
©FIT-HCMUS 1

Giảng viên:

Văn Chí Nam – Nguyễn Thị Hồng Nhung – Đặng Nguyễn Đức Tiến

Giới thiệu

Một số khái niệm

Nén Huffman tĩnh

Nén Run-Length Encoding

Nén LZW

2

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

©FIT-HCMUS 2

 Thuật ngữ:

 Data compression

 Encoding

 Decoding

 Lossless data compression

 Lossy data compression

 …

3

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

4

 Nén dữ liệu

 Nhu cầu xuất hiện ngay sau khi hệ thống máy tính đầu

tiên ra đời.

 Hiện nay, phục vụ cho các dạng dữ liệu đa phương tiện

 Tăng tính bảo mật.

 Ứng dụng:

 Lưu trữ

 Truyền dữ liệu

©FIT-HCMUS 3

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

5

 Nguyên tắc:

 Encode và decode sử dụng cùng một scheme.

encode decode

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

6

 Tỷ lệ nén (Data compression ratio)

 Tỷ lệ giữa kích thước của dữ liệu nguyên thủy và của

dữ liệu sau khi áp dụng thuật toán nén.

 Gọi:

 N là kích thước của dữ liệu nguyên thủy,

 N1 là kích thước của dữ liệu sau khi nén.

 Tỷ lệ nén R:

 Ví dụ:

 Dữ liệu ban đầu 8KB, nén còn 2 KB. Tỷ lệ nén: 4-1

1N

N
R 

©FIT-HCMUS 4

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

7

 Tỷ lệ nén (Data compression ratio)

 Về khả năng tiết kiệm không gian: Tỷ lệ của việc giảm

kích thước dữ liệu sau khi áp dụng thuật toán nén.

 Gọi:

 N là kích thước của dữ liệu nguyên thủy,

 N1 là kích thước của dữ liệu sau khi nén.

 Tỷ lệ nén R:

 Ví dụ:

 Dữ liệu ban đầu 8KB, nén còn 2 KB. Tỷ lệ nén: 75%

N

N
R 11

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

8

 Nén dữ liệu không mất mát (Lossless data
compression)

 Cho phép dữ liệu nén được phục hồi nguyên vẹn như dữ
liệu nguyên thủy (lúc chưa được nén).

 Ví dụ:

 Run-length encoding

 LZW

 …

 Ứng dụng:

 Ảnh PCX, GIF, PNG,..

 Tập tin *. ZIP

 Ứng dụng gzip (Unix)

©FIT-HCMUS 5

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

9

 Nén dữ liệu có mất mát (Lossy data
compression)

 Dữ liệu nén được phục hồi

 không giống hoàn toàn với dữ liệu nguyên thủy;

 gần đủ giống để có thể sử dụng được.

 Ứng dụng:

 Dùng để nén dữ liệu đa phương tiện (hình ảnh, âm
thanh, video):
 Ảnh: JPEG, DjVu;

 Âm thanh: AAC, MP2, MP3;

 Video: MPEG-2, MPEG-4

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

10

©FIT-HCMUS 6

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

11

 Mong muốn:

 Một giải thuật nén bảo toàn thông tin;

 Không phụ thuộc vào tính chất của dữ liệu;

 Ứng dụng rộng rãi trên bất kỳ dữ liệu nào, với hiệu

suất tốt.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

12

 Tư tưởng chính:

 Phương pháp cũ: dùng 1 dãy bit cố định để biểu diễn 1 ký tự

 David Huffman (1952): tìm ra phương pháp xác định mã tối ưu
trên dữ liệu tĩnh :

 Sử dụng vài bit để biểu diễn 1 ký tự (gọi là “mã bit” – bit code)

 Độ dài “mã bit” cho các ký tự không giống nhau:

 Ký tự xuất hiện nhiều lần: biểu diễn bằng mã ngắn;

 Ký tự xuất hiện ít : biểu diễn bằng mã dài

=> Mã hóa bằng mã có độ dài thay đổi (Variable Length
Encoding)

©FIT-HCMUS 7

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

13

 Giả sử có dữ liệu sau đây:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

 Biểu diễn 8 bit/ký tự cần:

(10 + 8 + 6 + 5 + 2) * 8 = 248 bit

Ký tự Tần số xuất hiện

A 10

B 8

C 6

D 5

E 2

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

14

 Dữ liệu:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

 Biểu diễn bằng chiều dài thay đổi:

(10*2 + 8*2 + 6*2 + 5*3 + 2*3) = 69 bit

Ký tự Tần số Mã

A 10 11

B 8 10

C 6 00

D 5 011

E 2 010

©FIT-HCMUS 8

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

15

[B1]: Duyệt tập tin -> Lập bảng thống kê tần số xuất hiện
của các ký tự.

