecification

True Model

F
it

te
d

 M
o

d
el

uXXY 
33221

bbbuXY 
221

bb

33

221
ˆ

Xb

XbbY





221
ˆ XbbY 

VARIABLE MISSPECIFICATION I:  OMISSION OF A RELEVANT 
VARIABLE

Correct specification,

no problems

Correct specification,

no problems

If Y depends only on X2, and we fit a simple regression model, we will not 
encounter any problems, assuming of course that the regression model 
assumptions are valid.

Likewise we will not encounter any problems if Y depends on both X2 and X3

and we fit the multiple regression.
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VARIABLE MISSPECIFICATION I:  OMISSION OF A RELEVANT 
VARIABLE

Correct specification,

no problems

Correct specification,

no problems

In this sequence we will examine the consequences of fitting a simple 
regression when the true model is multiple. The omission of a relevant 
explanatory variable causes the regression coefficients to be biased and the 
standard errors to be invalid.

Coefficients are biased (in 

general).  Standard

errors are invalid.
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VARIABLE MISSPECIFICATION I:  OMISSION OF A RELEVANT 
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The strength of the proxy effect depends on two factors: the strength of the 
effect of X3 on Y, which is given by b3, and the ability of X2 to mimic X3.

The ability of X2 to mimic X3 is determined by the slope coefficient obtained 
when X3 is regressed on X2, the term highlighted in yellow.



. reg LGEARN S EXP

------------------------------------------------------------------------------

LGEARN |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   .1235911   .0090989    13.58   0.000     .1057173     .141465

EXP |   .0350826   .0050046     7.01   0.000     .0252515    .0449137

_cons |   .5093196   .1663823     3.06   0.002     .1824796    .8361596

. reg LGEARN S

------------------------------------------------------------------------------

LGEARN |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

S |   .1096934   .0092691    11.83   0.000     .0914853    .1279014

_cons |   1.292241   .1287252    10.04   0.000     1.039376    1.545107

. reg LGEARN EXP

------------------------------------------------------------------------------

LGEARN |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

EXP |   .0202708   .0056564     3.58   0.000     .0091595     .031382

_cons |    2.44941   .0988233    24.79   0.000     2.255284    2.643537

As can be seen, the coefficients of S and EXP are indeed lower in the simple 
regressions.

VARIABLE MISSPECIFICATION I:  OMISSION OF A RELEVANT 
VARIABLE



. reg LGEARN S EXP

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  2,   537) =  100.86

Model |  50.9842581     2   25.492129           Prob > F      =  0.0000

Residual |  135.723385   537  .252743734           R-squared     =  0.2731

-------------+------------------------------ Adj R-squared =  0.2704

Total |  186.707643   539   .34639637           Root MSE      =  .50274

. reg LGEARN S

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  1,   538) =  140.05

Model |  38.5643833     1  38.5643833           Prob > F      =  0.0000

Residual |   148.14326   538  .275359219           R-squared     =  0.2065

-------------+------------------------------ Adj R-squared =  0.2051

Total |  186.707643   539   .34639637           Root MSE      =  .52475

. reg LGEARN EXP

Source |       SS       df       MS              Number of obs =     540

-------------+------------------------------ F(  1,   538) =   12.84

Model |  4.35309315     1  4.35309315           Prob > F      =  0.0004

Residual |   182.35455   538  .338948978           R-squared     =  0.0233

-------------+------------------------------ Adj R-squared =  0.0215

Total |  186.707643   539   .34639637           Root MSE      =  .58219

A comparison of R2 for the three regressions shows that the sum of R2 in the 
simple regressions is actually less than R2 in the multiple regression.

VARIABLE MISSPECIFICATION I:  OMISSION OF A RELEVANT 
VARIABLE
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Correct specification,

no problems

Correct specification,

no problems

Coefficients are biased (in 

general).  Standard

errors are invalid.

VARIABLE MISSPECIFICATION II:  INCLUSION OF AN 
IRRELEVANT VARIABLE

Including irrelevant variables: The effects are different from those of omitted 
variable misspecification.  In this case the coefficients in general remain 
unbiased, but they are inefficient.  The standard errors remain valid, but are 
needlessly large.

