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8.1 Two-dimensional problem solution
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8.1 Two-dimensional problem solution

Using the Airy Stress Function approach, it was shown that the plane
elasticity formulation with zero body forces reduces to a single governing

biharmonic equation. In Cartesian coordinates it is given by

4 4
8(40+2 82¢ g =V*
ox ox’dy’ ay

¢=0

and the stresses are related to the stress function by

9’ 9’ 9’
0, = f’o-y: gzo’Txy:_ 2
dy ox oxdy

We now explore solutions to several specific problems in both

Cartesian and Polar coordinate systems
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8.2 Cartesian Coordinate Solutions Using Polynomials
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8.2 Cartesian Coordinate Solutions Using Polynomials

The biharmonic equation

In Cartesian coordinates we choose Airy stress function solution of polynomial form

P(x,y) = i i 4,,x"y"

m=0 n=0

where 4, are constant coefficients to be determined. This method produces polynomial stress
distributions, and thus would not satisfy general boundary conditions. However, we can
modify such boundary conditions using Saint-Venant’s principle and replace a non-polynomial
condition with a statically equivalent loading. This formulation is most useful for problems
with rectangular domains, and is commonly based on the inverse solution concept where we

assume a polynomial solution form and then try to find what problem it will solve.
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8.2 Cartesian Coordinate Solutions Using Polynomials

SAN mon 0% d'o o
o(x,y) = A4,,x"y +2 +——=V'p=0
n;)g(; ax* ox’oy’ o' V=

Noted that the three lowest order terms with m + n < 1 do not contribute to the stresses and
will therefore be dropped. It should be noted that second order terms will produce a constant
stress field, third-order terms will give a linear distribution of stress, and so on for higher-order
polynomials.

Terms with m + n < 3 will automatically satisfy the biharmonic equation for any choice of
constants 4, . However, for higher order terms, constants 4, , will have to be related in order
to have the polynomial satisfy the biharmonic equation. For example, the 4-order polynomial
terms A, x*A4,,x%*+A4,,* will not satisfy the biharmonic equation unless 34,,+tA4,,+34,,=0.

This condition specifies one constant in terms of the other two, thus leaving two constants to

be determined by the boundary conditions.
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8.2 Cartesian Coordinate Solutions Using Polynomials

Considering the general case, substituting the series into the governing biharmonic
equation yields

oo

i m(ﬂ’l—l)(M—z)(m—?))Am x4 +222m(m 1)11(11 I)Amnxm 2_n-2

m=2 n=2
+> D n(n-1)(n-2)(n-3)4,,x"y"* =0
m=0 n=4
Collecting like powers of x and y, the preceding equation may be written as

i i [(m +2)(m+)m(m—-DA,,,, , +2m(m—-Dn(n-1)A4,, +

m=2 n=2

+(n+2)(n+Dn(n—-DA4,_, ., |x" 7y =0

Because this relation must be satisfied for all values of x and y, the coefficient in brackets
must vanish, giving the result

(m+2)(m+1)ym(m—1)A4 +2m(m—-Dn(n-1)A4,, +(n+2)(n+)n(n-04,_,,.,=0

m+2,n—2

For each m, n pair, this equation is the general relation that must be satisfied to ensure that
the polynomial grouping is biharmonic.
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8.2 Cartesian Coordinate Solutions Using Polynomials
Example 8.1 Uniaxial Tension of a Beam +v
< >
T .
<+«— 2c > >
«— l — X
< >
< 2| >
Stress Field Displacement Field (Plane Stress)
o o.(xLy)=T, o,(x,tc)=0 ou
Boundary Conditions: {Txy () =7, (x,£) =0 Pl —(0,~vo,)=—
v
Since the boundary conditions specify F O TVe)=Vy

constant stresses on all boundaries, try a
second-order stress function of the form

p=4,y" = |0.=24,,0,=7,=0
The first boundary condition implies that 4, =
772, and all other boundary conditions are

identically satisfied. Therefore the stress field
solution 1s given by

o =T, ayzrxy:O

= = Tx+ [0, v=r Ly ()

