Time-independent
Schrodinger Equation
[TISE]

The Schrodinger equation
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Let us consider the case of time-independent

potentials, V(x,t) = V(x)
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The Schrodinger equation
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In this case, the Schrédinger equation can be
solved by the method of separation of variables:
Y(x,t) = @(t) px).

Substituting ¥ = @(t) ¥ (x) into the Sch. eq.,
and dividing both sides by @(t) ¥ (x), we obtain:
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The Schrédinger equation
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The Schrodinger equation
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Y (x) satisfies the equation
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This equation is known as the time-independent
Schrodinger equation [TISE] for a particle of mass m
moving in a time-independent potential V (x).

Stationary state (Trang thai dirng)
P(x, t) = P(x)e EL/R
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This particular solution of the Schrodinger
equation (*) for a time-independent potential is
called a stationary state.

Why is this state called stationary?
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Stationary state (Trang thai dung)

Y(x,t) = P(x)e YN
Y(x,t) depends on time t.
Calculate |W(x, t)|? !

|W(x,t)|? = |Y(x)|? : time - independent

Stationary state (Trang thai dirng)

W(x,t) = P(x)e tEL/M

Calculate the expectation value of Q(x, p)!
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Every expectation value is constant in time.



Stationary state — Definite total energy

Classical Mechanics: The total energy (kinetic +
potential energy) is called the Hamiltionian H :
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H(x,p) = 5+ V(@)

CM - QM:
Hamiltionian function—=> Hamiltionian operator
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Definite total energy
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The time-independent Schrodinger Eq. [TISE]
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can be written

Hy = Ey
The TISE is an Eigenvalue Eq. (phuong trinh tri riéng)

Each eigenvalue E,, corresponds to one (or more)
eigenfunctions (ham riéng) Y, : £, © Y,
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Definite total energy

Calculate (H) !
(H) = E — E isthe total energy.

Calculate 07 = (H2) — (H)? !
of =(H?)—(H)*=0
0% = 0 = The total energy is definite !

Every measurement of the total energy is certain to
return the value E.

Definite total energy

e F (eigenvalue) is the total energy.
- {Eigenvalue} = {Energy}
« - Each E,, < Energy level.

* The set of energy levels that are solutions to
the TISE are called the energy spectrum of the
system.

* The states y,, (eigenfunction — “wave
function”) corresponding to discrete and
continuous spectra are called bound and
unbound states, respectively.



The general solution

The TISE Hi) = E1) = an infinite set of
eigenfunctions Y, (x), ¥, (x), ... corresponding to
eigenvalues E{, E,, ... : {¢,} & {E,;}

> W (x, t) = Py (x)e~Ent/

The general solution is a linear combination of
separable solutions (eigenfunctions) to
Schrodinger Eq.
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Y(x,t) = Z c, ¥, (r t) = Z by (x) e~ iEnt/h

n=1 n=1

The TISE (Time-independent Schrodinger Eq)
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Solution: l/)(,X') — Aeikx + Be—ikx
Or Y(x) = Csin(kx) + Dcos(kx)
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Solutions: P (x) = Ae ¥ + Be**

21