Coefficients are

unbiased (in general),

but inefficient.

Standard errors are

valid (in general)
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VARIABLE MISSPECIFICATION II:  INCLUSION OF AN 
IRRELEVANT VARIABLE

Rewrite the true model adding X3 as an explanatory variable, with a 
coefficient of 0.  Now the true model and the fitted model coincide.  Hence b2

will be an unbiased estimator of b2 and b3 will be an unbiased estimator of 0.

However, the variance of b2 will be larger than it would have been if the 
correct simple regression had been run because it includes the factor 1 / (1 –
r2), where r is the correlation between X2 and X3.

The standard errors remain valid, but they will tend to be larger than those 
obtained in a simple regression, reflecting the loss of efficiency.
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. reg LGFDHO LGEXP LGSIZE

------------------------------------------------------------------------------

LGFDHO |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

LGEXP |   .2866813   .0226824     12.639   0.000       .2421622    .3312003

LGSIZE |   .4854698   .0255476     19.003   0.000       .4353272    .5356124

_cons |   4.720269   .2209996     21.359   0.000       4.286511    5.154027

------------------------------------------------------------------------------

. reg LGFDHO LGEXP LGSIZE LGHOUS

------------------------------------------------------------------------------

LGFDHO |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

LGEXP |   .2673552   .0370782      7.211   0.000       .1945813     .340129

LGSIZE |   .4868228   .0256383     18.988   0.000       .4365021    .5371434

LGHOUS |   .0229611   .0348408      0.659   0.510      -.0454214    .0913436

_cons |   4.708772   .2217592     21.234   0.000       4.273522    5.144022

------------------------------------------------------------------------------

VARIABLE MISSPECIFICATION II:  INCLUSION OF AN 
IRRELEVANT VARIABLE

The inclusion does not cause the coefficients of those variables to be biased.

But it does increase their standard errors, particularly that of LGEXP, as you 
would expect, reflecting the loss of efficiency.



PROXY VARIABLES

Suppose that a variable Y is hypothesized to depend on a set of explanatory 
variables X2, ..., Xk as shown above, and suppose that for some reason there 
are no data on X2. A regression of Y on X3, ..., Xk would yield biased estimates 
of the coefficients and invalid standard errors and tests (omitted var. bias).

These problems can be reduced or eliminated by using a proxy variable in the 
place of X2.  A proxy variable is one that is hypothesized to be linearly related 
to the missing variable.  Here Z could act as a proxy for X2.

We thus obtain a model with all variables observable.  If the proxy 
relationship is an exact one, and we fit this relationship, most of the 
regression results will be rescued.
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TESTING A LINEAR RESTRICTION

In the last sequence it was argued that educational attainment might be 
related to cognitive ability and family background, with mother's and father's 
educational attainment proxying for the latter.

It was suggested that the impact of parental education might be the same for 
both parents, that is, that b3 and b4 might be equal.

We now have a total parental education variable, SP, instead of separate 
variables for mother’s and father’s education, and the multicollinearity 
caused by the correlation between the latter has been eliminated.
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. reg S ASVABC SM SF

------------------------------------------------------------------------------

S |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

ASVABC |   .1257087   .0098533    12.76   0.000     .1063528    .1450646

SM |   .0492424   .0390901     1.26   0.208     -.027546    .1260309

SF |   .1076825   .0309522     3.48   0.001       .04688    .1684851

_cons |   5.370631   .4882155    11.00   0.000      4.41158    6.329681

------------------------------------------------------------------------------

. reg S ASVABC SP

------------------------------------------------------------------------------

S |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

ASVABC |   .1253106   .0098434    12.73   0.000     .1059743    .1446469

SP |   .0828368   .0164247     5.04   0.000     .0505722    .1151014

_cons |    5.29617   .4817972    10.99   0.000     4.349731    6.242608

------------------------------------------------------------------------------

TESTING A LINEAR RESTRICTION

A comparison of the regressions reveals that the standard error of the 
coefficient of SP is much smaller than those of SM and SF, and consequently 
its t statistic is higher.  Its coefficient is a compromise between those of SM
and SF, as might be expected.