[B2]: Xây dựng cây Huffman dựa vào bảng thống kê tần số
xuất hiện

[B3]: Phát sinh bảng mã bit cho từng ký tự tương ứng

[B4]: Duyệt tập tin -> Thay thế các ký tự trong tập tin bằng
mã bit tương ứng.

[B5]: Lưu lại thông tin của cây Huffman cho giải nén

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

16

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

11011011111110100000101111111010000

0001010100001111110110110100101111

©FIT-HCMUS 9

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

17

 Dữ liệu:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

Ký tự Tần số xuất hiện

A 10

B 8

C 6

D 5

E 2

 Cây Huffman: cây nhị

phân

 Mỗi node lá chứa 1 ký tự

 Mỗi node cha chứa các ký

tự của những node con.

 Trọng số của node:

 Node con: tần số xuất

hiện của ký tự tương ứng

 Node cha: Tổng trọng số

của các node con.

18

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

©FIT-HCMUS 10

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

19

E 2 D 5

ED 7C 6

CED 13

B 8 A 10

BA 18

CEDBA 31

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

20

 Phát sinh cây:
 Bước 1: Chọn trong bảng thống kê hai phần tử x,y có trọng số

thấp nhất.

 Bước 2: Tạo 2 node của cây cùng với node cha z có trọng số
bằng tổng trọng số của hai node con.

 Bước 3: Loại 2 phần tử x,y ra khỏi bảng thống kê.

 Bước 4: Thêm phần tử z vào trong bảng thống kê.

 Bước 5: Lặp lại Bước 1-4 cho đến khi còn 1 phần tử trong bảng
thống kê.

©FIT-HCMUS 11

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

21

 Quy ước:

 Node có trọng số nhỏ hơn sẽ nằm bên nhánh trái. Node

còn lại nằm bên nhánh phải.

 Nếu 2 node có trọng số bằng nhau

 Node nào có ký tự nhỏ hơn thì nằm bên trái

 Node có ký tự lớn hơn nằm bên phải.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

22

Ký tự Tần số

A 10

B 8

C 6

D 5

E 2

©FIT-HCMUS 12

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

23

Ký tự Tần số

A 10

B 8

ED 7

C 6

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

24

Ký tự Tần số

CED 13

A 10

B 8

©FIT-HCMUS 13

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

25

Ký tự Tần số

BA 18

CED 13

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

26

Ký tự Tần số

CEDBA 31

©FIT-HCMUS 14

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

27

 Mã bit của từng ký tự: đường đi từ node gốc

của cây Huffman đến node lá của ký tự đó.

 Cách thức:

 Bit 0 được tạo ra khi đi qua nhánh trái

 Bit 1 được tạo ra khi đi qua nhánh phải

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

28

Ký tự Mã

A 11

B 10

C 00

D 011

E 010

©FIT-HCMUS 15

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

29

 Duyệt tập tin cần nén

 Thay thế tất cả các ký tự trong tập tin bằng mã

bit tương ứng của nó.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

30

 Phục vụ cho việc giải nén.

 Cách thức:

 Cây Huffman

 Bảng tần số

©FIT-HCMUS 16

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

31

 Phục hồi cây Huffman dựa trên thông tin đã lưu
trữ.

 Lặp

 Đi từ gốc cây Huffman

 Đọc từng bit từ tập tin đã được nén

 Nếu bit 0: đi qua nhánh trái

 Nếu bit 1: đi qua nhánh phải

 Nếu đến node lá: xuất ra ký tự tại node lá này.

 Cho đến khi nào hết dữ liệu

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

32

 Có thể không lưu trữ cây Huffman hoặc bảng

thống kê tần số vào trong tập tin nén hay

không?

