41?’[_7

1 tric di

Y
|
A

Contents
[
e Balanced Search Trees

o 2-3 Trees
o 2-3-4 Trees

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Balanced Search Trees
(T
o Height of a binary search tree sensitive to order

of insertions and removals

o Minimum = log, (n + 1)

o Maximum = n

® Various search trees can retain balance despite
insertions and removals

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Balanced Search Trees

o FIGURE 19-1 (a) A binary search tree of

maximum height; (b) a binary search tree of
minimum height

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3 Trees

[
o A 2-3 tree not a binary tree

o A 2-3 tree never taller than a minimum-height
binary tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3 Trees

A
o Placing data items in nodes of a 2-3 tree
o A 2-node (has two children) must contain single data
item greater than left child’s item(s) and less than right
child’s item(s)
o A 3-node (has three children) must contain two data
items, S and L , such that

= S is greater than left child’s item(s) and less than
middle child’s item(s);
m L is greater than middle child’s item(s) and less than
right child’s item(s).
o Leaf may contain either one or two data items.

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3 Trees

o FIGURE 19-3 Nodes in a 2-3 tree: (a) a 2-node;

(a)

Data items < S Data items > S Data items < S Data items > L

Data items > S
and <L

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3 Trees
[

A 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Traversing a 2-3 Tree

|
e Traverse 2-3 tree

in sorted order inorder(23Tree: TwoThreeTree): void
by performing if (23Tree’s oot node r is aleaf”)
Visit the data item(s)

analogue Of else if (r has two data items)
. {
|n0rder traversal inorder (lefi subtree of 23Tree’s root)

. . Visit the first data item
on b|nary tree: inorder (middle subtree of 23Tree’s root)

Visit the second data item
inorder (right subtree of 23Tree 5 root)
}
else // r hasone data item
{
inorder (lefi subtree of 23Tree’ s root)
Visit the data item
inorder (right subtree of 23Tree s root)

}

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a 2-3 Tree
I

o Retrieval operation for 2-3 tree similar to
retrieval operation for binary search tree

findItem(23Tree: TwoThreeTree, target: ItemType): ItemType

if (target isin 23Tree 5 root node r)

treeltem = the data portion of r
return treeltem

R e i Y e aa aa

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a 2-3 Tree

T —
B T A R R e e e B e Al A SV Pl S e S

else if (r isaleaf)
throw NotFoundException

else if (r has two data items)

{
if (target < smaller itemin r)
return findItem(r5 left subtree, target)
else if (target < largeritem in r)
return findItem(r s middle subtree, target)
else
return findItem(r s right subtree, target)
}
else
{

if (target < r5data item)

return findItem(r5 left subtree, target)
else

return findItem(r 5 right subtree, target)

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a 2-3 Tree
T

o Possible to search 2-3 tree and shortest binary

search tree with approximately same efficiency,
because:

o Binary search tree with n nodes cannot be shorter than
log, (n + 1)

o 2-3 tree with n nodes cannot be taller than
log, (n + 1)

o Node in a 2-3 tree has at most two items

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a 2-3 Tree

[
A balanced binary search tree

(a)

(5)

(30) (%)
(9 & ()
@ © @

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Searching a 2-3 Tree

[
A 2-3 tree with the same entries

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree

After inserting 39 into the tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree
The steps for inserting 38 into the tree:

(a) The located node has no room,;
(b) the node splits; (c) the resulting tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree
[

After inserting 37 into the tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree

10

(@), (b), (c) The steps for inserting 36 into the
tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree

(d) the resulting tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree
T

The tree after the insertion of 35, 34, and 33

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

10

Inserting Data into a 2-3 Tree
2y

(")
) -
;
o —
.
Splitting a leaf in a 2-3 tree when the leaf is a
(a) left child; (b) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

(a)
(b)

Inserting Data into a 2-3 Tree

Splitting an internal node in a 2-3 tree when the
node is a (a) left child; (b) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

11

Inserting Data into a 2-3 Tree

New root

Splitting the root of a 2-3 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Inserting Data into a 2-3 Tree

o Summary of insertion strategy

insertItem(23Tree: TwoThreeTree, newltem: ItemType)

Locate the leaf, 1eafNode, in which newItem belongs
Add newItem to TeafNode

if (leafNode has three items)
split(leafNode)

split(n: TwoThreeNode)

if (n istherool)

Create a new node p
else

Let p bethe parent of n

Replace node n with two nodes, nl and n2, so that p is their parent
Give nl the item in n with the smallest value
P pan Pr B DA PR @I Y RIS FAF GG PGP Jor b D psd f ™ pn ot P s g J3d s o s S g

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

sd ...

