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5.1 Review of basic field equations
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€nten,; —€i—€ax=0 Strain-Displacement Relations

c..+F =0 Compatibility Relations

ij,J p y
=(A+u)e, o, +2ue, Equilibrium Equations
l+v

e; = TO'Z-J- - Eo-kké:j Hooke’s Law

15 Equations for 15 Unknowns Oy > €5 U;
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5.2 Boundary conditions & fundamental problems
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On coordinate surfaces the traction vector reduces
to simply particular stress components

Cartesian Coordinate
Boundaries

Polar Coordinate
Boundaries
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On general non-coordinate surfaces, traction vector will not
reduce to individual stress components and general
traction vector form must be used

n
*V

\ (m) _ _
\ I’V =on.+t n =5coso

N (n) _ _Qu
\ )" =t,n +on, =Ssino

Two-dimensional example
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Example boundary conditions

Traction Free Condition

T{H\J:T =0 T“”:G -0
Fixed Condition * Xy Ty »

yﬂ u=v=0

Traction Condition
/ T =c, =38, Ty(") =1,=0 Traction Condition

(n) _ — (n) _ —
J T” == =0T"=-c,=5

X \
Traction Free Condition Fixed Condition

u=v=0 Traction Free Condition
Tx(”) =T, = O,Ty(") =—0, = 0

Coordinate Surface Boundaries Non-Coordinate Surface
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Interface conditions

Material (1): ', u"
Interface Conditions:
Perfectly Bonded,

Slip Interface, Etc.

Material (2): >, u'?

g2l

%////////////%
&\\\\\\\\\\\\\&%

Embedded Fiber or Rod Layered Composite Plate Composite Cylinder or Disk
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Fundamental problem classifications

Problem 1 (Traction Problem) Determine the distribution

of displacements, strains and stresses in the interior of an

elastic body in equilibrium when body forces are given T
and the distribution of the tractions are prescribed over

the surface of the body, 7™ (x”) = £,(x")

Problem 2 (Displacement Problem) Determine the
distribution of displacements, strains and stresses in the
interior of an elastic body in equilibrium when body forces
are given and the distribution of the displacements are
prescribed over the surface of the body, u.(x*)=g.(x'")

Problem 3 (Mixed Problem) Determine the distribution of
displacements, strains and stresses in the interior of an
elastic body in equilibrium when body forces are given
and the distribution of the tractions are prescribed as per
over the surface S, and the distribution of the
displacements are prescribed as per over the surface S,
of the body (see Figure 5.1).




Formulation

rg‘ Home of Computohoncl Scientists

Institute for computational SCieN e M ——— http://incos.tdt.edu.vn

Solutionstrategies

5.3 Stress formulation
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Eliminate Displacements and Strains from Fundamental Field

Equilibrium Equations

Jdo, J7, Or

~ + +—==0
ox dy oz
Jdz,, d0, s J7,, 0
ox dy oz
T, J7,, , 90. 0
ox dy oz

Compatibility in Terms of Stress:
Beltrami-Michell Compatibility

Equations
az
(1+v)Vio, +87(O-’“ +0,+0,)
2
(1+v)Vio, +ay—2(0'x +0,+0,)
2
(1+v)V’o. +a7(0'x +0,+0,)
2

0

0

0

0

(1+v)V?r, + (0,+0,+0,)

oxdy

2

(1+v)Vir, + 0

(0,+0,+0,)

dydz

2

0

(14V)V'z, +=°

Zax(ax +0, +0'Z)

6 Equations for 6 Unknown Stresses
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5.4 Displacement formulation
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Eliminate Stress and Strains from Fundamental Field Equation

Equilibrium Equations in Terms of Displacements:
Navier's/Lame’s Equations

d(du oJdv Jw
v+ (A 0
WVt (A ) S S

d(du oJdv ow
Vvt (A 0
AV (A i) S S %

d ( du av ow
Vi (A 0
AV “‘)az[ax o azj

3 Equations for 3 Unknown Displacements
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1. Formulationj=iSolution strat

Summary of Reduction of Fundamental Elasticity Field

General Field Equation System
(15 Equations, 15 Unknowns:)

S{u,,e,, 0,5 W, F,} =0

j> i
1
ey :—(ul.j +u;,)
GU] +F =0

o, =(A+W)e,d, +2ue;

Cin TCuy —Cukjt — €k = 0

Stress Formulation Displacement Formulation
(6 Equations, 6 Unknowns:) (3 Equations, 3 Unknowns: u))
(t){cya}" uaF} S(u){ui;kﬁuﬂF;‘}
| Gy, +F; =0 Muy + M+ W, +F, =0
AY%
Oum t mckkzj = _maiij,k _E',j _Fj,i
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5.5 Principle of superposition
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e

e, u" Y is a solution to the fundamental

1
For a given problem domain, if the state {ij ),
elasticity equations with prescribed body forces F,'" and surface tractions T\'", and the

state {0(2) 52) .(2) Vis a solution to the fundamental equations with prescribed body

forces F.> and surface tractions T\, then the state {G(l) + (5(2) ;.1) + el.g.z),ui(l) +uP}

1 1

will be a solution to the problem with body forces F'" + F'> and surface tractions
T(l) + T(z) .

