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4.1 Material characterization
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4.1 Material characterization

In which, 6 compatibility equations represent only 3 independent relations, and
these equations are needed only ensure that a given strain field will produce single-
valued continuous displacements. => No need for the general problems

Excluding the compatibility relations, it is found that we have 9 field equations. The
unknowns in these equations include 3 displacement components, 6 components of
strain, and 6 stress components => total 15 unknowns.

So far, 9 equations are not sufficient to solve for 15 unknowns.

* We need additional field equations
* The material response => the relationship between the strains and stresses.
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4.1 Material characterization

Mechanical behavior of solids is normally defined by constitutive stress-strain
relations. Commonly, these relations express the stress as a function of the strain,
strain rate, strain history, temperature, and material properties. Here, we use the
Linear Elastic Constitutive Solid Model in which the Stress-Strain Relations are
under the Assumptions:

« Solid Recovers Original Configuration When Loads Are Removed

 Linear Relation Between Stress and Strain

* Neglect Rate and History Dependent Behavior

* Include Only Mechanical Loadings

. Thermal, Electrical, Pore-Pressure, and Other Loadings Can Also Be Included
As Special Cases
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4.1 Material characterization

Typical One-Dimensional Steel

Stress-Strain Behavior Tensile Sample

Cast Iron

Aluminum l

\ 4

Applicable Region for = o=Ee
Linear Elastic Behavior
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4.2 Linear elastic material — Hooke’s law
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36 Independent
Elastic Constants
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4.2 Linear elastic material — Hooke’s law

Anisotropy - Differences in material properties under different directions.
Materials like wood, crystalline minerals, fiber-reinforced composites have such

behavior.
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Typical Wood (Body-Centered (Hexagonal (Fiber Reinforced
Structure Crystal) Crystal) Composite)

Nonhomogeneity - Spatial differences in material properties. Soil materials in
the earth vary with depth, and new functionally graded materials (FGM’s) are now
being developed with deliberate spatial variation in elastic properties to produce

desirable behaviors. ~N

> Gradation Direction
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4.2 Linear elastic material — Hooke’s law

Isotropic Materials

Although many materials exhibit non-nomogeneous and anisotropic behavior, we
will primarily restrict our study to isotropic solids. For this case, material response
is independent of coordinate rotation

ykl szanQkalq mnpq l > Cijkl — 0{51]5kl + 51](5_]1 + 7/5115jk (prove)

0, =Cye =) ij :(0‘5 Oy +1851k + yéllajk )ekl = 0.e,0, +,Bey T e,

= le, 0, +2Me, Generalized Hooke’s Law

ax =/1(ex+ey+ez)+2,uex ; o, =/1(ex+ey+ez)+2,uey

.

o, =/1(ex+ey+ez)+2,uez

t,=2ue, ; v, =2ue, ;v =2ue,

A - Lamé’s constant
U - shear modulus or modulus of rigidity
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4.2 Linear elastic material — Hooke’s law

Prove
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4.2 Linear elastic material — Hooke’s law

Isotropic Materials
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4.3 Physical meaning of elastic module

Simple Tension
Consider the simple tension with a sample subjected
to tension in the x-direction. The state of stress is
represented by the one-dimensior_1a| field

9 0
E
o 0 0 y
6,=|0 0 0] | > =] 0 ——o 0
0O 0 O y
0 0 ——0
i E
E=ole Slopg of the str_ess—strain_ curve or
Elastic module in the x-direction
V=-e, /e, Ratio of the transverse strain to
=—e_/e, the axial strain

Standard measurement systems can easily collect axial stress and transverse and
axial strain data, and thus through this, one type of test both elastic constants £
and v can be determined for material of interest. 16
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4.3 Physical meaning of elastic module

Pure Shear
If a thin-walled cylinder is subjected to torsion loading,
the state of stress on the surface of the cylindrical

sample is given by

(0 7 O] 0 7/2u 0
o,=|7 0 0| | > e=|t/2 00
0 0 0] 0 0 0]

:> H=T/2e,  Shear modulus which is the slope of
=7/, the shear stress-shear strain curve
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4.3 Physical meaning of elastic module

Hydrostatic Compression

The final example is associated with the uniform compression (or

p

1

R — B
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o,=| 0 —-p 0
0 0 -—p

p =—ke, =—k¥

> .

3(1-2v) Bulk Modulus

Note that when Poisson’s ratio approaches 0.5,
unbounded and the material does not undergo any volumetric deformation and hence

is incompressible.

