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15 Equations for 15 Unknowns σij , eij, ui  
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Compatibility Relations 
Strain-Displacement Relations 

Equilibrium Equations 

Hooke’s Law 
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On coordinate surfaces the traction vector reduces 
to simply particular stress components 

Cartesian Coordinate 
Boundaries 

Polar Coordinate 
Boundaries 
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On general non-coordinate surfaces, traction vector will not 
reduce to individual stress components and general 
traction vector form must be used 

Two-dimensional example 
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Fixed	  Condition	  
u	  =	  v	  =	  0	  
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Example boundary conditions 
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Embedded Fiber or Rod  Layered Composite Plate Composite Cylinder or Disk 

	  

Material (1): )1()1( , iij uσ

)2()2( , iij uσMaterial (2): 

Interface Conditions: 
Perfectly Bonded, 
Slip Interface, Etc. 

n 
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Interface conditions 
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Problem 3 (Mixed Problem) Determine the distribution of 
displacements, strains and stresses in the interior of an 
elastic body in equilibrium when body forces are given 
and the distribution of the tractions are prescribed as per 
over the surface St and the distribution of the 
displacements are prescribed as per over the surface Su 
of the body (see Figure 5.1). 
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Fundamental problem classifications 
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Problem 1 (Traction Problem) Determine the distribution 
of displacements, strains and stresses in the interior of an 
elastic body in equilibrium when body forces are given 
and the distribution of the tractions are prescribed over 
the surface of the body,  ( ) ( ) ( )( ) ( )s s

i i i iT x f x=n

Problem 2 (Displacement Problem) Determine the 
distribution of displacements, strains and stresses in the 
interior of an elastic body in equilibrium when body forces 
are given and the distribution of the displacements are 
prescribed over the surface of the body, ( ) ( )( ) ( )s s

i i i iu x g x=
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Equilibrium Equations 
Compatibility in Terms of Stress: 
Beltrami-Michell Compatibility 
Equations 

6 Equations for 6 Unknown Stresses 

Eliminate Displacements and Strains from Fundamental Field 
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Equilibrium Equations in Terms of Displacements: 
Navier’s/Lame’s Equations 

3 Equations for 3 Unknown Displacements 

Eliminate Stress and Strains from Fundamental Field Equation 
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General Field Equation System 
(15	  Equa,ons,	  15	  Unknowns:)	  

 

Stress Formulation 
(6	  Equa,ons,	  6	  Unknowns:)	  

 

Displacement Formulation 
(3	  Equa,ons,	  3	  Unknowns:	  ui)	  
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Summary of Reduction of Fundamental Elasticity Field  
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For a given problem domain, if the state },,{ )1()1()1(
iijij ueσ is a solution to the fundamental 

elasticity equations with prescribed body forces )1(
iF and surface tractions )1(

iT , and the 
state },,{ )2()2()2(

iijij ueσ is a solution to the fundamental equations with prescribed body 

forces )2(
iF and surface tractions )2(

iT , then the state },,{ )2()1()2()1()2()1(
iiijijijij uuee ++σ+σ  
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The stress, strain and displacement fields due to two different statically 
equivalent force distributions on parts of the body far away from the loading 
points are approximately the same 	  
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the same 

Boundary loading T(n) would produce 
detailed and characteristic effects only in 
vicinity of S*.  Away from S* stresses 
would generally depend more on 
resultant FR of tractions rather than on 
exact distribution 
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5.7.1 Direct Method  - Solution of field equations by direct integration.  Boundary 
conditions are satisfied exactly.  Method normally encounters significant 
mathematical difficulties thus limiting its application to problems with simple 
geometry. 

5.7.2 Inverse Method  - Displacements or stresses are selected that satisfy field 
equations.  A search is then conducted to identify a specific problem that would be 
solved by this solution field.  This amounts to determine appropriate problem 
geometry, boundary conditions and body forces that would enable the solution to 
satisfy all conditions on the problem.  It is sometimes difficult to construct 
solutions to a specific problem of practical interest.   

