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Giới thiệu

Một số khái niệm

Nén Huffman tĩnh

Nén Run-Length Encoding

Nén LZW
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 Thuật ngữ:

 Data compression

 Encoding

 Decoding

 Lossless data compression

 Lossy data compression

 …
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 Nén dữ liệu

 Nhu cầu xuất hiện ngay sau khi hệ thống máy tính đầu 

tiên ra đời.

 Hiện nay, phục vụ cho các dạng dữ liệu đa phương tiện

 Tăng tính bảo mật.

 Ứng dụng:

 Lưu trữ

 Truyền dữ liệu
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 Nguyên tắc:

 Encode và decode sử dụng cùng một scheme.

encode decode
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 Tỷ lệ nén (Data compression ratio)

 Tỷ lệ giữa kích thước của dữ liệu nguyên thủy và của 

dữ liệu sau khi áp dụng thuật toán nén.

 Gọi:

 N là kích thước của dữ liệu nguyên thủy,

 N1 là kích thước của dữ liệu sau khi nén.

 Tỷ lệ nén R:

 Ví dụ:

 Dữ liệu ban đầu 8KB, nén còn 2 KB. Tỷ lệ nén: 4-1

1N

N
R 
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 Tỷ lệ nén (Data compression ratio)

 Về khả năng tiết kiệm không gian: Tỷ lệ của việc giảm 

kích thước dữ liệu sau khi áp dụng thuật toán nén.

 Gọi:

 N là kích thước của dữ liệu nguyên thủy,

 N1 là kích thước của dữ liệu sau khi nén.

 Tỷ lệ nén R:

 Ví dụ:

 Dữ liệu ban đầu 8KB, nén còn 2 KB. Tỷ lệ nén: 75%

N

N
R 11
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 Nén dữ liệu không mất mát (Lossless data 
compression)

 Cho phép dữ liệu nén được phục hồi nguyên vẹn như dữ
liệu nguyên thủy (lúc chưa được nén).

 Ví dụ:

 Run-length encoding

 LZW

 …

 Ứng dụng:

 Ảnh PCX, GIF, PNG,..

 Tập tin *. ZIP

 Ứng dụng gzip (Unix)
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 Nén dữ liệu có mất mát (Lossy data 
compression)

 Dữ liệu nén được phục hồi

 không giống hoàn toàn với dữ liệu nguyên thủy;

 gần đủ giống để có thể sử dụng được.

 Ứng dụng:

 Dùng để nén dữ liệu đa phương tiện (hình ảnh, âm
thanh, video): 
 Ảnh: JPEG, DjVu; 

 Âm thanh: AAC, MP2, MP3; 

 Video: MPEG-2, MPEG-4
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 Mong muốn:

 Một giải thuật nén bảo toàn thông tin;

 Không phụ thuộc vào tính chất của dữ liệu;

 Ứng dụng rộng rãi trên bất kỳ dữ liệu nào, với hiệu 

suất tốt.
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 Tư tưởng chính:

 Phương pháp cũ: dùng 1 dãy bit cố định để biểu diễn 1 ký tự

 David Huffman (1952): tìm ra phương pháp xác định mã tối ưu
trên dữ liệu tĩnh :

 Sử dụng vài bit để biểu diễn 1 ký tự (gọi là “mã bit” – bit code)

 Độ dài “mã bit” cho các ký tự không giống nhau:

 Ký tự xuất hiện nhiều lần: biểu diễn bằng mã ngắn;

 Ký tự xuất hiện ít : biểu diễn bằng mã dài

=> Mã hóa bằng mã có độ dài thay đổi (Variable Length 
Encoding)
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 Giả sử có dữ liệu sau đây:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

 Biểu diễn 8 bit/ký tự cần:

(10 + 8 + 6 + 5 + 2) * 8 = 248 bit

Ký tự Tần số xuất hiện

A 10

B 8

C 6

D 5

E 2
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 Dữ liệu:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

 Biểu diễn bằng chiều dài thay đổi:

(10*2 + 8*2 + 6*2 + 5*3 + 2*3) = 69 bit

Ký tự Tần số Mã

A 10 11

B 8 10

C 6 00

D 5 011

E 2 010
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[B1]: Duyệt tập tin -> Lập bảng thống kê tần số xuất hiện 
của các ký tự.