Make sure the restriction is valid



HETEROSKEDASTICITY

b1

XX3 X5X4X1 X2

Y

Heteroskedasticity relates to the distribution of the disturbance term in a 
regression model.

We will discuss it in the context of the regression model Y = b1 + b2X + u. If 

there were no disturbance term in the model, the observations would lie on 
the line as shown.



HETEROSKEDASTICITY

b1

X

Y

Now we take account of the effect of the disturbance term.  It will displace 
each observation in the vertical dimension, since it modifies the value of Y
without affecting X.

Assumptions: the expected value of u in each observation is 0; the 
distribution in each observation is normal; the variance of the distribution of 
the disturbance term is the same for each observation (homoskedasticity). 

X3 X5X4X1 X2



HETEROSKEDASTICITY

Once the sample has been drawn, some observations will lie closer to the line 
than others, but we have no way of anticipating in advance which ones these 
will be.

b1

X

Y

X3 X5X4X1 X2



HETEROSKEDASTICITY

The distribution of u associated with each observation still has expected value 0 
and is normal.  However Assumption Homoskedasticity is violated and the variance 
is no longer constant.

Obviously, observations where u has low variance will tend to be better guides to 
the underlying relationship than those having a relatively high variance. When the 
distribution is not the same for each observation, the disturbance term is said to 
be subject to heteroscedasticity.
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HETEROSKEDASTICITY

There are two major consequences of heteroscedasticity.  One is that the 
standard errors of the regression coefficients are estimated wrongly and the 
t tests (and F test) are invalid.

The other is that OLS is an inefficient estimation technique.  An alternative 
technique which gives relatively high weight to the relatively low-variance 
observations should tend to yield more accurate estimates.
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HETEROSKEDASTICITY-CONSISTENT STANDARD ERRORS

1

Heteroscedasticity causes OLS standard errors to be biased is finite samples.  
However it can be demonstrated that they are nevertheless consistent, 
provided that their variances are distributed independently of the regressors.
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HETEROSKEDASTICITY-CONSISTENT STANDARD ERRORS

White (1980) demonstrates that a consistent estimator of           is obtained if 
the squared residual in observation i is used as an estimator of       .  Taking 
the square root, one obtains a heteroscedasticity-consistent standard error.
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HETEROSKEDASTICITY-CONSISTENT STANDARD ERRORS

The point estimates of the coefficients are exactly the same. However the 
standard error of the coefficient of GDP rises from 0.13 to 0.18, indicating 
that it is underestimated in the original OLS regression.
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OLS

2
b
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. reg manu gdp

Source |       SS       df       MS              Number of obs =      28

-------------+------------------------------ F(  1,    26) =  210.73

Model |  1.1600e+11     1  1.1600e+11           Prob > F      =  0.0000

Residual |  1.4312e+10    26   550462775           R-squared     =  0.8902

-------------+------------------------------ Adj R-squared =  0.8859

Total |  1.3031e+11    27  4.8264e+09           Root MSE      =   23462

------------------------------------------------------------------------------

manu |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gdp |    .193693   .0133428    14.52   0.000     .1662665    .2211195

_cons |   603.9453   5699.677     0.11   0.916    -11111.91     12319.8

. reg manu gdp, robust

Regression with robust standard errors                 Number of obs =      28

F(  1,    26) =  116.39

Prob > F      =  0.0000

R-squared     =  0.8902

Root MSE      =   23462

------------------------------------------------------------------------------

|               Robust

manu |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gdp |    .193693   .0179542    10.79   0.000     .1567877    .2305983

_cons |   603.9453   3542.388     0.17   0.866    -6677.538    7885.429
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TIME SERIES-FORECASTING
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COMPONENTS OF A TIME 

SERIES

154

 Time series: An ordered sequence of values of a 

variable at equally spaced time intervals

 Such as: vn index, inflation, gdp growth rate, etc.

 Components:

 Trend

 Seasonality

 Cycle

 Irregular 

 The 4 components may make up a TS in two 

ways:

 additive model: Xt = Tt + St+Ct+It
 multiplicative model: Xt = Tt * St *Ct*It



1

C.1 The model is linear in parameters and correctly 
specified.

