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- Three-dimensional elasticity problems are very difficult to solve. Thus, most solutions are 
developed for reduced problems that typically include axisymmetric  or two-dimensionality. 
We will first develop governing equations for two-dimensional problems, and will explore 
four different theories: 

-  Plane Strain 
-  Plane Stress 
-  Generalized Plane Stress 
-  Anti-Plane Strain 

- The basic theories of plane strain and plane stress represent the fundamental plane problem 
in elasticity.  While these two theories apply to significantly different types of two-
dimensional bodies, their formulations yield very similar field equations.   

- Since all real elastic structures are three-dimensional, theories set forth here will be 
approximate models. The nature and accuracy of the approximation will depend on problem 
and loading geometry 
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- Consider an infinitely long cylindrical (prismatic) body as shown in Figure. If the body 
forces and tractions on lateral boundaries are independent of the z-coordinate and have no z-
component, then the deformation field can be taken in the reduced form  
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Plane Strain Field Equations 
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Note that: Although ez = 0, the normal stress σz will not in general vanish. 



7.2 Plane strain 
Institute for computational science h"p://incos.tdt.edu.vn	
  

x 

y 

z 

x 

y 

z 

P 

Long Cylinders 
Under Uniform Loading 

Semi-Infinite Regions 
Under Uniform 

Loadings 

Examples of Plane Strain Problems 



Institute for computational science h"p://incos.tdt.edu.vn	
  

7.1 Review of Two-dimensional formulation 

7.2 Plane strain 

7.3 Plane stress  

7.4 Generalized plane stress 

7.5 Anti-plane strain 

7.6 Airy stress function 

7.7 Polar coordinate formulation 



7.3 Plane stress 
Institute for computational science h"p://incos.tdt.edu.vn	
  

Consider the domain bounded two stress free planes z = ±h, where h is small in comparison 
to other dimensions in the problem. Since the region is thin in the z-direction, there can be 
little variation in the stress components 
                    through the thickness, and thus they will be approximately zero throughout the 
entire domain. Finally since the region is thin in the z-direction it can be argued that the 
other non-zero stresses will have little variation with z.  Under these assumptions, the stress 
field can be taken as 
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Note that: Navier equations and Beltrami-Michell 
equations are similar but not identical to the 
corresponding plane strain relation. 

Plane Stress Field Equations 
Note that: Although σz = 0, the normal strain ez will not in general vanish. 
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Correspondence Between Plane Formulations 
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Plane strain and plane stress field equations had identical equilibrium equations and boundary 
conditions. Navier’s equations and compatibility relations were similar but not identical with 
differences occurring only in particular coefficients involving just elastic constants.  So 
perhaps a simple change in elastic moduli would bring one set of relations into an exact 
match with the corresponding result from the other plane theory.  This in fact can be done 
using results in the following table. 
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Therefore the solution to one plane problem also yields the solution to the other plane 
problem through this simple transformation scheme. 

Transformation Between Plane Strain and Plane Stress 
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The plane stress formulation produced some inconsistencies in particular out-of-plane 
behavior and resulted in some three-dimensional effects where in-plane displacements were 
functions of z. We avoided these issues by simply neglecting some of the troublesome 
equations thereby producing an approximate elasticity formulation.  In order to avoid this 
unpleasant situation, an alternate approach called Generalized Plane Stress can be 
constructed based on averaging the field quantities through the thickness of the domain.   

Using the averaging operator defined by 
1( , ) ( , , )
2

h

h
x y x y z dz

h
φ φ

−
= ∫

all plane stress equations are satisfied exactly by the averaged stress, strain and 
displacements variables; thereby eliminating the inconsistencies found in the original 
plane stress formulation.  However, this gain in rigor does not generally contribute much 
to applications . 
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An additional plane theory of elasticity called Anti-Plane Strain involves a formulation based 
on the existence of only out-of-plane deformation starting with an assumed displacement 
field  
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This theory is sometimes used in geomechanic applications to model deformations of 
portions of the earth’s interior. 
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Numerous solutions to plane strain and plane stress problems can be determined using an 
Airy Stress Function technique. The method will reduce the general formulation to a 
single governing equation in terms of a single unknown. The resulting equation is then 
solvable by several methods of applied mathematics, and thus many analytical solutions 
to problems of interest can be found.    

The method is started by reviewing the equilibrium equations for the plane problems. 
We retain the body forces but assume that they are derivable from a potential function V 
such that ∂ ∂= − = −

∂ ∂
,x y

V VF F
x y

This assumption is not very restrictive because many body forces found in applications 
(e.g. gravity loading) fall into this category. Under this form, the plane equilibrium 
equations can be written as 
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In the case of zero body forces, then we have  
2 2 2

2 2, ,x y xyy x x y
ϕ ϕ ϕσ σ τ∂ ∂ ∂= = = −

∂ ∂ ∂ ∂

It is easily shown that this form satisfies equilibrium (zero body force case) and 
substituting it into the compatibility equations gives 
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This relation is called the biharmonic equation and its solutions are known as 
biharmonic functions. 

These equations will be identically satisfied by choosing a representation 
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where ϕ=ϕ(x,y) is an arbitrary form called the Airy stress function 
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Airy Stress Function Formulation 

The plane problem of elasticity can be reduced to a single equation in terms of the Airy 
stress function.  This function is to be determined in the two-dimensional region R bounded 
by the boundary S as shown in the figure.  Appropriate boundary conditions over S are 
necessary to complete a solution. Traction boundary conditions would involve the 
specification of second derivatives of the stress function; however, this condition can be 
reduced to specification of first order derivatives. 
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Airy Stress Function Approach φ = φ(r,θ) 
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