[B2]: Xây dựng cây Huffman dựa vào bảng thống kê tần số 
xuất hiện

[B3]: Phát sinh bảng mã bit cho từng ký tự tương ứng

[B4]: Duyệt tập tin -> Thay thế các ký tự trong tập tin bằng 
mã bit tương ứng.

[B5]: Lưu lại thông tin của cây Huffman cho giải nén

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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ADDAABBCCBAAABBCCCBBBCDAADDEEAA

11011011111110100000101111111010000

0001010100001111110110110100101111
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 Dữ liệu:

ADDAABBCCBAAABBCCCBBBCDAADDEEAA

Ký tự Tần số xuất hiện

A 10

B 8

C 6

D 5

E 2

 Cây Huffman: cây nhị 

phân

 Mỗi node lá chứa 1 ký tự

 Mỗi node cha chứa các ký 

tự của những node con.

 Trọng số của node:

 Node con: tần số xuất 

hiện của ký tự tương ứng

 Node cha: Tổng trọng số 

của các node con.

18
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E 2 D 5

ED 7C 6

CED 13

B 8 A 10

BA 18

CEDBA 31
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 Phát sinh cây:
 Bước 1: Chọn trong bảng thống kê hai phần tử x,y có trọng số 

thấp nhất.

 Bước 2: Tạo 2 node của cây cùng với node cha z có trọng số 
bằng tổng trọng số của hai node con.

 Bước 3: Loại 2 phần tử x,y ra khỏi bảng thống kê.

 Bước 4: Thêm phần tử z vào trong bảng thống kê.

 Bước 5: Lặp lại Bước 1-4 cho đến khi còn 1 phần tử trong bảng 
thống kê.
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 Quy ước:

 Node có trọng số nhỏ hơn sẽ nằm bên nhánh trái. Node 

còn lại nằm bên nhánh phải.

 Nếu 2 node có trọng số bằng nhau 

 Node nào có ký tự nhỏ hơn thì nằm bên trái

 Node có ký tự lớn hơn nằm bên phải.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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Ký tự Tần số

A 10

B 8

C 6

D 5

E 2
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Ký tự Tần số

A 10

B 8

ED 7

C 6
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Ký tự Tần số

CED 13

A 10

B 8



©FIT-HCMUS 13

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

25

Ký tự Tần số

BA 18

CED 13
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Ký tự Tần số

CEDBA 31
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 Mã bit của từng ký tự: đường đi từ node gốc 

của cây Huffman đến node lá của ký tự đó.

 Cách thức:

 Bit 0 được tạo ra khi đi qua nhánh trái

 Bit 1 được tạo ra khi đi qua nhánh phải

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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Ký tự Mã

A 11

B 10

C 00

D 011

E 010
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 Duyệt tập tin cần nén

 Thay thế tất cả các ký tự trong tập tin bằng mã 

bit tương ứng của nó.
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 Phục vụ cho việc giải nén.

 Cách thức:

 Cây Huffman

 Bảng tần số
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 Phục hồi cây Huffman dựa trên thông tin đã lưu 
trữ.

 Lặp

 Đi từ gốc cây Huffman

 Đọc từng bit từ tập tin đã được nén

 Nếu bit 0: đi qua nhánh trái

 Nếu bit 1: đi qua nhánh phải

 Nếu đến node lá: xuất ra ký tự tại node lá này.

 Cho đến khi nào hết dữ liệu

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Có thể không lưu trữ cây Huffman hoặc bảng 

thống kê tần số vào trong tập tin nén hay 

không?
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 Thống kê sẵn trên dữ liệu lớn và tính toán sẵn cây 
Huffman cho bộ mã hóa và bộ giải mã.