Y = b1 + b2X2 + … + bkXk + u

C.2 The time series for the regressors are weakly 
persistent

C.3 There does not exist an exact linear relationship 
among the regressors

C.4 The disturbance term has zero expectation

C.5 The disturbance term is homoscedastic

ASSUMPTIONS FOR TIME SERIES MODEL



Assumption C.6 is rarely an issue with cross-sectional data.  When 
observations are generated randomly, there is no reason to suppose that 
there should be any connection between the value of the disturbance term in 
one observation and its value in any other.

C.6 The values of the disturbance term have 
independent distributions

ut is distributed independently of ut' for t' ≠ t

C.7 The disturbance term is distributed independently 
of the regressors

ut is distributed independently of Xjt' for all t'
(including t) and j

C.8 The disturbance term has a normal distribution

ASSUMPTIONS FOR TIME SERIES MODEL



AUTOCORRELATION

In the graph above, it is clear that disturbance terms are not generated 
independently of each other.  Positive values tend to be followed by positive 
ones, and negative values by negative ones.  Successive values tend to have 
the same sign.  This is described as positive autocorrelation.
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AUTOCORRELATION

In this graph, positive values tend to be followed by negative ones, and 
negative values by positive ones.  This is an example of negative 
autocorrelation.
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First-order autoregressive autocorrelation: AR(1)

AUTOCORRELATION
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A particularly common type of autocorrelation is first-order autoregressive 
autocorrelation, usually denoted AR(1) autocorrelation.

It is autoregressive, because ut depends on lagged values of itself, and first-

order, because it depends only on its previous value.  ut also depends on t, 

an injection of fresh randomness at time t, often described as the innovation 
at time t.

Fifth-order autocorrelation AR(5): it depends on lagged values of ut up to the 
fifth lag

Fifth-order autoregressive autocorrelation: AR(5)
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First-order autoregressive autocorrelation: AR(1)

Fifth-order autoregressive autocorrelation: AR(5)

Third-order moving average autocorrelation: MA(3)

AUTOCORRELATION
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Moving average autocorrelation: the disturbance term is a linear combination of 
the current innovation and a finite number of previous ones.

MA(3): it depends on the three previous innovations as well as the current one.
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AUTOCORRELATION

The rest of this sequence gives examples of the patterns that are generated 
when the disturbance term is subject to AR(1) autocorrelation.  The object is 
to provide some bench-mark images to help you assess plots of residuals in 
time series regressions.
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AUTOCORRELATION

We have started with  equal to 0, so there is no autocorrelation.  We will 

increase  progressively in steps of 0.1.
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AUTOCORRELATION
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AUTOCORRELATION
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AUTOCORRELATION

With  equal to 0.3, a pattern of positive autocorrelation is beginning to be 

apparent.
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AUTOCORRELATION
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AUTOCORRELATION
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AUTOCORRELATION

With  equal to 0.6, it is obvious that u is subject to positive autocorrelation.  

Positive values tend to be followed by positive ones and negative values by 
negative ones.
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AUTOCORRELATION
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AUTOCORRELATION
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AUTOCORRELATION

With  equal to 0.9, the sequences of values with the same sign have become 

long and the tendency to return to 0 has become weak.
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AUTOCORRELATION

The process is now approaching what is known as a random walk, where  is 

equal to 1 and the process becomes nonstationary.  The terms random walk 
and nonstationarity will be defined in the next chapter.  For the time being 

we will assume |  | < 1.
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Xt is stationary if E(Xt),       , and the population

covariance of Xt and Xt+s are independent of t

STATIONARY PROCESSES

2

t
X



A time series Xt is said to be stationary if its expected value and population 
variance are independent of time and if the population covariance between 
its values at time t and time t + s depends on s but not on t.

An example of a stationary time series is an AR(1) process Xt = b2Xt–1 + t, 
provided that –1 < b2 < 1, where t is a random variable with 0 mean and 
constant variance and not subject to autocorrelation.
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NONSTATIONARY PROCESSES

The condition –1 < b2 < 1 was crucial for stationarity.  If b2 = 1, the series 
becomes a nonstationary process known as a random walk,  ~ (0,)

E(Xt) is independent of t and the first condition for stationarity remains 
satisfied. However, the condition that the variance of Xt be independent of 
time is not satisfied.
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NONSTATIONARY PROCESSES
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The chart shows a typical random walk.  If it were a stationary process, there 
would be a tendency for the series to return to 0 periodically.  Here there is 
no such tendency.