©FIT-HCMUS 17

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

33

 Thống kê sẵn trên dữ liệu lớn và tính toán sẵn cây
Huffman cho bộ mã hóa và bộ giải mã.

 Ưu điểm:

 Giảm thiểu kích thước của tập tin cần nén.

 Giảm thiểu chi phí của việc duyệt tập tin để lập bảng thống
kê

 Khuyết điểm:

 Hiệu quả không cao trong trường hợp khác dạng dữ liệu đã
thống kê

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

34

©FIT-HCMUS 18

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

35

 Một thuật toán nén đơn giản

 Dạng nén không mất mát dữ liệu

 Có vài ‘biến thể’ cải tiến để đạt hiệu quả nén

cao hơn

 Nén trên ảnh PCX

 Nén trên ảnh BMP

 ..

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

36

 Đường chạy (run)
 Dãy các ký tự giống nhau liên tiếp

 Ví dụ:
 Chuỗi: AAAbbbbbCdddEbbbb

 Các đường chạy:
 AAA

 bbbbb

 C

 ddd

 E

 bbbb

©FIT-HCMUS 19

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

37

 Run-Length-Encoding: mã hóa (nén) dựa trên

chiều dài của đường chạy.

 Đường chạy được biểu diễn lại:

<Số lượng ký tự> <Ký tự>

 Ví dụ:

 Chuỗi đầu vào: AAAbbbbbCdddEbbbb (#17 bytes)

 Kết quả nén: 3A5b1C3d1E4b (#12 bytes)

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

38

 Trong thực tế, có khả năng gây ‘hiệu ứng

ngược’:

 Dữ liệu nén: ABCDEFGH (8 bytes)

 Kết quả nén: 1A1B1C1D1E1F1G1H (16 bytes)

 Cần phải có những hiệu chỉnh thích hợp

 Nén RLE trên ảnh PCX

 Nén RLE trên ảnh BMP

©FIT-HCMUS 20

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

39

 Khắc phục trường hợp ‘hiệu ứng ngược’:

 Byte xác định số lượng (nhiều hơn 1): 2 bit 6,7 được

bật.

 Ví dụ:

 Chuỗi gồm 5 ký tự A, 0x41, (AAAAA) được mã hóa

1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1

0xC5 0x41

19710 6510

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

40

 Khắc phục trường hợp ‘hiệu ứng ngược’:

 Byte xác định số lượng : 2 bit 6,7 được bật.

 Số lần lặp (số lượng) tối đa: 63

 Giá trị dữ liệu tối đa: 191 (0-191)

 Số lần lặp là 1?

 Dữ liệu có giá trị dưới 192?

 Dữ liệu có giá trị từ 192?

©FIT-HCMUS 21

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

41

 Số lần lặp là 1?

 Dữ liệu có giá trị dưới 192?

 Không ảnh hưởng

 Ví dụ: nén 2 ký tự 0x41 0x43

 Dữ liệu có giá trị từ 192?

 Ảnh hưởng (nhầm lẫn với thông tin số lượng).

 Sử dụng 2 byte: <Số lượng = 1> <Dữ liệu>

 Ví dụ: nén ký tự 0xDB (21910)

0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1

1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

42

 Ưu điểm:

 Cài đặt đơn giản

 Giảm các trường hợp “hiệu ứng ngược” của những đường
chạy đặc biệt

 Khuyết điểm:

 Dùng 6 bit biểu diễn số lần lặp chỉ thể hiện được chiều dài
tối đa 63.

 Các đoạn lặp dài sẽ phải lưu trữ lặp lại

 Không giải quyết được trường hợp “hiệu ứng ngược” với
đường chạy đặc biệt có mã ASCII >= 192

©FIT-HCMUS 22

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

46

 Điểm hạn chế của RLE trên PCX:

 Nén 255 ký tự A?

AAA...AAA...AAA

0xFF ‘A’ 0xFF ‘A’ 0xFF ‘A’ 0xFF ‘A’ 0xC3 ‘A’

(Do 255 = 4 x 63 + 3)

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

47

 Ý tưởng:

 Xử lý riêng biệt trường hợp đường chạy với trường

hợp dãy các ký tự riêng lẻ.