 Ưu điểm:

 Giảm thiểu kích thước của tập tin cần nén.

 Giảm thiểu chi phí của việc duyệt tập tin để lập bảng thống 
kê

 Khuyết điểm:

 Hiệu quả không cao trong trường hợp khác dạng dữ liệu đã 
thống kê

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Một thuật toán nén đơn giản

 Dạng nén không mất mát dữ liệu

 Có vài ‘biến thể’ cải tiến để đạt hiệu quả nén

cao hơn

 Nén trên ảnh PCX

 Nén trên ảnh BMP

 ..

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Đường chạy (run)
 Dãy các ký tự giống nhau liên tiếp

 Ví dụ:
 Chuỗi: AAAbbbbbCdddEbbbb

 Các đường chạy:
 AAA

 bbbbb

 C

 ddd

 E

 bbbb



©FIT-HCMUS 19

Cấu trúc dữ liệu và giải thuật - HCMUS 2015

37

 Run-Length-Encoding: mã hóa (nén) dựa trên 

chiều dài của đường chạy.

 Đường chạy được biểu diễn lại: 

<Số lượng ký tự> <Ký tự>

 Ví dụ:

 Chuỗi đầu vào: AAAbbbbbCdddEbbbb (#17 bytes)

 Kết quả nén: 3A5b1C3d1E4b (#12 bytes)

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Trong thực tế, có khả năng gây ‘hiệu ứng

ngược’:

 Dữ liệu nén: ABCDEFGH (8 bytes)

 Kết quả nén: 1A1B1C1D1E1F1G1H (16 bytes)

 Cần phải có những hiệu chỉnh thích hợp

 Nén RLE trên ảnh PCX

 Nén RLE trên ảnh BMP
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 Khắc phục trường hợp ‘hiệu ứng ngược’:

 Byte xác định số lượng (nhiều hơn 1): 2 bit 6,7 được 

bật.

 Ví dụ:

 Chuỗi gồm 5 ký tự A, 0x41, (AAAAA) được mã hóa

1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1

0xC5 0x41

19710 6510
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 Khắc phục trường hợp ‘hiệu ứng ngược’:

 Byte xác định số lượng : 2 bit 6,7 được bật.

 Số lần lặp (số lượng) tối đa: 63

 Giá trị dữ liệu tối đa: 191 (0-191)

 Số lần lặp là 1?

 Dữ liệu có giá trị dưới 192?

 Dữ liệu có giá trị từ 192?
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 Số lần lặp là 1?

 Dữ liệu có giá trị dưới 192?

 Không ảnh hưởng

 Ví dụ: nén 2 ký tự 0x41 0x43

 Dữ liệu có giá trị từ 192?

 Ảnh hưởng (nhầm lẫn với thông tin số lượng).

 Sử dụng 2 byte: <Số lượng = 1> <Dữ liệu>

 Ví dụ: nén ký tự 0xDB (21910)

0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1

1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1
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 Ưu điểm:

 Cài đặt đơn giản

 Giảm các trường hợp “hiệu ứng ngược” của những đường 
chạy đặc biệt

 Khuyết điểm:

 Dùng 6 bit biểu diễn số lần lặp chỉ thể hiện được chiều dài 
tối đa 63.

 Các đoạn lặp dài sẽ phải lưu trữ lặp lại

 Không giải quyết được trường hợp “hiệu ứng ngược” với 
đường chạy đặc biệt có mã ASCII >= 192
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 Điểm hạn chế của RLE trên PCX:

 Nén 255 ký tự A?

AAA...AAA...AAA

0xFF ‘A’   0xFF ‘A’   0xFF ‘A’   0xFF ‘A’  0xC3 ‘A’

(Do 255 = 4 x 63 + 3)

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Ý tưởng:

 Xử lý riêng biệt trường hợp đường chạy với trường 

hợp dãy các ký tự riêng lẻ.

