Time-independent Schrödinger Equation [TISE]

1

The Schrödinger equation

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi + V(x, t) \Psi$$

Let us consider the case of time-independent potentials, V(x,t) = V(x)

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi + V(x)\Psi$$

The Schrödinger equation

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi + V(x) \Psi$$

$$i\hbar \frac{\partial}{\partial t} \Psi = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \Psi$$

$$\hat{L}_t$$

$$\hat{L}_x$$

In this case, the Schrödinger equation can be solved by the method of *separation of variables*: $\Psi(x,t) = \varphi(t) \psi(x).$

Substituting $\Psi = \varphi(t) \psi(x)$ into the Sch. eq., and dividing both sides by $\varphi(t) \psi(x)$, we obtain:

3

•
$$\hat{L}f(x,y)=0$$

• If:
$$\hat{L} = \hat{L}_x + \hat{L}_y$$

•
$$\Rightarrow f(x,y) = X(x)Y(y)$$

•
$$[\hat{L}_x + \hat{L}_y]X(x)Y(y) = 0$$

•
$$[\hat{L}_x + \hat{L}_y]X(x)Y(y) = 0$$

• $\frac{1}{X(x)Y(y)}[\hat{L}_x + \hat{L}_y]X(x)Y(y) = 0$

$$\hat{L}_{t} \qquad \hat{L}_{x} \\
\hat{l}h \frac{\partial}{\partial t} \Psi = \left[-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} + V(x) \right] \Psi \\
\hat{L}_{t} \Psi(x, t) &= \hat{L}_{x} \Psi(x, t) \\
\hat{L}_{t} \varphi(t) \psi(x) &= \hat{L}_{x} \varphi(t) \psi(x) \\
\frac{\hat{L}_{t} \varphi(t) \psi(x)}{\varphi(t) \psi(x)} &= \frac{\hat{L}_{x} \varphi(t) \psi(x)}{\varphi(t) \psi(x)} \\
\Rightarrow \frac{\psi(x) \hat{L}_{t} \varphi(t)}{\varphi(t) \psi(x)} &= \frac{\varphi(t) \hat{L}_{x} \psi(x)}{\varphi(t) \psi(x)} \\
\frac{\hat{L}_{t} \varphi(t)}{\varphi(t)} &= \frac{\hat{L}_{x} \psi(x)}{\psi(x)} \qquad \left(\frac{1}{\varphi(t)} \hat{L}_{t} \varphi(t) = \frac{1}{\psi(x)} \hat{L}_{x} \psi(x) \right)$$

The Schrödinger equation

$$i\hbar \frac{1}{\varphi(t)} \frac{\partial \varphi(t)}{\partial t} = \frac{1}{\psi(x)} \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x)$$

$$i\hbar \frac{1}{\varphi} \frac{d\varphi}{dt} = \frac{1}{\psi} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] \psi$$

$$A(t) \qquad B(x)$$

$$A(t) = B(x) \ \forall \ t, x \rightarrow A(t) = B(x) = \text{const.} \equiv E$$

$$\begin{cases} A(t) = E \\ B(x) = E \end{cases}$$

$$\begin{cases} i\hbar \frac{d\varphi}{dt} = E\varphi \\ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi + V\psi = E\psi \end{cases}$$

The Schrödinger equation

$$i\hbar \frac{\partial \varphi}{\partial t} = E\varphi \longrightarrow \varphi(t) = Ce^{-iEt/\hbar}$$

$$\rightarrow \Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

 $\psi(x)$ satisfies the equation

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$

This equation is known as the *time-independent* Schrödinger equation [TISE] for a particle of mass m moving in a time-independent potential V(x).

7

Stationary state (Trạng thái dừng)

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi + V(x)\Psi \ (*)$$

This particular solution of the Schrödinger equation (*) for a *time-independent potential* is called a *stationary state*.

Why is this state called *stationary*?

Stationary state (Trạng thái dừng)

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

 $\Psi(x,t)$ depends on time t.

Calculate $|\Psi(x,t)|^2$!

 $|\Psi(x,t)|^2 = |\psi(x)|^2$: time - independent

9

Stationary state (Trạng thái dừng)

$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

Calculate the expectation value of Q(x, p)!

$$\langle Q(x,p)\rangle = \int_{-\infty}^{+\infty} \Psi^* Q\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) \Psi dx$$

$$\langle Q(x,p)\rangle = \int_{-\infty}^{+\infty} \psi(x)^* Q\left(\frac{x}{i}, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) \psi(x) dx$$

Every expectation value is constant in time.

Stationary state – Definite total energy

Classical Mechanics: The total energy (kinetic + potential energy) is called the Hamiltionian H:

$$H(x,p) = \frac{p^2}{2m} + V(x)$$

 $CM \rightarrow QM$:

Hamiltionian function → Hamiltionian operator

$$H(x,p) \to \widehat{H}\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right)$$

11

Definite total energy

$$\widehat{H}\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) \quad \widehat{H} = \widehat{H}\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$

The time-independent Schrödinger Eq. [TISE]

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi + V\psi = E\psi$$

can be written

$$\widehat{H}\psi = E\psi$$

The TISE is an Eigenvalue Eq. (phương trình trị riêng)

Each eigenvalue E_n corresponds to one (or more) eigenfunctions (hàm riêng) $\psi_n : E_n \leftrightarrow \psi_n$

12

Definite total energy

Calculate $\langle H \rangle$!

 $\langle H \rangle = E \rightarrow E$ is the total energy.

Calculate $\sigma_H^2 = \langle H^2 \rangle - \langle H \rangle^2$!

$$\sigma_H^2 = \langle H^2 \rangle - \langle H \rangle^2 = 0$$

 $\sigma_H^2 = 0 \rightarrow$ The total energy is definite!

Every measurement of the total energy is certain to return the value E.

13

Definite total energy

- *E* (eigenvalue) is the total energy.
 - \rightarrow {Eigenvalue} = {Energy}
- \rightarrow Each $E_n \leftrightarrow$ Energy level.
- The set of energy levels that are solutions to the TISE are called the energy spectrum of the system.
- The states ψ_n (eigenfunction "wave function") corresponding to discrete and continuous spectra are called *bound* and *unbound* states, respectively.

The general solution

The TISE $\widehat{H}\psi = E\psi \rightarrow$ an infinite set of eigenfunctions $\psi_1(x), \psi_2(x), ...$ corresponding to eigenvalues $E_1, E_2, ... : \{\psi_n\} \leftrightarrow \{E_n\}$

$$\rightarrow \Psi_n(x,t) = \psi_n(x)e^{-iE_nt/\hbar}$$

The general solution is a *linear combination* of separable solutions (eigenfunctions) to Schrödinger Eq.

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \Psi_n(\mathbf{r},t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar}$$

15

The TISE (Time-independent Schrödinger Eq)

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi + V(x)\psi = E\psi$$

$$\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi$$

$$k = \frac{\sqrt{2mE}}{\hbar}$$

$$\frac{d^2\psi}{dx^2} = -k^2\psi$$

Solution: $\psi(x) = Ae^{ikx} + Be^{-ikx}$

Or $\psi(x) = C\sin(kx) + D\cos(kx)$

20

$$\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar^2}\psi , E < 0$$
with $\kappa = \frac{\sqrt{-2mE}}{\hbar}$

$$\frac{d^2\psi}{dx^2} = \kappa^2\psi$$

Solutions: $\psi(x) = Ae^{-\kappa x} + Be^{\kappa x}$