 Ví dụ: AAAAABCDEF

 Có sử dụng các ký hiệu đánh dấu

©FIT-HCMUS 23

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

48

 Hiện thực:

 Trường hợp là đường chạy:

<Số lượng lặp lại> <Ký tự>

Dữ liệu mã hóa Dữ liệu giải mã

0x01 0x00 0x00

0x0A 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

49

 Hiện thực:

 Trường hợp là ký tự riêng lẻ:

<Ký tự đánh dấu> <Số lượng ký tự của dãy>

<Dãy các ký tự đơn lẻ>

 Ký tự đánh dấu: 0x00

 Dùng trong trường hợp dãy có từ 3 ký tự riêng lẻ trở

lên.

 Ví dụ:

Dữ liệu mã hóa Dữ liệu giải mã

00 03 01 02 03 01 02 03

00 04 0x41 0x42 0x43 0x44 0x41 0x42 0x43 0x44

©FIT-HCMUS 24

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

50

 Hiện thực:

 Các trường hợp khác:

 0x00 0x00: kết thúc dòng

 0x00 0x01: kết thúc tập tin

 0x00 0x02 <DeltaX> <DeltaY>: đoạn nhảy (DeltaX,

DeltaY) tính từ vị trí hiện tại. Dữ liệu kế tiếp được áp

dụng tại vị trí mới.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

51

©FIT-HCMUS 25

52

14 0F FF 00 00

13 02 FF 09 00 04 FF 00 00

12 04 FF 03 00 03 FF 02 00 03 FF 00 00

11 04 FF 03 00 04 FF 02 00 02 FF 00 00

10 04 FF 03 00 04 FF 02 00 02 FF 00 00

09 04 FF 03 00 04 FF 02 00 02 FF 00 00

08 04 FF 03 00 03 FF 02 00 03 FF 00 00

07 04 FF 03 00 01 FF 03 00 04 FF 00 00

06 04 FF 03 00 01 FF 03 00 04 FF 00 00

05 04 FF 03 00 03 FF 02 00 03 FF 00 00

04 04 FF 03 00 04 FF 02 00 02 FF 00 00

03 04 FF 03 00 04 FF 02 00 02 FF 00 00

02 04 FF 03 00 03 FF 03 00 02 FF 00 00

01 02 FF 0A 00 03 FF 00 00

00 0F FF 00 00 00 01

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

53

©FIT-HCMUS 26

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

54

Cho đoạn dữ liệu trong tập tin BMP (đã được mã

hóa bằng thuật toán nén Run Length Encoding):

0x01 0x00 0x00 0x04 0x4F 0xFC 0xA7 0x42

0x03 0xFF 0x02 0x00 0x00 0x03 0xFF 0xFE

0xFF 0x00

Đoạn dữ liệu được giải mã:

Số byte của đoạn giải mã được là:

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

55

©FIT-HCMUS 27

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

56

 Dùng để nén các dữ liệu có nhiều đoạn lặp lại.

 Thích hợp cho dữ liệu ảnh -> ứng dụng hẹp

 Chưa phải là một thuật toán nén có hiệu suất

cao

 Đơn giản, dễ cài đặt

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

57

©FIT-HCMUS 28

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

58

 LZW được phát minh bởi Abraham Lempel, Jacob

Ziv, và Terry Welch.

 Thuật toán này được ra đời năm 1984 khi Terry

Welch cải tiến thuật toán LZ78 (năm 1978).

 Thuộc họ thuật toán LZ, sử dụng bộ từ điển động.

 Chuỗi ký tự trong văn bản gốc được thay thế bằng mã xác

định một cách tự động.

 Người mã hoá và người giải mã cùng xây dựng bảng mã.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

59

 Ghi nhớ tất cả các chuỗi ký tự (từ 2 ký tự trở lên) đã

gặp và gán cho nó một ký hiệu (token) riêng.

 Nếu lần sau gặp lại chuỗi ký tự đó, chuỗi ký tự sẽ

được thay thế bằng ký hiệu (đã được gán trước

đó).

