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Phenotype distributions

• Within each of the parental
and F1 strains, individuals are
genetically identical.

• Environmental variation may
or may not be constant with
genotype.

• The backcross generation ex-
hibits genetic as well as envi-
ronmental variation.
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Data

Phenotypes: yi = trait value for individual i

Genotypes: xij = 0/1 if mouse i is BB/AB at marker j

(or 0/1/2, in an intercross)

Genetic map: Locations of markers
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Goals

•Detect QTLs (and interactions between QTLs)

•Confidence intervals for QTL location

•Estimate QTL effects (effects of allelic substitution)

Statistical structure

QTL

Markers Phenotype

Covariates

The missing data problem:

Markers ←→ QTL

The model selection problem:

QTL, covariates −→ phenotype



Models: Recombination

We assume no crossover interference.

=⇒ Points of exchange (crossovers) are according
to a Poisson process.

=⇒ The {xij} (marker genotypes) form a Markov
chain

Example

A B − B A A

B A A − B A

A A A A A B

?



Models: Genotype ←→ Phenotype

Let y = phenotype
g = whole genome genotype

Imagine a small number of QTLs with genotypes g1, . . . , gp.
(2p distinct genotypes)

E(y|g) = µg1,...,gp
var(y|g) = σ2

g1,...,gp

Models: Genotype ←→ Phenotype

Homoscedasticity (constant variance): σ2
g ≡ σ2

Normally distributed residual variation: y|g ∼ N (µg, σ
2).

Additivity: µg1,...,gp
= µ +

∑p
j=1 ∆j gj (gj = 1 or 0)

Epistasis: Any deviations from additivity.



The simplest method: ANOVA

• Also known as marker
regression.

• Split mice into groups
according to genotype
at a marker.

• Do a t-test / ANOVA.

• Repeat for each marker.
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ANOVA at marker loci

Advantages
• Simple.

• Easily incorporates
covariates.

• Easily extended to more
complex models.

• Doesn’t require a genetic
map.

Disadvantages
•Must exclude individuals

with missing genotype data.

• Imperfect information about
QTL location.

• Suffers in low density scans.

• Only considers one QTL at a
time.



Interval mapping (IM)

Lander & Botstein (1989)

• Take account of missing genotype data

• Interpolate between markers

•Maximum likelihood under a mixture model
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Interval mapping (IM)

Lander & Botstein (1989)

• Assume a single QTL model.

• Each position in the genome, one at a time, is posited as the
putative QTL.

• Let z = 1/0 if the (unobserved) QTL genotype is BB/AB.
Assume y ∼ N (µz, σ)

• Given genotypes at linked markers, y ∼mixture of normal dist’ns
with mixing proportion Pr(z = 1|marker data):

QTL genotype
M1 M2 BB AB
BB BB (1− rL)(1− rR)/(1− r) rLrR/(1− r)
BB AB (1− rL)rR/r rL(1− rR)/r
AB BB rL(1− rR)/r (1− rL)rR/r
AB AB rLrR/(1− r) (1− rL)(1− rR)/(1− r)



The normal mixtures

M1 M2Q

7 cM 13 cM

• Two markers separated by 20 cM,
with the QTL closer to the left
marker.

• The figure at right show the dis-
tributions of the phenotype condi-
tional on the genotypes at the two
markers.

• The dashed curves correspond to
the components of the mixtures.
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Interval mapping (continued)

Let pi = Pr(zi = 1|marker data)

yi|zi ∼ N (µzi
, σ2)

Pr(yi|marker data, µ0, µ1, σ) = pif (yi; µ1, σ) + (1− pi)f (yi; µ0, σ)

where f (y; µ, σ) = exp[−(y − µ)2/(2σ2)]/
√

2πσ2

Log likelihood: l(µ0, µ1, σ) =
∑

i log Pr(yi|marker data, µ0, µ1, σ)

Maximum likelihood estimates (MLEs) of µ0, µ1, σ:

values for which l(µ0, µ1, σ) is maximized.



EM algorithm

Dempster et al. (1977)

E step:

Let w(k+1) = Pr(zi = 1|yi, marker data, µ̂
(k)
0 , µ̂

(k)
1 , σ̂(k))

= pif(yi;µ̂
(k)
1 ,σ̂(k))

pif(yi;µ̂
(k)
1 ,σ̂(k))+(1−pi)f(yi;µ̂

(k)
0 ,σ̂(k))

M step:

Let µ̂
(k+1)
1 =

∑

i yiw
(k+1)
i /

∑

i w
(k+1)
i

µ̂
(k+1)
0 =

∑

i yi(1− w
(k+1)
i )/

∑

i(1− w
(k+1)
i )

σ̂(k+1) = [not worth writing down]

The algorithm:

Start with w
(1)
i = pi; iterate the E & M steps until convergence.

Example

Iteration µ̂0 µ̂1 σ̂ log likelihood

1 5.903 6.492 1.668 –770.752

2 5.835 6.562 1.654 –770.291

3 5.818 6.579 1.651 –770.264

4 5.815 6.583 1.650 –770.262

... ... ... ... ...