1-2v 1
— 0 0
Z p
1-2v
0 — 0
E )4
1-2v
0 0 —
E li

tension) loading of a cubical specimen. This type of test can be
realizable if the sample was placed in a high-pressure
compression chamber. The state of stress for this case is given by

Elastic constant & represents the ratio of pressure
to the dilatation (which represents the change in
material volume)

the bulk modulus becomes

18
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4.3 Physical meaning of elastic module

- Our discussion of elastic modulus for isotropic materials has led to the definition
of five constants 4, i, E, v and k£. However, keep in mind that only two of these are
needed to characterize the material.

- In can be shown that all five elastic constants are interrelated, and if any two are
given, the remaining three can be determined by using simple formulae. Results of
these relations are conveniently summarized in Table 4.1.

- In addition, nominal values of elastic constants for particular engineering

materials are given in Table 4.2.

19
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4.3 Physical meaning of elastic module

Table 4.1: Relations Among Elastic Constants
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4.3 Physical meaning of elastic module

Table 4.2: Typical Values of Elastic Moduli for Common Engineering Materials

E (GPa) \% W GPa) MGPa) k(GPa) | a(10¢/°C)

Aluminum 68.9 0.34 25.7 54.6 71.8 25.5
Concrete 27.6 0.20 11.5 7.7 15.3 11
Cooper 89.6 0.34 33.4 71 93.3 18
Glass 68.9 0.25 27.6 27.6 45.9 8.8

Nylon 28.3 0.40 10.1 4.04 47.2 102

Rubber 0.0019 0.499 | 0.654x10-3 0.326 0.326 200

Steel 207 0.29 80.2 111 164 13.5

21



Hooke’s Law in Cylindrical Coordinates

rg‘| = 663 Chapter/4! Materiallbehavior,
Home of Computational Scientists v

4.3 Physical meaning of elastic module

rz

o =Ae +e,+e.)+2ue,
o,=Ale. +e,+e )+2ue,
o.=Ae. +e,+e.)+2ue,

T,9 = 2Me,
THZ = 211'1602
TZ}" = 2ﬂezr

lineardelastic;solids

http://incos.tdt.edu.vn




linearselastic;solids)
http://incos.tdt.edu.vn

rg‘I C & Chapters4'|Materiallbehavior,
Home of Computational Scientists ag

4.3 Physical meaning of elastic module
Hooke’s Law in Spherical Coordinates

A X3
Oy TR(o Tro

=

TRH 00

Oy =Ale, +e,+e,)+2ue,

> 0,=Me,te,te,)+2ue,
o, =Ale,te,+e,)+2ue,
Tpp = 21y,
T,0 =2He,,

Tor =21y,
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4.4 Thermo-elastic constitutive relations

- It is well known that a temperature change in an unrestrained elastic solid
produces deformation. Thus a general strain field results from both mechanical and
thermal effects. Within the context of linear small deformation theory, the total strain
can be decomposed into the sum of mechanical and thermal components as

e. =M

(7)
=€ TE

- If 7, is taken as the reference temperature and 7 as an arbitrary temperature, the
thermal strains in an unrestrained solid can be written in the linear form

e’ =, (T-T,)

i

where a; is the coefficient of thermal expansion tensor. Notice that it is the
temperature difference that creates thermal strain. If the material is taken as
isotropic, then e, must be an isotropic second-order tensor, and

e, =a(T-T,)g,

where « is the coefficient of thermal expansion. Table 4.2 provides typical values of
this constant for some common materials.

25
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4.4 Thermo-elastic constitutive relations

- Notice that for isotropic materials, no shear strains are created by temperature
change. This result can be combined with the mechanical relation to give

1+v Vv
&=~ 0y = EO'kk5 +a(T-T1))6, (44.4)

- The corresponding results for the stress in terms of strain can be written as
0, =Cey — IB (T_To)

where g is a second-order tensor containing thermo-elastic modulus. This result is
sometimes referred to as the Duhamel-Neumann thermo-elastic constitutive law.

The isotropic case can be found by simply inverting relation (4.4.4) to get

= Ae, 0, +2ue, —(3A+2u)a(T—-T,)0,

- Having developed the necessary 6 constitutive relations, the elasticity field
equation system is now complete with 15 equations (6 strain-displacement, 3
equilibrium, 6 Hooke’s law) for 15 unknowns (3 displacements, 6 strains and 6
stresses) e
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