Random walk



REGRESSION ANALYSIS 

WITH PANEL DATA
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INTRODUCTION

 A panel data set, or longitudinal data set, 

is one where there are repeated 

observations on the same units. 

 The units may be individuals, households, 

enterprises, countries, or any set of 

entities that remain stable through time.

 A balanced panel is one where every unit 

is surveyed in every time period.  An 

unbalanced panel is one where some units 

have not been surveyed (missing 

observations).
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INTRODUCTION (cont.)

 Panel data sets have several advantages over 

cross-section data sets:

 overcome a problem of bias caused by unobserved 

heterogeneity.

 investigate dynamics without relying on 

retrospective questions that may yield data subject 

to measurement error.

 often very large.  If there are n units and T time 

periods, the potential number of observations is nT.

 often well designed and have high response rates.  
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Index i refers to the unit of observation, t refers to the time period, and j and 
p differentiate observed with unobserved explanatory variables.  

Xj : observed variables; Zp : unobserved variables; it : disturbance term. 

The Xj variables are usually the variables of interest, while the Zp variables 
are responsible for unobserved heterogeneity and constitute a nuisance 
component of the model. 

ai, known as the unobserved effect, representing the joint impact of the Zp

variables on Yi

REGRESSION ANALYSIS WITH PANEL DATA: INTRODUCTION
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FIXED EFFECTS REGRESSIONS: WITHIN-GROUPS METHOD

(1)the mean values of the variables in the observations on a given individual 
are calculated by averaging the observations for that individual.  The 
unobserved effect ai is unaffected because it is the same for all 
observations for that individual.

(2)If the second equation is subtracted from the first, the unobserved effect 
disappears.

Disadvantage: First, the intercept b1 and any X variable that remains constant 
for each individual will drop out of the model.

Fixed effects estimation (within-groups method)
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The unobserved effect is eliminated by subtracting the observation for the 
previous time period from the observation for the current time period, for all 
time periods.

Subtracting the second equation from the first, one obtains the third, 
rewritten as the fourth, and again the unobserved heterogeneity has 
disappeared.

Fixed effects estimation (first-differences method)
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Random effects estimation

RANDOM EFFECTS REGRESSIONS

When the observed variables of interest are constant for each individual, a 
fixed effects regression is not an effective tool because such variables cannot 
be included. In this case each of the unobserved Zp variables is treated as 
being drawn randomly from a given distribution.
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Application of Econometrics 

in Finance
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APPLICATION IN FINANCE –

CAPM 

 Example : Suppose you consider investing 100 mill in 3 

years either on A or on the G. bond rate, which is given at 

the rate of 10% per year
Expected return on A After 3 years

10% => 133 mill?

11.5%=> 138 mill?

12% => 140mill 

15%=> 150 mill?

Which one would 
you choose?
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APPLICATION IN FINANCE –

CAPM

 => Uncertainty (or risk) about the outcome 

should be compensated 

 => Q: how to measure the risk of an asset, a 

portfolio?

 What about the variance?

 Consider an example:Air-conditioner Blanket

Mean 15 15

Variance 4 4
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APPLICATION IN FINANCE –

CAPM

 Options to choose

 => some part of risk can be reduced by diversifying 

A A (A+B)/2

Mean 14 14 14

Variance 4 4 ?
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APPLICATION IN FINANCE –

CAPM
 => Can it be reduced to zero? if you still wanna to make a return rate 

at 14%?

 Total risk consists of (market risk & firm’s specific risk)

 Market risk: you can’t reduce

 => beta: measure of a stock’s volatility in relation to the market’s / “to 

base line”

 => beta(A) =1.5 means: when market return (+/-) 1% then we expect 

the A’s return (+/-) 1.5% 

 => large beta: the stock swings more than the market. 

 => small beta: the stock is more stable than the market.

 How to measure the beta?=> CAPM (go to word.file)