∞ 5.813 6.584 1.649 –770.262



LOD scores

The LOD score is a measure of the strength of evidence for the
presence of a QTL at a particular location.

LOD(γ) = log10 likelihood ratio comparing the hypothesis of a
QTL at position γ versus that of no QTL

= log10

{

Pr(y|QTL at γ,µ̂0γ,µ̂1γ,σ̂γ)
Pr(y|no QTL,µ̂,σ̂)

}

µ̂0γ, µ̂1γ, σ̂γ are the MLEs, assuming a single QTL at position γ.

No QTL model: The phenotypes are independent and identically
distributed (iid) N (µ, σ2).

An example LOD curve
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Interval mapping

Advantages
• Takes proper account of

missing data.

• Allows examination of
positions between markers.

• Gives improved estimates
of QTL effects.

• Provides pretty graphs.

Disadvantages
• Increased computation

time.

• Requires specialized
software.

• Difficult to generalize.

• Only considers one QTL at
a time.



Haley-Knott regression

A quick approximation to Interval Mapping.

E(y | QTL = q) = µ + β 1{q = AB}

E(y | marker data) = µ + β Pr(QTL = AB | marker data)

• Regress y on Pr(QTL = AB | marker data).

• Pretend that the residual variation is normally distributed.

• Calculate

LOD(γ) = (n/2) log10

{

RSS0

RSSa(γ)

}

Example
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LOD thresholds

Large LOD scores indicate evidence for the presence of a QTL.

Q: How large is large?

→ We consider the distribution of the LOD score under the null
hypothesis of no QTL.

Key point: We must make some adjustment for our examination of
multiple putative QTL locations.

→We seek the distribution of the maximum LOD score, genome-
wide. The 95th %ile of this distribution serves as a genome-wide
LOD threshold.

Estimating the threshold: simulations, analytical calculations, per-
mutation (randomization) tests.

Null distribution of the LOD score

• Null distribution derived by
computer simulation of backcross
with genome of typical size.

• Solid curve: distribution of LOD
score at any one point.

• Dashed curve: distribution of
maximum LOD score,
genome-wide.

0 1 2 3 4

LOD score



Permutation tests

mice

markers

genotype
data

phenotypes

-

LOD(z)

(a set of curves)
-

M =

maxz LOD(z)

• Permute/shuffle the phenotypes; keep the genotype data intact.

• Calculate LOD?(z) −→ M ? = maxz LOD?(z)

• We wish to compare the observed M to the distribution of M ?.

• Pr(M ? ≥M) is a genome-wide P-value.

• The 95th %ile of M ? is a genome-wide LOD threshold.

• We can’t look at all n! possible permutations, but a random set of 1000 is feasi-
ble and provides reasonable estimates of P-values and thresholds.

• Value: conditions on observed phenotypes, marker density, and pattern of miss-
ing data; doesn’t rely on normality assumptions or asymptotics.

Permutation distribution

maximum LOD score

0 1 2 3 4 5 6 7

95th percentile



Multiple QTL methods

Why consider multiple QTLs at once?

• Reduce residual variation.

• Separate linked QTLs.

• Investigate interactions between QTLs (epistasis).

Epistasis in a backcross

Additive QTLs

Interacting QTLs
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Epistasis in an intercross

Additive QTLs

Interacting QTLs
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Two-dimensional genome scan

Consider each pair of positions, (γ1, γ2)

Models

• Full

• Additive

• QTL 1

• QTL 2

• Null

Possible comparisons

• Full vs. null

• Full vs. additive

• Full vs. Best of QTL 1 & 2

• Add’ve vs. Best of QTL 1 & 2



Example
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Model selection

•Select class of models
– Additive models

– Add’ve plus pairwise interactions

– Regression trees

•Compare models

– BICδ(γ) = log RSS(γ) + |γ| (δ log n

n
)

– Sequential permutation tests

•Search model space
– Forward selection (FS)

– Backward elimination (BE)

– FS followed by BE

– MCMC

•Assess performance
– Maximize no. QTLs found;

control false positive rate



What’s different here?

• Association among the covariates.

•Missing covariate information.

• Find the model rather than minimize prediction error.

1.5-LOD support interval
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Selection bias

• The estimated effect of a QTL will
vary somewhat from its true effect.

• Only when the estimated effect is
large will the QTL be detected.

• Among those experiments in which
the QTL is detected, the estimated
QTL effect will be, on average,
larger than its true effect.

• This is selection bias.

• Selection bias is largest in QTLs
with small or moderate effects.

• The true effects of QTLs that we
identify are likely smaller than was
observed.