5.7.3 Semi-Inverse Method -  Part of displacement and/or stress field is 
specified, while the other remaining portion is determined by the fundamental field 
equations (normally using direct integration) and the boundary conditions.  It is 
often the case that constructing appropriate displacement and/or stress solution 
fields can be guided by approximate strength of materials theory.  The usefulness 
of this approach is greatly enhanced by employing Saint-Venant’s principle, 
whereby a complicated boundary condition can be replaced by a simpler statically 
equivalent distribution. 
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Example 5-1: Direct Integration Example:  
 
Stretching of Prismatic Bar Under Its Own Weight As an example of a simple direct 
integration problem, consider the case of a uniform prismatic bar stretched by its 
own weight, as shown in Figure 5-11. The body forces for this problem are Fx = Fy = 
0, Fz = -ρg, where ρ is the material mass density and g is the acceleration of gravity 
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Assuming that on each cross-section we have uniform tension produced by the 
weight of the lower portion of the bar, the stress field would take the from. 

0 (5.7.1)x y xy yz zxσ σ τ τ τ= = = = =

The equilibrium equations reduce to the simple result 

(5.7.2)z
zF g

z
σ ρ∂ = − =
∂

This equations can be integrated directly, and applying the boundary 
condition σz = 0 at z = 0 gives the result σz(z) = 𝜌gz. Next, by using Hooke’s law, gz. Next, by using Hooke’s law, 
the strains are easily calculated as  

, (5.7.3)
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E E

e e e
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Institute for computational science h"p://incos.tdt.edu.vn	  



The displacements follow from integrating the strain-displacement relation and for 
the case with boundary conditions of zeros displacement and rotation at point A 
( x = y =0; z = l ), the final result is 

2 2 2 2

, (5.7.4)
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2
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E E
gw z x y l
E
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Example 5-2: Inverse Example - Pure Beam Bending   
Consider the case of an elasticity problem under zero body forces with following 
stress field , 0 (5.7.5)x y z xy yz zxAyσ σ σ τ τ τ= = = = = =

Where A is a constant. It is easily shown that this simple linear stress field satisfies 
the equations of equilibrium and compatibility, and thus the field is a solution to an 
elasticity problem. 
     The equation is, what problem would be solved by such a field? A common 
scheme to answer this question is to consider some trial domain and investigate the 
nature of the boundary conditions that would occur using the given stress field. 
Therefore, consider the tow-dimensional rectangular domain shown in Figure 5-12. 
Using the field (5.7.5), the tractions (stresses) on each boundary face give zero 
loadings on the top and bottom and a linear distribution of normal stresses on the 
right and left side shown. Clearly, this type of boundary loading is related to a pure 
bending problem, whereby the loading on the right and left sides produce no net 
force and only a pure bending moment. 

Figure 5.12 
pure bending problem 	  

Institute for computational science h"p://incos.tdt.edu.vn	  



Example 5-3: Semi-Inverse Example: Torsion of Prismatic Bars 
 
A simple semi-inverse example may be borrowed from the torsion problem that is 
discussed in detail in Chapter 9. Skipping for now the developmental details, we 
propose the following displacement field: 

, , ( , ) (5.7.6)u yz v xz w w x yα α= − = =

Where α is constant. The assumed field specifies the x and y  components of 
the displacement, while the z component is left to be determined as a function 
of the indicated spatial variables. By using the strain-displacement relations and 
Hook’s law, the stress field corresponding to (5.7.6) is given by 
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Using these stresses in the equations of equilibrium gives the following results 

2 2

2 2 0 (5.7.8)w w
x y

∂ ∂+ =
∂ ∂

Which is actually the form of  Navies’s equations for this case. This result 
represents a single equation (Laplace’s equation) to determine the unknown part 
of the assumed solution form. It should be apparent that by assuming part of the 
solution field, the remaining equations to be solve are greatly simplified. A special 
domain in the x, y  plane along with appropriate boundary conditions is needed to 
complete the solution to a particular problem. Once this has been accomplished, 
the assumed solution form (5.7.6) has been shown to satisfy all the field 
equations of elasticity. 
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5.7.4. Analytical Solution Procedures  
- Power Series Method   
- Fourier Method  
- Integral Transform Method   
- Complex Variable Method   
  
5.7.5 Approximate Solution Procedures   
- Ritz Method   
  
5.7.6 Numerical SolutionProcedures   
- Finite Difference Method (FDM)   
- Finite Element Method (FEM)   
- Boundary Element Method (BEM)   
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