12

Inserting Data into a 2-3 Tree
[Ty
© Summary of insertion strategy

FE GBI LTI SO F A e TEE TSI F st F e o st oo J e 0wt o & J T A

split(n: TwoThreeNode)

if (n isthe roof)

Create a new node p
else

Let p bethe parent of n

Replace node n with two nodes, nl and n2, so that p is their parent
Give nl the item in n with the smallest value
Give n2 the item in n with the largest value

if (n is not a leaf)

{
nl becomes the parent of n's two leftmost children
n2 becomes the parent of n's two rightmost children

Move the item in n that has the middle value up to p
if (p now has three items)
split(p)

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree
R
(a) A 2-3 tree;

(b), (), (d), (e) the steps for removing 70;

@ (b)

Swap with inorder successor

(@ (d)
W
® © @ ®@=«Q @
Delete value from leaf Merge nodes by deleting empty leaf and moving 80 down

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

13

Removing Data from a 2-3 Tree

Ty
(f) the resulting tree;

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree

o (a), (b), (c) The steps for removing 100 from the
tree in Figure 19-15f; (d) the resulting tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

14

Removing Data from a 2-3 Tree

o FIGURE 19-17 The steps for removing 80 from
the tree in Figure 19-16d

(@

(b

(=)

Merge by moving 90 down and remaving empty leaf

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree

(d)
e <— Root becomes empty

(1 0 90) (1 0 20) @ (60 90)

Merge: move 50 down, adopt empty leaf's child, delete empty node Delete empty root

o FIGURE 19-17 The steps for removing 80 from
the tree in Figure 19-16d

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

15

Removing Data from a 2-3 Tree

(b)

(@
@
(o 20) (a0) (e0 90) 0 (=0)
OO
@ @

o FIGURE 19-18 Results of removing 70, 100, and 80
from (a) the 2-3 tree of Figure 19-15 a and (b) the
binary search tree of Figure 19-5 a

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree

o Algorithm for removing data from a 2-3 tree

removeltem(23Tree: TwoThreeTree, dataltem: ItemType): boolean

Attempt to locate dataltem
if (dataltem is found)
{
if (dataltem is not inaleaf)
Swap dataltem with ifs inorder successor, which will be in a leaf 1eafNode

Remove dataltem from leaf 1eafNode
if (leafNode now has no items)
fixTree(leafNode)
return true
}
else
return false

B i e eV L eV e N i T i A A e SVY e SNV WV oSV SNV S GV S B T B et A oV Vgt |

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

4 ...

16

Removing Data from a 2-3 Tree
-

o Algorithm for removing data from a 2-3 tree

B R e A A e i e e e e A S e

return false

fixTree(n: TwoThreeNode)

if (n isthe root)
Delete the root
else

Let p be the parent of n
if (some sibling of n has two items)
{
Distribute items appropriately among n, the sibling, and p

e Y b o L i e Y N B e B L A v

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree
T

o Algorithm for removing data from a 2-3 tree

F e L ey R Vo o T S S

if (n is internal)
Move the appropriate child from sibling to n

}
else
{
Choose an adjacent sibling s of n
Bring the appropriate item down from p into s
if (n is internal)
Move n'schildto s
Remove node n
if (p is now empiy)
fixTree(p)
}

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree

o FIGURE 19-19 (a) Redistributing values;
(b) merging a leaf;

@) o Redistribute o

—
S OO
Sibling Leaf Sibling Leaf

Merge .
—

Sibling Leaf

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

Removing Data from a 2-3 Tree

(d)
o Merge .
—
(5] Emey 1)
a b c a b C

o FIGURE 19-19 (c) redistributing values and
o children; (d) merging internal nodes

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

18

Removing Data from a 2-3 Tree

(a Empty root

Delete

- — }
Height h -1
c

L a b c a

o FIGURE 19-19 (e) deleting the root

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees

pee g |
o FIGURE 19-20 A 2-3-4 tree with the same data
items as the 2-3 tree in Figure 19-6 b

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

19

2-3-4 Trees
|

o Rules for placing data items in the nodes of a 2-
3-4 tree

o 2-node (two children), must contain a single data item
that satisfies relationships pictured in Figure 19-3 a.

o 3-node (three children), must contain a single data item
that satisfies relationships pictured in Figure 19-3 b.
o...

