
Supplementation
Field Effect Transistors
DC Biasing
FET Amplifiers

Field Effect Transistors

What is FET?

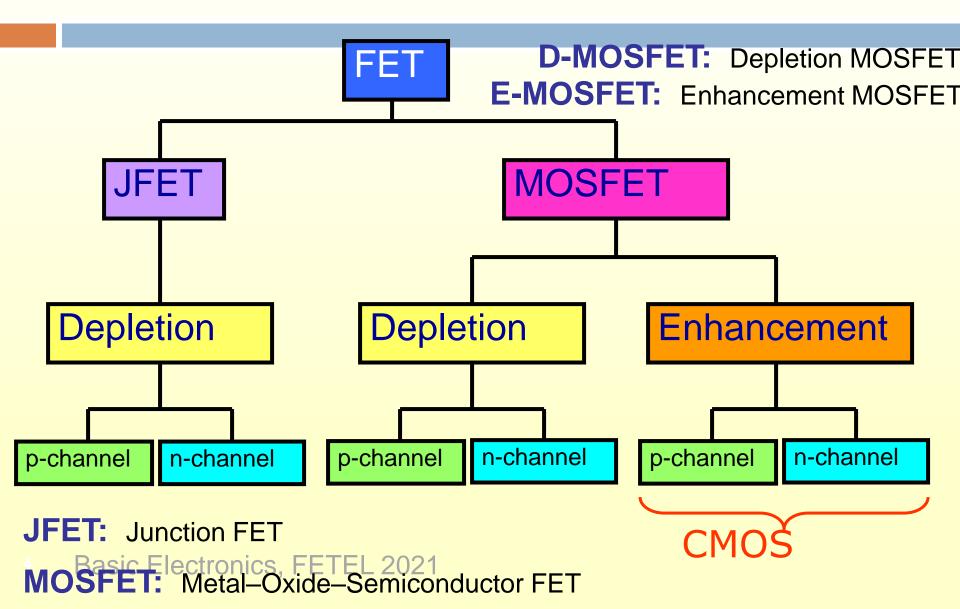
In FET, a weak electrical signal coming through one electrode creates an electric field which controls the current flowing.

FET		BJT		
because its oper flow of majority	lar semiconductor device ration depends upon the carriers <i>i.e.</i> , either holes the case may be.	1.	BJT is a bipolar semiconductor device because the current constituting elements are both majority carriers as well as minority carriers in this case.	
more larger (ran BJT. The reasor input terminal i.	dance of FET is much ging in Megaohms) than a behind this is that the <i>e.</i> , gate to source of FET d and reverse bias offers resistance.	2.	The input impedance of BJT is very less in comparison to FET.	
3. FET is a voltage	e controlled device.	3.	BJT is a current controlled device.	
 FET is less nois junctions. 	y. Because there are no	4.	Much noisy than FET.	
5. Higher frequence	y response.	5.	Frequency variation affects the performance.	
Good thermal absence of mine	stability because of ority carriers.	6.	Temperature dependent, thermal runaway may cause.	
7. Costlier than B	JT.	7.	Relatively cheaper.	
8. Small sized.		8.	Comparatively bigger.	
output quantiti square term in	ship between input and es is nonlinear due to shockley's equations	9.	The BJT is an almost linear device or we can say that BJT works linearly in active region as an amplifier.	
$I_D = I_{DSS} \left(1 - \frac{V_0}{V} \right)$	$\left(\frac{3S}{P}\right)$			
 No offset voltage switch or chopp 	; so it works better as a per.	10.	There is always an offset voltage before switching.	
1. Small gain band	lwith product.	11.	Greater than FET.	

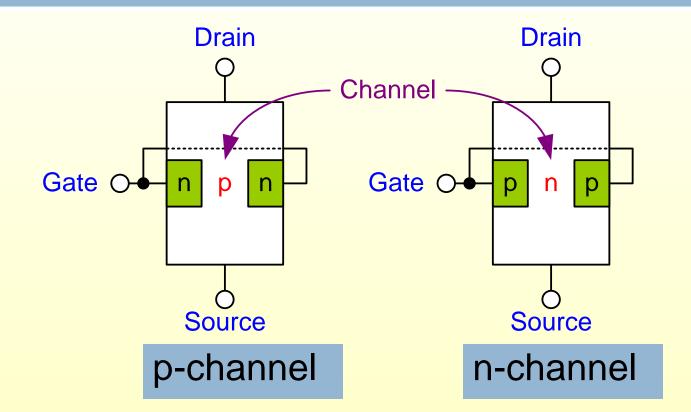
FET are smaller and more temperature stable than BJT and suited for IC applications.

FETs vs. BJTs

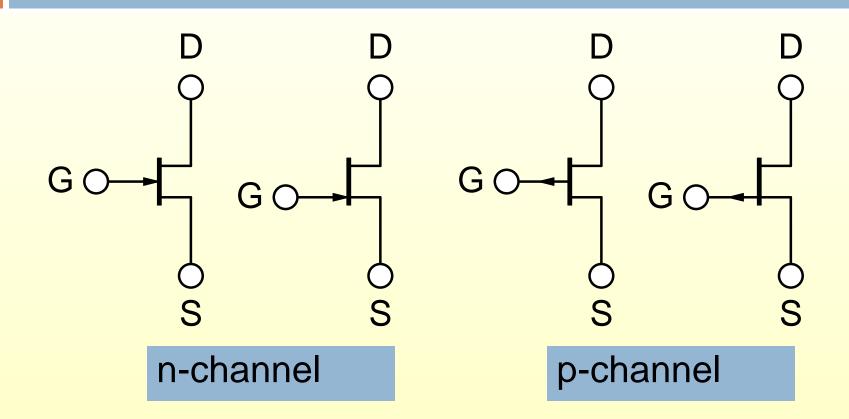
Similarities: Amplifiers Switching devices Impedance matching circuits

