

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematica Preliminaries For Further Reading

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

Solid Mechanics

T. Nguyen Thoi 1,2 , T. Vo-Duy 1,2

¹Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

²Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

15 March, 2016, Ho Chi Minh City

Contents

Solid Mechanics

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematica Preliminaries For Further Reading

1 Chapter 1: Mathematical Preliminaries

Solid Mechanics

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematical Preliminaries

For Further Reading Suppose the point *P* has position $\mathbf{r} = \mathbf{r}(r, \theta)$. We now ask by how large a distance $d\mathbf{r}$ the head of the vector \mathbf{r} changes if infinitesimal changes $dr, d\theta$ are made in the two polar directions.

As seen from figure, the total change is . $d\mathbf{r} = dr\mathbf{e}_r + rd\theta\mathbf{e}_{\theta}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

......

Orthogonal Curvilinear Coordinates

Solid Mechanics

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematical Preliminaries

For Further Reading Suppose the point *P* has position $\mathbf{r} = \mathbf{r}(r, \theta)$. If we change *r* by a small amount, dr, then **r** moves to position $(\mathbf{r} + d\mathbf{r})$, where $d\mathbf{r} = (\partial \mathbf{r}/\partial r)dr \equiv h_r dr \mathbf{e}_r$. where we have defined the unit vector \mathbf{e}_r and the scale factor h_r by

$$h_r = |\partial \boldsymbol{r} / \partial r|, \boldsymbol{e}_r = (\partial \boldsymbol{r} / \partial r) / |\partial \boldsymbol{r} / \partial r|$$

The scale factor h_r gives the magnitude of dr when we make the change $r \rightarrow r + dr$.

For Cartesian coordinates, the scale factors are unity and the unit vectors e_i reduce to the Cartesian basis vectors that we have used throughout the course:

 $\mathbf{r} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ so that $h_1\mathbf{e}_1 = (\partial \mathbf{r}/\partial x) = \mathbf{e}_1$. Similarly,we also have h_2, h_3 .

Orthogonal Curvilinear Coordinates

Solid Mechanics

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematical Preliminaries

For Further Reading

(Plane) polar coordinate

Solid Mechanics

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematical Preliminaries

For Further Reading

Scalar fields in orthogonal curvilinear coordinates.

Scalar fields can of course be expressed in orthogonal curvilinear coordinate: they are simply written as function $f(\xi_1, \xi_2, \xi_3)$ or for brevity $f(\xi_i)$.

Vector differentiation with respect to position: GRADIENT OPERATOR.

Give scalar field $f(\xi_1,\xi_2,\xi_3)$ in the orthogonal curvilinear coordinate (ξ_1,ξ_2,ξ_3) , we have

$$df = \nabla f.d\mathbf{r}$$

For the change caused by an infinitesimal position change dr

$$\implies df = \frac{\partial f}{\partial \xi_1} d\xi_1 + \frac{\partial f}{\partial \xi_2} d\xi_2 + \frac{\partial f}{\partial \xi_3} d\xi_3$$

From the previous definition of the unit vectors, we have

$$d\mathbf{r} = h_1 d\xi_1 \mathbf{e}_1 + h_2 d\xi_2 \mathbf{e}_2 + h_3 d\xi_3 \mathbf{e}_3$$

We define $\nabla f = (\nabla f)_1 \boldsymbol{e}_1 + (\nabla f)_2 \boldsymbol{e}_2 + (\nabla f)_3 \boldsymbol{e}_3$

 $\implies df = \nabla f \cdot d\mathbf{r} = h_1(\nabla f)_1 d\xi_1 + h_2(\nabla f)_2 d\xi_2 + h_3(\nabla f)_3 d\xi_3$

Orthogonal Curvilinear Coordinates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solid Mechanics	
T. Nguyen Thoi, T. Vo-Duy	
Chapter 1: Mathematical	
Preliminaries For Further	
Reading	
	Main source [1] Other r

References

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

32

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematica Preliminaries

For Further Reading

Martin H Sadd. *Elasticity: theory, applications, and numerics.* Academic Press, 2009.

Solid Mechanics

T. Nguyen Thoi, T. Vo-Duy

Chapter 1: Mathematica Preliminaries

For Further Reading

Thank you for listening!

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?