 Bảng mã không cần được lưu trữ vào trong tập tin

mã hóa vì hoàn toàn có thể được tạo lại trong quá

trình giải nén.

©FIT-HCMUS 29

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

60

 Cần một “từ điển” (bảng mã) để lưu giữ các

chuỗi ký tự đã gặp.

 Dữ liệu cần nén được so sánh với “từ điển”

 Nếu đã có trong “từ điển” thì đưa ra ký hiệu tương ứng

của chuỗi.

 Nếu không có thì thêm ký hiệu mới vào “từ điển”.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

61

 Bước 1: Khởi tạo từ điển gồm tất cả các ký tự (chiều dài
là 1).

 Bước 2: Tìm chuỗi dài nhất W trong từ điển khớp hoàn
toàn với chuỗi ký tự cần nén hiện tại.

 Bước 3: Xuất ký hiệu của W (từ từ điển).

 Bước 4: Thêm chuỗi W và ký tự đằng sau vào từ điển.
Gán ký hiệu thích hợp cho chuỗi này.

 Bước 5: Khi chưa hết chuỗi cần nén, lặp lại bước 2.

©FIT-HCMUS 30

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

62

string Pre;

char CurrentValue;

Pre = empty string;

while (Vẫn còn ký tự để đọc) {

CurrentValue = Đọc một ký tự;

if (Pre+CurrentValue Có trong Từ điển)

Pre = Pre+CurrentValue;

else {

Ghi ký hiệu của Pre vào tập tin;

Thêm Pre+CurrentValue vào Từ điển;

Pre = CurrentValue;

}

}

Ghi ký hiệu của Pre vào tập tin;

 Giả sử các ký tự trong chuỗi cần nén chỉ gồm {a,

b}.

 Trong thực tế, tập ký tự có thể bao gồm cả 256 ký tự ASCII.

 Các ký tự được mã với các con số bắt đầu từ 0.

 Bảng mã ban đầu:

Mã

Khóa

0

a

1

b

63

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

©FIT-HCMUS 31

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

64

 Việc mã hóa được thực hiện bằng việc quét chuỗi ban

đầu từ trái sang phải.

 Tìm chuỗi p dài nhất đã tồn tại trong bảng mã.

 Biểu diễn p bằng mã pCode của nó.

 Tạo chuỗi mới pc với c là ký tự tiếp theo trong chuỗi mã

hóa. Thêm chuỗi pc vào trong bảng mã và gán một mã

kế tiếp cho chuỗi pc.

code

key

0

a

1

b

2

ab

Chuỗi ban đầu = abababbabaabbabbaabba

• p = a

• pCode = 0

• c = b

• Biểu diễn a bằng 0 và thêm ab vào bảng mã.

• Chuỗi mã hóa = 0

65

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

©FIT-HCMUS 32

code

key

0

a

1

b

2

ab

3

ba

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 0

• p = b

• pCode = 1

• c = a

• Biểu diễn b bằng 1 và thêm ba vào bảng mã.

• Chuỗi mã hóa = 01

66

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

code

key

0

a

1

b

2

ab

3

ba

4

aba

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

67

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 01

• p = ab

• pCode = 2

• c = a

• Biểu diễn ab bằng 2 và thêm aba vào bảng mã.

• Chuỗi mã hóa = 012

©FIT-HCMUS 33

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 012

• p = ab

• pCode = 2

• c = b

• Biểu diễn ab bằng 2 và thêm abb vào bảng mã.

• Chuỗi mã hóa = 0122

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

68

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 0122

• p = ba

• pCode = 3

• c = b

• Biểu diễn ba bằng 3 và thêm bab vào bảng mã.

• Chuỗi mã hóa = 01223

69

©FIT-HCMUS 34

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 01223

• p = ba

• pCode = 3

• c = a

• Biểu diễn ba bằng 3 và thêm baa vào bảng mã.

• Chuỗi mã hóa = 012233

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

70

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 012233

• p = abb

• pCode = 5

• c = a

• Biểu diễn abb bằng 5 và thêm abba vào bảng

mã.

• Chuỗi mã hóa = 0122335

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

71

©FIT-HCMUS 35

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 0122335

• p = abba

• pCode = 8

• c = a

• Biểu diễn abba bằng 8 và thêm abbaa vào bảng

mã.