Estimated QTL effect

0 5 10 15

QTL effect = 5
Bias = 79%

Estimated QTL effect

0 5 10 15

QTL effect = 8
Bias = 18%

Estimated QTL effect

0 5 10 15

QTL effect = 11
Bias = 1%

Implications of selection bias

•Estimated % variance explained by identified QTLs

•Repeating an experiment

•Congenics

•Marker-assisted selection



The X chromosome

In a backcross, the X chromosome may or may not be
segregating.

(A × B) × A

Females: XA·B XA

Males: XA·B YA

A × (A × B)

Females: XA XA

Males: XA YB

The X chromosome

In an intercross, one must pay attention to the paternal
grandmother’s genotype.

(A × B) × (A × B) or (B × A) × (A × B)

Females: XA·B XA

Males: XA·B YB

(A × B) × (B × A) or (B × A) × (B × A)

Females: XA·B XB

Males: XA·B YA



Selective genotyping

• Save effort by only typing the
most informative individuals
(say, top & bottom 10%).

• Useful in context of a single,
inexpensive trait.

• Tricky to estimate the effects of
QTLs: use IM with all
phenotypes.

• Can’t get at interactions.

• Likely better to also genotype
some random portion of the
rest of the individuals.
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Covariates

• Examples: treatment, sex,
litter, lab, age.

• Control residual variation.

• Avoid confounding.

• Look for QTL × environ’t
interactions

• Adjust before interval
mapping (IM) versus adjust
within IM.
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Non-normal traits

• Standard interval mapping assumes normally distributed
residual variation. (Thus the phenotype distribution is a
mixture of normals.)

• In reality: we see dichotomous traits, counts, skewed
distributions, outliers, and all sorts of odd things.

• Interval mapping, with LOD thresholds derived from
permutation tests, generally performs just fine anyway.

• Alternatives to consider:
– Nonparametric approaches (Kruglyak & Lander 1995)

– Transformations (e.g., log, square root)

– Specially-tailored models (e.g., a generalized linear model, the Cox
proportional hazard model, and the model in Broman et al. 2000)

Check data integrity

The success of QTL mapping depends crucially on the integrity of
the data.

• Segregation distortion

• Genetic maps / marker positions

• Genotyping errors (tight double crossovers)

• Phenotype distribution / outliers

• Residual analysis



Summary I

• ANOVA at marker loci (aka marker regression) is simple and easily extended
to include covariates or accommodate complex models.

• Interval mapping improves on ANOVA by allowing inference of QTLs to
positions between markers and taking proper account of missing genotype
data.

• ANOVA and IM consider only single-QTL models. Multiple QTL methods allow
the better separation of linked QTLs and are necessary for the investigation of
epistasis.

• Statistical significance of LOD peaks requires consideration of the maximum
LOD score, genome-wide, under the null hypothesis of no QTLs. Permutation
tests are extremely useful for this.

• 1.5-LOD support intervals indicate the plausible location of a QTL.

• Estimates of QTL effects are subject to selection bias. Such estimated effects
are often too large.

Summary II

• The X chromosome must be dealt with specially, and can be tricky.

• Study your data. Look for errors in the genetic map, genotyping errors and
phenotype outliers. But don’t worry about them too much.

• Selective genotyping can save you time and money, but proceed with caution.

• Study your data. The consideration of covariates may reveal extremely
interesting phenomena.

• Interval mapping works reasonably well even with non-normal traits. But
consider transformations or specially-tailored models. If interval mapping
software is not available for your preferred model, start with some version of
ANOVA.
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R/qtl: An extensible QTL mapping environment
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Department of Biostatistics, Johns Hopkins University

Hao Wu, Gary A. Churchill
The Jackson Laboratory
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Why R/qtl?

• Iteractive QTL mapping environment.

• Allow user to focus on modeling rather than computing.

• Embedded within general data analysis environment, R.

• Access to a variety of QTL mapping approaches, including
sophisticated multiple QTL methods (soon, anyway).

• Includes functions for estimating genetic maps, identifying
genotyping errors, and visualizing data.

• Easy extensibility for use with specialized crosses or
specially-tailored models.

• Available for Unix, Windows, and MacOS.



About R

• Open-source implementation of the S language. (Like
S-PLUS, and sort of like Matlab, but free.)

• Language and environment for statistical computing and
graphics.

• Provides a wide variety of statistical and graphical
techniques (including linear and nonlinear modelling,
statistical tests, time series analysis, classification,
clustering).

• Available for UNIX, Windows and MacOS.

Functionality

Currently
• Analysis of intercross, backcross

and 4-way cross.

• One- and two-dimensional scans
by interval mapping, imputation
and Haley-Knott regression, with
covariates.

• Permutation tests.

• Re-estimation of linkage map.

• “Ripple” marker order.

• Calculation of Lincoln & Lander
error LOD scores.

• Visualization of genotype data.

Soon
• AILs, RIs, and more complex

types of crosses.

• Analysis of multiple QTL models
(by MIM or imputation).

• Sophisticated model search
techniques.

• Advanced phenotype models,
such as generalized linear
models or Cox models

• Analysis of (and under)
crossover interference.

• Graphical user interface (GUI)