M 2e, =T 05 (1) +g/()=0
ay ax Y oou

S =-w,y+u,

g(x)=mx+v .. Rigid-Body Motion

“Fixity conditions” needed to determine RBM terms
u(0,0) =v(0,0) =u(0,c) =0 = f(y)=g(x)=0
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Example 8.2 Pure Bending of a Beam 4y
| ™
M 2c J >
l X
< 2/ >
Stress Field Displacement Field (Plane Stress)
Boundary Conditions: ou IM M
EE R xy+ f(y)
o,(x,xc)=0, 7 (x,xc)=7 (/,y)=0 o 1 sy
c c — =V 3 y = 3 y + g(X)
[Co.ydy=0. | o (*.y)ydy=-M dy  2Ec 4Ec
. . . o du Jv 3M , ,
Expecting a linear bending stress distribution, e T 0= - R S )+g(x)=0
try 2"d- stress function of the form
; S =-a,y+u,
= = 6 = == O
¢ A03y = O, A03y’ O-y 2-xy = g(x )— x +apx +v,
Moment boundary condition implies that 4,
= -MJ/4c®, and all other boundary conditions | “Fixity conditions” to determine RBM terms:
are identically satisfied. Thus the stress field w(,0)=0 and wu(—/,0)=0
1s
3M o Uy =@, =0, v, =-3MI | 16EC

o, =— 23y o,=7,=0

http://incos.tdt.edu.vn
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Solution Comparison of Elasticity with Elementary Mechanics of Materials
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4y
] ™ u
M 2c >
l X
<
2 g [=26%/3
Elasticity Solution Mechanics of Materials Solution
M Uses Euler-Bernoulli beam theory to
Ox=T Y0, T T 0 find bending stress and deflection of
beam centerline
uz—m , V=—o M [4vy* +4x* —17]
El 8EI M
c.=——y,0,=7,=0
1
M
v=v(x,0)=——[4x> =1I"
(x,0) 3 EI[ ]

Two solutions are identical, with the exception of the x-displacements
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8.2 Cartesian Coordinate Solutions Using Polynomials

Example 8.3 Bending of a Beam by Uniform Transverse Loading

Stress Field ! 4+ I | "
Boundary Conditions: wi I T wi
( c 2c >
r,nt0 =0 ["7 ydy=sul 1] |
c vy
10, (x,6)=0; I_ch(il,y)ydy=0 < 2
o, (x.—)=-w; [ o (+Ly)dy=0
_ A 2 A 2 3 A 2.3 _@ 5
Q= Ayx" + A X"y + Ay +ApxTy 5 Y
r (3w 2 2
2 Jwiilk4 ) 2. 4 3
O'x=6A03y+6A23(x2y—§y3) Ox = 46‘(6’ S]y 3(xy )
BC’s
10, =24, + 24,y +24,,)° e N I L
2 4c 4c
2
T, =24, x—6A4,xy . —3—Wx+3—v‘;xy2
g 4 4de

http://incos.tdt.edu.vn
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8.2 Cartesian Coordinate Solutions Using Polynomials
Example 8.3 Bending of a Beam by Uniform Transverse Loading

v 4

v 3

‘3

¢ w

wl T
I

A wl

v

Elasticity Solution

3

2

w 2 w.y ¢y

o =— (1 —x +—(=——-—
. 21( )y 7 (3

5
3

wily 2 2 5

=——|—-cy+=c
‘ 21(3 Y 3}

w
=——X\C
- 2[( -y7)

2|

Mechanics of Materials Solution

My w , )
o =—:=—~/("—x
T 2[( )y
0'y=0

140, w
T, =—=—7—x(¢c" —
Yoo It 21( »)

Shear stresses are identical, while normal stresses are not
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8.2 Cartesian Coordinate Solutions Using Polynomials

15

o, — Stress at x=0

Dimensionless Stress
o

[*4)
T

— o,/w - Elasticity
- --G,/w - Strength of Materials

0 05 0 05 1
Dimensionless Distance, y/c

Maximum differences between the two
theories exist at top and bottom of beam,
and actual difference in stress values is w/
5. For most beam problems where [ >> ¢,
the bending stresses will be much greater
than w, and thus the differences between
elasticity and strength of materials will be

relatively small.

