
1

 Balanced Search Trees

 2-3 Trees

 2-3-4 Trees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2

2

 Height of a binary search tree sensitive to order

of insertions and removals

 Minimum = log2 (n + 1)

 Maximum = n

 Various search trees can retain balance despite

insertions and removals

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

3

 FIGURE 19-1 (a) A binary search tree of

maximum height; (b) a binary search tree of

minimum height

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

4

3

 A 2-3 tree not a binary tree

 A 2-3 tree never taller than a minimum-height

binary tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

5

 Placing data items in nodes of a 2-3 tree

 A 2-node (has two children) must contain single data
item greater than left child’s item(s) and less than right
child’s item(s)

 A 3-node (has three children) must contain two data
items, S and L , such that

 S is greater than left child’s item(s) and less than
middle child’s item(s);

 L is greater than middle child’s item(s) and less than
right child’s item(s).

 Leaf may contain either one or two data items.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

6

4

 FIGURE 19-3 Nodes in a 2-3 tree: (a) a 2-node;

(b) a 3-node

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013`

7

A 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

8

5

 Traverse 2-3 tree

in sorted order

by performing

analogue of

inorder traversal

on binary tree:

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

9

 Retrieval operation for 2-3 tree similar to

retrieval operation for binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

10

6

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

11

 Possible to search 2-3 tree and shortest binary

search tree with approximately same efficiency,

because:

 Binary search tree with n nodes cannot be shorter than

log2 (n + 1)

 2-3 tree with n nodes cannot be taller than

log2 (n + 1)

 Node in a 2-3 tree has at most two items

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

12

7

A balanced binary search tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

13

A 2-3 tree with the same entries

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

14

8

After inserting 39 into the tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

16

The steps for inserting 38 into the tree:

(a) The located node has no room;

(b) the node splits; (c) the resulting tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

17

9

After inserting 37 into the tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

18

(a), (b), (c) The steps for inserting 36 into the

tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

19

10

(d) the resulting tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

20

The tree after the insertion of 35, 34, and 33

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

21

11

Splitting a leaf in a 2-3 tree when the leaf is a

(a) left child; (b) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

22

Splitting an internal node in a 2-3 tree when the
node is a (a) left child; (b) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

23

12

Splitting the root of a 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

24

 Summary of insertion strategy

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

25

13

 Summary of insertion strategy

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

26

(a) A 2-3 tree;

(b), (c), (d), (e) the steps for removing 70;

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

27

14

(f) the resulting tree;

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

28

 (a), (b), (c) The steps for removing 100 from the

tree in Figure 19-15f; (d) the resulting tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

29

15

 FIGURE 19-17 The steps for removing 80 from

the tree in Figure 19-16d

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

30

 FIGURE 19-17 The steps for removing 80 from
the tree in Figure 19-16d

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

31

16

 FIGURE 19-18 Results of removing 70, 100, and 80
from (a) the 2-3 tree of Figure 19-15 a and (b) the
binary search tree of Figure 19-5 a

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

32

 Algorithm for removing data from a 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

33

17

 Algorithm for removing data from a 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

34

 Algorithm for removing data from a 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

35

18

 FIGURE 19-19 (a) Redistributing values;

(b) merging a leaf;

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

36

 FIGURE 19-19 (c) redistributing values and

 children; (d) merging internal nodes

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

37

19

 FIGURE 19-19 (e) deleting the root

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

38

 FIGURE 19-20 A 2-3-4 tree with the same data

items as the 2-3 tree in Figure 19-6 b

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

39

20

 Rules for placing data items in the nodes of a 2-

3-4 tree

 2-node (two children), must contain a single data item

that satisfies relationships pictured in Figure 19-3 a.

 3-node (three children), must contain a single data item

that satisfies relationships pictured in Figure 19-3 b.

 . . .

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

40

 4-node (four children) must contain three data items S ,

M , and L that satisfy:

 S is greater than left child’s item(s) and less than

middle-left child’s item(s)

 M is greater than middle-left child’s item(s) and less

than middle-right child’s item(s);

 L is greater than middle-right child’s item(s) and less

than right child’s item(s).

 A leaf may contain either one, two, or three data items

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

41

21

 FIGURE 19-21 A 4-node in a 2-3-4 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

42

 Has more efficient insertion and removal

operations than a 2-3 tree

 Has greater storage requirements due to the

additional data members in its 4-nodes

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

43

22

 Searching and Traversing a 2-3-4 Tree

 Simple extensions of the corresponding algorithms for

a 2-3 tree

 Inserting Data into a 2-3-4 Tree

 Insertion algorithm splits a node by moving one of its

items up to its parent node

 Splits 4-nodes as soon as it encounters them on the

way down the tree from the root to a leaf

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

44

 FIGURE 19-22 Inserting 20 into a one-node 2-3-4
tree (a) the original tree; (b) after
splitting the node; (c) after inserting 20

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

45

23

 FIGURE 19-23 After inserting 50 and 40

into the tree in Figure 19-22c

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

46

 FIGURE 19-24 The steps for inserting 70 into the
tree in Figure 19-23: (a) after splitting the 4-node;
(b) after inserting 70

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

47

24

 FIGURE 19-25 After inserting 80 and 15

into the tree in Figure 19-24b

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

48

 FIGURE 19-26 The steps for inserting 90

into the tree in Figure 19-25

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

49

25

 FIGURE 19-27 The steps for inserting 100

into the tree in Figure 19-26b

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

50

 FIGURE 19-28 Splitting a 4-node root

during insertion into a 2-3-4 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

51

26

 FIGURE 19-29 Splitting a 4-node whose parent is a
2-node during insertion into a 2-3-4 tree, when the
4-node is a (a) left child; (b) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

52

 FIGURE 19-30 Splitting a 4-node whose parent is a
3-node during insertion into a 2-3-4 tree, when the
4-node is a (a) left child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

53

27

 FIGURE 19-30 Splitting a 4-node whose parent is a
3-node during insertion into a 2-3-4 tree, when the
4-node is a (b) middle child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

54

 FIGURE 19-30 Splitting a 4-node whose parent is a
3-node during insertion into a 2-3-4 tree, when the
4-node is a (c) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

55

28

 Removing Data from a 2-3-4 Tree

 Removal algorithm has same beginning as removal

algorithm for a 2-3 tree

 Locate the node n that contains the item I you want to

remove

 Find I ’s inorder successor and swap it with I so that

the removal will always be at a leaf

 If leaf is either a 3-node or a 4-node, remove I .

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

56