 Ví dụ: AAAAABCDEF

 Có sử dụng các ký hiệu đánh dấu
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 Hiện thực:

 Trường hợp là đường chạy:

<Số lượng lặp lại> <Ký tự>

Dữ liệu mã hóa Dữ liệu giải mã

0x01  0x00 0x00

0x0A  0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Hiện thực:

 Trường hợp là ký tự riêng lẻ:

<Ký tự đánh dấu> <Số lượng ký tự của dãy>

<Dãy các ký tự đơn lẻ>

 Ký tự đánh dấu: 0x00

 Dùng trong trường hợp dãy có từ 3 ký tự riêng lẻ trở 

lên.

 Ví dụ:

Dữ liệu mã hóa Dữ liệu giải mã

00 03 01 02 03 01 02 03

00 04 0x41 0x42 0x43 0x44 0x41 0x42 0x43 0x44
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 Hiện thực:

 Các trường hợp khác:

 0x00 0x00: kết thúc dòng

 0x00 0x01: kết thúc tập tin

 0x00 0x02 <DeltaX> <DeltaY>: đoạn nhảy (DeltaX, 

DeltaY) tính từ vị trí hiện tại. Dữ liệu kế tiếp được áp 

dụng tại vị trí mới.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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14 0F FF  00 00

13 02 FF  09 00  04 FF  00 00

12 04 FF  03 00  03 FF  02 00  03 FF  00 00

11 04 FF  03 00  04 FF  02 00  02 FF  00 00

10 04 FF  03 00  04 FF  02 00  02 FF  00 00

09 04 FF  03 00  04 FF  02 00  02 FF  00 00

08 04 FF  03 00  03 FF  02 00  03 FF  00 00

07 04 FF  03 00  01 FF  03 00  04 FF  00 00

06 04 FF  03 00  01 FF  03 00  04 FF  00 00

05 04 FF  03 00  03 FF  02 00  03 FF  00 00

04 04 FF  03 00  04 FF  02 00  02 FF  00 00

03 04 FF  03 00  04 FF  02 00  02 FF  00 00

02 04 FF  03 00  03 FF  03 00  02 FF  00 00

01 02 FF  0A 00  03 FF  00 00

00 0F FF  00 00  00 01

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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Cho đoạn dữ liệu trong tập tin BMP (đã được mã

hóa bằng thuật toán nén Run Length Encoding):

0x01 0x00 0x00 0x04 0x4F 0xFC 0xA7 0x42 

0x03 0xFF 0x02 0x00 0x00 0x03 0xFF 0xFE 

0xFF 0x00

Đoạn dữ liệu được giải mã:

Số byte của đoạn giải mã được là: 

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Dùng để nén các dữ liệu có nhiều đoạn lặp lại.

 Thích hợp cho dữ liệu ảnh -> ứng dụng hẹp

 Chưa phải là một thuật toán nén có hiệu suất 

cao

 Đơn giản, dễ cài đặt

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 LZW được phát minh bởi Abraham Lempel, Jacob 

Ziv, và Terry Welch.

 Thuật toán này được ra đời năm 1984 khi Terry 

Welch cải tiến thuật toán LZ78 (năm 1978).

 Thuộc họ thuật toán LZ, sử dụng bộ từ điển động.

 Chuỗi ký tự trong văn bản gốc được thay thế bằng mã xác 

định một cách tự động.

 Người mã hoá và người giải mã cùng xây dựng bảng mã.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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 Ghi nhớ tất cả các chuỗi ký tự (từ 2 ký tự trở lên) đã 

gặp và gán cho nó một ký hiệu (token) riêng.

 Nếu lần sau gặp lại chuỗi ký tự đó, chuỗi ký tự sẽ 

được thay thế bằng ký hiệu (đã được gán trước 

đó).

 Bảng mã không cần được lưu trữ vào trong tập tin 

mã hóa vì hoàn toàn có thể được tạo lại trong quá

trình giải nén.
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 Cần một “từ điển” (bảng mã) để lưu giữ các

chuỗi ký tự đã gặp.