Dimensionless Stress

-0.2r o, - Stress

S
>

.
o
o

o
)

0.1

o
()
T

— o,/w - Elasticity

- -~ o,/w - Strength of Materials

-1 -0.5 0 0.5 1
Dimensionless Distance, y/c

Maximum difference between the two
theories is w and this occurs at the top of the
beam. Again this difference will be
negligibly small for most beam problems
where [ >> c. These results are generally true
for beam problems with other transverse
loadings.
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8.2 Cartesian Coordinate Solutions Using Polynomials
Example 8.3 Bending of a Beam by Uniform Transverse Loading

J.T v 4 4 4 4oy "
WIIZC Twl>
l X

< 2| >
3 3 2 3

= —’“—)y+x<2y _x y)+vx(%—c2y+%>]+f<y)

Displacement Field < 2EI 3 5
(Plane Stress) W 4 2.2 2 ) Py
y c)y c)y 2 cy
v=- - V([T =x")—+v(—- +g(x
Sl = ) ) == )] g ()

w 4 w 2 8 21.2
=@, yv+u, , X)=——x ——[I"—(=+V)c" Ix"—wx+V
S Wy tu, , g(x) 2AE] 4E[[ (5 )] 0 0

Choosing Fixity Conditions |u(0, y)=v(%£/,0)=0

Swit | 12(4 v e
u, =@, =0,v, = 1+ —| =+
= = ’ 24EI{ 5(5 2)12}
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8.2 Cartesian Coordinate Solutions Using Polynomials
Example 8.3 Bending of a Beam by Uniform Transverse Loading

3 3 2 3 3
w=— || Pr-2 y+x 2V 2 +vx y——czy+2i
2FEI 3 3 5 3 3

Displacement Field Ca s . . e
2
(Plane Stress) Y EY LY Py )l
w |12 2 3

.

2ET| x* |7 (4 v),|,
— | =+ =+ | |x
12 |2 (5 2

Swi 12(4 LY ¢’
+ 1+— —
24E1 515 2 [

4
= w0,0)=v_ _Swlh) L 12(4 vae <
Toapr| 5|5 2

http://incos.tdt.edu.vn

S5wi?
24FE]

Strength of Materials: V,,, = Good match for beams where / >> ¢



Two

rgj Home of Computchonol Scientists

Institute for computational science

; : o 5
dimensional|/problemjsolution
L

“\Chapterg8 ]

http://incos.tdt.edu.vn

8.3 Cartesian Coordinate Solutions Using Fourier Methods
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8.3 Cartesian Coordinate Solutions Using Fourier Methods

A more general solution scheme for the biharmonic equation may be found using
Fourier methods. Such techniques generally use separation of variables along with

Fourier series or Fourier integrals.

84 84 a
O(x, =X(x)Y I:> ; +2 ; ; =0

Choosing X =e*,Y=¢” = a==iff
¢=sinﬂx[(A+C,By)sinh,By+(B+D,By)c0shﬂy]
+cos,8x[(A'+C',By)sinhﬁy+(B'+D',By)cosh,6’y]
+sin0{y[(E+ Gax)sinhax+(F—I—Hax)coshax]

+cos ay[(E' +G’ax)sinhax + (F’'+ H'ax ) cosh Otx}
<:I (zero root solutions)

Psy =Co+Cix+ C,x’ +Cx°
where

0y =Cy+Cy° +Cyy’ + Coxy+ Cx’y + Coxy’

The general solution
includes the superposition of
the general roots plus the
Zero root cases

X —X

sinh(x) = &% = —jsin(ix)

e :
cosh(x) = = COSIX

— T
sinh(f) ——
cosh(@) --------
tanh(B) -------




r91 \Chapter8'ATwo-dimensional/problem;solution
Home of Computchonol Scientists T