• Chuỗi mã hóa = 01223358

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

72

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 01223358

• p = abba

• pCode = 8

• c = null

• Biểu diễn abba bằng 8.

• Chuỗi mã hóa = 012233588

73

©FIT-HCMUS 36

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

74

 Giải nén là khôi phục lại dữ liệu gốc từ dữ
liệu nén.

 Đưa những ký hiệu thành các chuỗi ban
đầu.

 Vừa giải nén vừa hình thành lại bảng mã.

 Giống như quá trình nén, giải nén sử dụng
bảng mã ban đầu gồm các chuỗi gồm 1 ký
tự.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

75

string entry;

int currvalue = Đọc vào một giá trị mã;

string prev = Sử dụng bảng mã để giải mã currvalue

Xuất prev;

while (còn dữ liệu để đọc)

{

currvalue = Đọc vào một giá trị mã;

entry = Sử dụng bảng mã để giải mã currvalue;

Xuất entry;

Thêm (prev + first char of entry) vào bảng mã;

prev = entry;

}

DECODE2.pptx
DECODE2.pptx

©FIT-HCMUS 37

code

key

0

a

1

b

 Chuỗi mã hóa = 012233588

• pCode = 0 và p = a.

• Chuỗi được giải mã = a

76

code

key

0

a

1

b

2

ab

 Chuỗi mã hóa = 012233588

• pCode = 1 và p = b.

• prev = a cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã = ab

77

©FIT-HCMUS 38

code

key

0

a

1

b

2

ab

3

ba

 Chuỗi mã hóa = 012233588

• pCode = 2 và p = ab.

• prev = b cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã = abab

78

code

key

0

a

1

b

2

ab

3

ba

4

aba

 Chuỗi mã hóa = 012233588

• pCode = 2 và p = ab.

• prev = ab cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã = ababab.

79

©FIT-HCMUS 39

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

 Chuỗi mã hóa = 012233588

• pCode = 3 và p = ba.

• prev = ab cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã = abababba.

80

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

 Chuỗi mã hóa = 012233588

• pCode = 3 và p = ba.

• prev = ba cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã = abababbaba.

81

©FIT-HCMUS 40

 Chuỗi mã hóa = 012233588

• pCode = 5 và p = abb.

• prev = ba cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã = abababbabaabb.

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

82

 Chuỗi mã hóa = 012233588

• 8 không tìm thấy trong bảng mã

• Khi mã không tìm thấy trong bảng mã, khóa

của nó là prev cùng với ký tự đầu tiên của

prev.

• prev = abb

• Vì vậy, 8 biểu diễn abba.

• Chuỗi được giải mã = abababbabaabbabba

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

83

©FIT-HCMUS 41

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

 Chuỗi mã hóa = 012233588

• pCode = 8 và p = abba.

• prev = abba cùng với ký tự đầu tiên của p được

thêm vào bảng mã.

• Chuỗi được giải mã =

abababbabaabbabbaabba

84

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

85

 Ưu điểm:

 Hệ số nén cao, không cần kèm theo bảng mã khi nén

 Có thể dùng để nén nhiều loại tập tin

 Nhược điểm:

 Tốn nhiều bộ nhớ để tạo từ điển

 Khó thực hiện trên dữ liệu kích thước nhỏ

©FIT-HCMUS 42

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

86

Độ phức tạp:

 Nén:

 O(n) với n là độ dài chuỗi cần nén

 Giải nén:

 O(n) với n là độ dài dữ liệu cần giải nén

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

87

 Là phương thức nén đầu tiên được sử dụng rộng
rãi trên máy tính.

 Là tiện ích trên nền của hệ điều hành Unix.

 Một số tiện ích nén sử dụng LZW hoặc phương
pháp của thuật toán nén LZW.

 Trở nên phổ biến khi nó trở thành một phần của
định dạng GIF và có thể được sử dụng trong TIFF,
PDF.

©FIT-HCMUS 43

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

88

 LZMW (năm 1985, V. Miller, M. Wegman).

 LZAP (năm 1988, James Storer).

 LZWL là một biến thể âm tiết (syllable-based)

dựa trên LZW.

89

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