 Dữ liệu cần nén được so sánh với “từ điển”

 Nếu đã có trong “từ điển” thì đưa ra ký hiệu tương ứng

của chuỗi.

 Nếu không có thì thêm ký hiệu mới vào “từ điển”.
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 Bước 1: Khởi tạo từ điển gồm tất cả các ký tự (chiều dài 
là 1).

 Bước 2: Tìm chuỗi dài nhất W trong từ điển khớp hoàn 
toàn với chuỗi ký tự cần nén hiện tại.

 Bước 3: Xuất ký hiệu của W (từ từ điển).

 Bước 4: Thêm chuỗi W và ký tự đằng sau vào từ điển. 
Gán ký hiệu thích hợp cho chuỗi này.

 Bước 5: Khi chưa hết chuỗi cần nén, lặp lại bước 2.
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string Pre; 

char CurrentValue; 

Pre = empty string; 

while (Vẫn còn ký tự để đọc) {

CurrentValue = Đọc một ký tự; 

if (Pre+CurrentValue Có trong Từ điển) 

Pre = Pre+CurrentValue; 

else {

Ghi ký hiệu của Pre vào tập tin;

Thêm Pre+CurrentValue vào Từ điển;

Pre = CurrentValue; 

} 

} 

Ghi ký hiệu của Pre vào tập tin;

 Giả sử các ký tự trong chuỗi cần nén chỉ gồm {a, 

b}.

 Trong thực tế, tập ký tự có thể bao gồm cả 256 ký tự ASCII.

 Các ký tự được mã với các con số bắt đầu từ 0.

 Bảng mã ban đầu:

Mã

Khóa

0

a

1

b

63
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 Việc mã hóa được thực hiện bằng việc quét chuỗi ban

đầu từ trái sang phải.

 Tìm chuỗi p dài nhất đã tồn tại trong bảng mã.

 Biểu diễn p bằng mã pCode của nó. 

 Tạo chuỗi mới pc với c là ký tự tiếp theo trong chuỗi mã

hóa. Thêm chuỗi pc vào trong bảng mã và gán một mã

kế tiếp cho chuỗi pc.

code

key

0

a

1

b

2

ab

Chuỗi ban đầu = abababbabaabbabbaabba

• p = a

• pCode = 0

• c = b

• Biểu diễn a bằng 0 và thêm ab vào bảng mã.

• Chuỗi mã hóa = 0

65
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code

key

0

a

1

b

2

ab

3

ba

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 0

• p = b

• pCode = 1

• c = a

• Biểu diễn b bằng 1 và thêm ba vào bảng mã.

• Chuỗi mã hóa = 01

66
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code

key

0

a

1

b

2

ab

3

ba

4

aba
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 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 01

• p = ab

• pCode = 2

• c = a

• Biểu diễn ab bằng 2 và thêm aba vào bảng mã.

• Chuỗi mã hóa = 012
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 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 012

• p = ab

• pCode = 2

• c = b

• Biểu diễn ab bằng 2 và thêm abb vào bảng mã.

• Chuỗi mã hóa = 0122

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

68

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 0122

• p = ba

• pCode = 3

• c = b

• Biểu diễn ba bằng 3 và thêm bab vào bảng mã.

• Chuỗi mã hóa = 01223

69
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 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 01223

• p = ba

• pCode = 3

• c = a

• Biểu diễn ba bằng 3 và thêm baa vào bảng mã.

• Chuỗi mã hóa = 012233

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

70

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 012233

• p = abb

• pCode = 5

• c = a

• Biểu diễn abb bằng 5 và thêm abba vào bảng

mã.

• Chuỗi mã hóa = 0122335

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

71
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 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 0122335

• p = abba

• pCode = 8

• c = a

• Biểu diễn abba bằng 8 và thêm abbaa vào bảng

mã.