Institute for computational science http://incos.tdt.edu.vn

8.3 Cartesian Coordinate Solutions Using Fourier Methods

y 4 qgo.sinmx/|

' v
T T qol/ 70

qol/ 7
Example 8.4 Beam with Sinusoidal Loading %

2c
E

Stress Field l

< / >

Boundary Conditions: @ =sin x| (A+Cpy)sinh By +(B+Dfy)cosh By |

0.(0,y)=0.(,y)=0 (D
7. (x,2c)=0 (2) o =f sin,Bx[Asinh,By+C(ﬁysinhﬂy+2coshﬂy)
o, (x,—c)=0 (3) +Bcosh,By+D(,Byc0sh,By+2$inhﬁy)]

o,(x,c)=—q,sin(zx/l)  (4) o, =-f sinﬁx[(A+C,By)sinhﬁy+(B+D,By)cosh,b’y]
J'_C 7,(0,y)dy=—q,l/ 7 (5) T, =-p cosﬁx[Acosh,By+C(ﬁycoshﬁy+2sinhﬂy)

. +Bsinh,By+D(ﬁysinhﬁy+200shﬁy)]
[z @ndv=qiiz (6
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8.3 Cartesian Coordinate Solutions Using Fourier Methods

y 4 qgo.sinmx/|

v 3

o , , qol/ 7 T qol/ 7
Example 8.4 Beam with Sinusoidal Loading % e T >
| E
< / >
A=-D(fctanh fc+1) T

Condition (2) gives

=—C(fccoth fc+1) !
—q, sinh ¢ —q, smh”lc
Condition (3) gives C=— D=—ar
27[— 7€ +sinh 7€ cosh *¢ 22[_SthOSh}
21 / / [~ 11 [

Condition (1) and condition (5,6) will be satisfied
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8.3 Cartesian Coordinate Solutions Using Fourier Methods
y 4 qgo.sinmtx/|
v
. . . . qol/ﬂ o//
Example 8.4 Beam with Sinusoidal Loading % zTc T g
X
Displacement Field l |
< / >
= —gcosﬁx{A(1+v)sinh,By+B(1+v)cosh,By v= —gsinﬂx{A (I1+v)cosh Sy + B(1+Vv)sinh By
+C[(l+v)ﬂysinhﬂy+200sh,8y] -I—C[ v)Bycosh By — (1+V)smhﬂy]

+D[(1+V),Bycosh,8y+2sinh,3y:|}—a)oy+u0 +D[ ﬁysmhﬁy (1+v)cosh,8y:|}+a)y+v

1(0,0)=1(0,0)=v(,0)=0 => @=v=0, u0=f[3 (1+v)+2C]

v(x,0) = Dﬂ ——sin ,Bx[Z +(14+v) Bctanh ,Bc]

3q015 3gl* . nx[ 1+v 7c nc}
For the case [>>¢ =) D 1o — v(x,0)= A g 57 tanh =
31" . mx
Strength of Materials v(x,0)=- 9" gin
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8.3 Cartesian Coordinate Solutions Using Fourier Methods
Example 8.5 Rectangular Domain with Arbitrary Boundary Loading 4

by ody

Must use series representation for Airy stress b a a
function to handle general boundary loading.

p(x)

A
v
A
A4

v
x

Q= Zcosﬁ [B,cosh B,y+C,[3,ysinh 3,y]

i cose, y[F, coshe, x+G, e, xsinh e, x|+ Cyx* ‘ 1 ‘M
m=1 P(X,

@ Boundary Conditions
o, = Z{ﬁf cos ,an[Bn cosh 8,y +C, (B,ysinh 8,y +2cosh ﬁny)] o.(xa,y)=0
_ 7, (*a,y)=0
—Zaf, cose, y|F, coshe, x+G, o, xsinh e, x| T (x,£b)=0
xy >

m=1

= o, (x,xb)=—p(x
o, ==Y 3 cos B,x[ B, cosh ,y+C,B,ysinh B,y]+2C, . A . )=
= Use Fourier series theory to handle
+205 cos y[F coshe,x+G, (o, xsinh e, x+2cosh e x] general boundary COHdlthHS and this
generates a doubly infinite set of
T, =Z,B,f sin B,x| B, sinh B,y +C, (f8,ycosh 3,y +sinh 3,y) | equations to solve for unknown
n=l

- constants in stress function form. See
+ 2 o) sina,y [Fm sinhe,x+ G, (e, xcosh o, x +sinh amx)] text for details

m=1
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