ATTTTTA ATTTTTA
< > < >
PR—— 5 PR—— L >
«— — «— —
«—| (1)+(?2) — > = — (1) — + (2)
«— — «— —>
a— > «— — >
< : 5 < —> : :
vlllllv o\, e, u’} vlllllv
2 2 2
{G(”+fo), ;1)+e(2) u® +u® {G;), ;),ui( n
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5.6 Saint-Venant’s principle
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The stress, strain and displacement fields due to two different statically
equivalent force distributions on parts of the body far away from the loading
points are approximately the same

p PP PP el T
2 2 333 .
|1l
(1) (2) 3)
.\. e / i X
Boundary loading 7™ would produce
detailed and characteristic effects only in
| vicinity of S*. Away from S* stresses
Stresses approximately would generally depend more on
the same resultant F, of tractions rather than on

exact distribution
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5.7 General solution strategies
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5.7.1 Direct Method - Solution of field equations by direct integration. Boundary
conditions are satisfied exactly. Method normally encounters significant
mathematical difficulties thus limiting its application to problems with simple
geometry.

5.7.2 Inverse Method - Displacements or stresses are selected that satisfy field
equations. A search is then conducted to identify a specific problem that would be
solved by this solution field. This amounts to determine appropriate problem
geometry, boundary conditions and body forces that would enable the solution to
satisfy all conditions on the problem. It is sometimes difficult to construct
solutions to a specific problem of practical interest.

5.7.3 Semi-Inverse Method - Part of displacement and/or stress field is
specified, while the other remaining portion is determined by the fundamental field
equations (normally using direct integration) and the boundary conditions. It is
often the case that constructing appropriate displacement and/or stress solution
fields can be guided by approximate strength of materials theory. The usefulness
of this approach is greatly enhanced by employing Saint-Venant's principle,
whereby a complicated boundary condition can be replaced by a simpler statically
equivalent distribution.
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Example 5-1: Direct Integration Example:

Stretching of Prismatic Bar Under Its Own Weight As an example of a simple direct
integration problem, consider the case of a uniform prismatic bar stretched by its
own weight, as shown in Figure 5-11. The body forces for this problem are F, = F, =
0, F_=-pg, where p is the material mass density and g is the acceleration of gravity

RLRRARRRARY _\f ARLLLAR RN

y

-

FIGURE 5-11 Prismatic bar under self-weight.
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Assuming that on each cross-section we have uniform tension produced by the
weight of the lower portion of the bar, the stress field would take the from.

0,=0,=0y,=7,=7,=0 (5.7.1)

The equilibrium equations reduce to the simple result

Jd0,
0z

This equations can be integrated directly, and applying the boundary

condition ¢,= 0 at z = 0 gives the result ¢,(z) = pgz. Next, by using Hooke’s law,
the strains are easily calculated as

=-F,=pg (5.7.2)

e, = ey =€, =— (5.7.3)
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The displacements follow from integrating the strain-displacement relation and for
the case with boundary conditions of zeros displacement and rotation at point A
(x =y =0;z=1), the final result is

uz_vpgxz,vz_vpgyz (5.7.4)

E E

_PEJ 2 2, .2y 2
W—2E|:Z +v(x“+y7) l}
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Example 5-2: Inverse Example - Pure Beam Bending

Consider the case of an elasticity problem under zero body forces with following
stress field

co,=Ady, o0,=0,=17,,=7,,=7,,=0 (5.7.5)
“y
e —k; 7 Nx\‘ Figure 5.12
\ /é }\ ;/ pure bending problem

-

Where A is a constant. It is easily shown that this simple linear stress field satisfies
the equations of equilibrium and compatibility, and thus the field is a solution to an
elasticity problem.

The equation is, what problem would be solved by such a field? A common
scheme to answer this question is to consider some trial domain and investigate the
nature of the boundary conditions that would occur using the given stress field.
Therefore, consider the tow-dimensional rectangular domain shown in Figure 5-12.
Using the field (5.7.5), the tractions (stresses) on each boundary face give zero
loadings on the top and bottom and a linear distribution of normal stresses on the
right and left side shown. Clearly, this type of boundary loading is related to a pure

bending problem, whereby the loading on the right and left sides produce no net
force and only a pure bending moment.

http://incos.tdt.edu.vn
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Example 5-3: Semi-Inverse Example: Torsion of Prismatic Bars

A simple semi-inverse example may be borrowed from the torsion problem that is
discussed in detail in Chapter 9. Skipping for now the developmental details, we
propose the following displacement field:

u=—-oyz, v=oxz, w=w(x,y) (5.7.6)

Where a is constant. The assumed field specifies the x and y components of
the displacement, while the z component is left to be determined as a function
of the indicated spatial variables. By using the strain-displacement relations and
Hook’s law, the stress field corresponding to (5.7.6) is given by

X y Xy
T,=MU a—w—ay (5.7.7)
ox
T, =M a—W+05x
Yz ay
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Using these stresses in the equations of equilibrium gives the following results

3w 9w
+

R =0 (5.7.8)

Which is actually the form of Navies's equations for this case. This result
represents a single equation (Laplace’s equation) to determine the unknown part
of the assumed solution form. It should be apparent that by assuming part of the
solution field, the remaining equations to be solve are greatly simplified. A special
domain in the x, y plane along with appropriate boundary conditions is needed to
complete the solution to a particular problem. Once this has been accomplished,
the assumed solution form (5.7.6) has been shown to satisfy all the field
equations of elasticity.
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5.7.4. Analytical Solution Procedures
- Power Series Method

- Fourier Method

- Integral Transform Method

- Complex Variable Method

5.7.5 Approximate Solution Procedures
- Ritz Method

5.7.6 Numerical SolutionProcedures
- Finite Difference Method (FDM)

- Finite Element Method (FEM)

- Boundary Element Method (BEM)
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See vou next weelk