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees
1

o 4-node (four children) must contain three data items S ,
M, and L that satisfy:

= S is greater than left child’s item(s) and less than
middle-left child’s item(s)

= M is greater than middle-left child’s item(s) and less
than middle-right child’s item(s);

= L is greater than middle-right child’s item(s) and less
than right child’s item(s).

o A leaf may contain either one, two, or three data items

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

20

2-3-4 Trees
o FIGURE 19-21 A 4-node in a 2-3-4 tree

Data items < S Data items > L
Data items > S and <M Data items > M and < L

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees
1

@ Has more efficient insertion and removal
operations than a 2-3 tree

o Has greater storage requirements due to the
additional data members in its 4-nodes

template<class ItemType>

class QuadNode

{

private:
ItemType smallItem, middleItem, largeItem;
QuadNode<ItemType>* TeftChildPtr;
QuadNode<ItemType>* TeftMidChildPtr;
QuadNode<ItemType>* rightMidChildPtr;
QuadNode<ItemType>* rightChildPtr;

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

21

2-3-4 Trees

R Ty
o Searching and Traversing a 2-3-4 Tree

o Simple extensions of the corresponding algorithms for
a 2-3tree

o Inserting Data into a 2-3-4 Tree

o Insertion algorithm splits a node by moving one of its
items up to its parent node

o Splits 4-nodes as soon as it encounters them on the
way down the tree from the root to a leaf

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees

(b) ©
(30
) ()

o FIGURE 19-22 Inserting 20 into a one-node 2-3-4
tree (a) the original tree; (b) after
splitting the node; (c) after inserting 20

(a)
10 30 60 @

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

22

2-3-4 Trees

(30
CIO ZCD (40 50 60)

o FIGURE 19-23 After inserting 50 and 40
into the tree in Figure 19-22¢

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees

o FIGURE 19-24 The steps for inserting 70 into the
tree in Figure 19-23: (a) after splitting the 4-node;
(b) after inserting 70

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

23

2-3-4 Trees

o FIGURE 19-25 After inserting 80 and 15
into the tree in Figure 19-24b

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees
[

30 50 70 30 50 70

T OO ® @O ED

o FIGURE 19-26 The steps for inserting 90
into the tree in Figure 19-25

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

24

2-3-4 Trees
|

10 15 20 80 90100

o FIGURE 19-27 The steps for inserting 100
into the tree in Figure 19-26b

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees

= %
a b c d a b c d

o FIGURE 19-28 Splitting a 4-node root
during insertion into a 2-3-4 tree

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

25

2-3-4 Trees

(@ O MoP
e e
o¥o
a b cd a b c d
(b) o
—
a
S M L
b ¢ d e b cd e

o FIGURE 19-29 Splitting a 4-node whose parent is a
2-node during insertion into a 2-3-4 tree, when the
4-node is a (a) left child; (b) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

2-3-4 Trees

S ML °°

a b c d a bcd

o FIGURE 19-30 Splitting a 4-node whose parent is a
3-node during insertion into a 2-3-4 tree, when the
4-node is a (a) left child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

26

2-3-4 Trees
)
G
a f :> a f
S M L ° o
b ¢ d e bc de
o FIGURE 19-30 Splitting a 4-node whose parent is a
3-node during insertion into a 2-3-4 tree, when the
4-node is a (b) middle child
2-3-4 Trees

o FIGURE 19-30 Splitting a 4-node whose parent is a
3-node during insertion into a 2-3-4 tree, when the
4-node is a (c) right child

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

27

2-3-4 Trees

[
© Removing Data from a 2-3-4 Tree

o Removal algorithm has same beginning as removal
algorithm for a 2-3 tree

o Locate the node n that contains the item | you want to
remove

o Find | ’s inorder successor and swap it with | so that
the removal will always be at a leaf

o If leaf is either a 3-node or a 4-node, remove | .

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

28