• Chuỗi mã hóa = 01223358

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

72

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

 Chuỗi ban đầu = abababbabaabbabbaabba

 Chuỗi mã hóa = 01223358

• p = abba

• pCode = 8

• c = null

• Biểu diễn abba bằng 8. 

• Chuỗi mã hóa = 012233588

73
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 Giải nén là khôi phục lại dữ liệu gốc từ dữ
liệu nén.

 Đưa những ký hiệu thành các chuỗi ban 
đầu.

 Vừa giải nén vừa hình thành lại bảng mã.

 Giống như quá trình nén, giải nén sử dụng
bảng mã ban đầu gồm các chuỗi gồm 1 ký
tự.

Cấu trúc dữ liệu và giải thuật - HCMUS 2015
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string entry;

int currvalue = Đọc vào một giá trị mã;

string prev = Sử dụng bảng mã để giải mã currvalue

Xuất prev; 

while (còn dữ liệu để đọc) 

{ 

currvalue = Đọc vào một giá trị mã; 

entry = Sử dụng bảng mã để giải mã currvalue; 

Xuất entry;

Thêm (prev + first char of entry) vào bảng mã;

prev = entry;

} 

DECODE2.pptx
DECODE2.pptx
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code

key

0

a

1

b

 Chuỗi mã hóa = 012233588

• pCode = 0 và p = a.

• Chuỗi được giải mã = a

76

code

key

0

a

1

b

2

ab

 Chuỗi mã hóa = 012233588

• pCode = 1 và p = b.

• prev = a cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = ab

77
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code

key

0

a

1

b

2

ab

3

ba

 Chuỗi mã hóa = 012233588

• pCode = 2 và p = ab.

• prev = b cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = abab

78

code

key

0

a

1

b

2

ab

3

ba

4

aba

 Chuỗi mã hóa = 012233588 

• pCode = 2 và p = ab.

• prev = ab cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = ababab.
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code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

 Chuỗi mã hóa = 012233588

• pCode = 3 và p = ba.

• prev = ab cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = abababba.

80

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

 Chuỗi mã hóa = 012233588

• pCode = 3 và p = ba.

• prev = ba cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = abababbaba.
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 Chuỗi mã hóa = 012233588

• pCode = 5 và p = abb.

• prev = ba cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = abababbabaabb.

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa
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 Chuỗi mã hóa = 012233588

• 8 không tìm thấy trong bảng mã

• Khi mã không tìm thấy trong bảng mã, khóa

của nó là prev cùng với ký tự đầu tiên của

prev.

• prev = abb

• Vì vậy, 8 biểu diễn abba.

• Chuỗi được giải mã = abababbabaabbabba

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

83
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code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

 Chuỗi mã hóa = 012233588

• pCode = 8 và p = abba.

• prev = abba cùng với ký tự đầu tiên của p được 

thêm vào bảng mã.

• Chuỗi được giải mã = 

abababbabaabbabbaabba

84
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 Ưu điểm:

 Hệ số nén cao, không cần kèm theo bảng mã khi nén

 Có thể dùng để nén nhiều loại tập tin

 Nhược điểm:

 Tốn nhiều bộ nhớ để tạo từ điển

 Khó thực hiện trên dữ liệu kích thước nhỏ
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Độ phức tạp:

 Nén:

 O(n) với n là độ dài chuỗi cần nén

 Giải nén:

 O(n) với n là độ dài dữ liệu cần giải nén
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 Là phương thức nén đầu tiên được sử dụng rộng 
rãi trên máy tính.

 Là tiện ích trên nền của hệ điều hành Unix.

 Một số tiện ích nén sử dụng LZW hoặc phương 
pháp của thuật toán nén LZW.

 Trở nên phổ biến khi nó trở thành một phần của 
định dạng GIF và có thể được sử dụng trong TIFF, 
PDF.
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 LZMW (năm 1985, V. Miller, M. Wegman).

 LZAP (năm 1988, James Storer).

 LZWL là một biến thể âm tiết (syllable-based) 

dựa trên LZW.

89
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