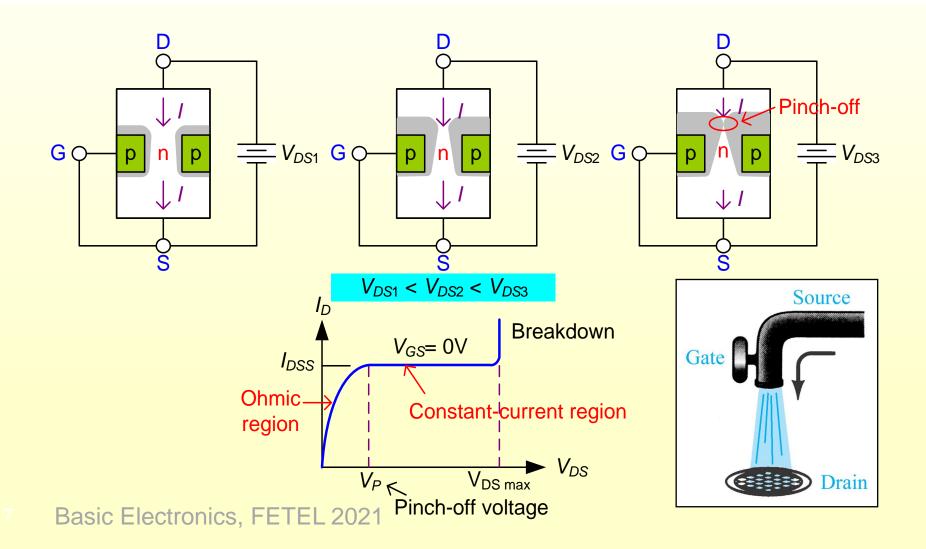

Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

FETs have higher input impedance. BJTs have higher gain.

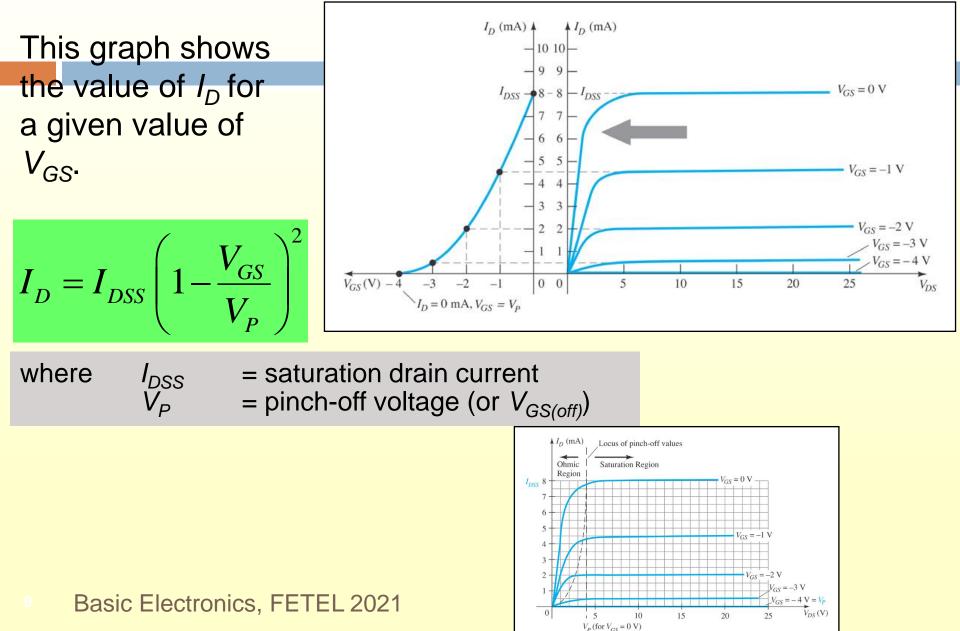

FETs are less sensitive to temperature variations and are better suited for integrated circuits

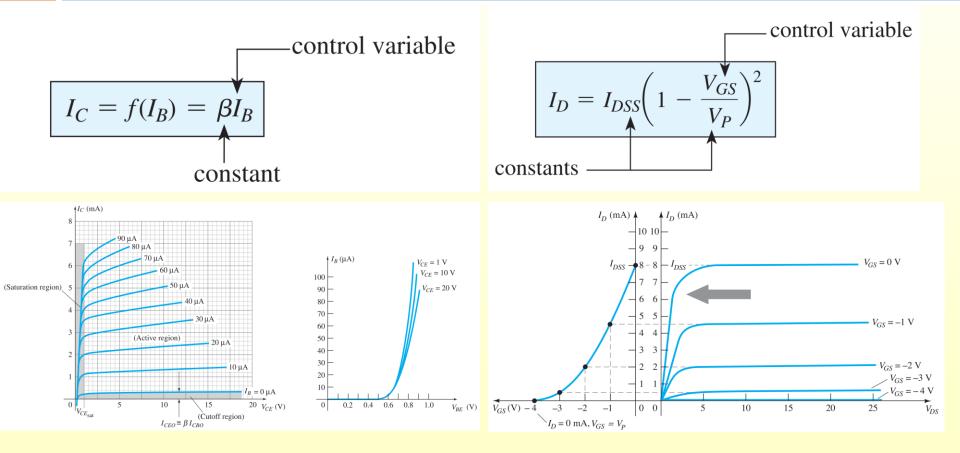
FETs are generally more static sensitive than BJTs.


FET Family


JFET construction.

JFET schematic symbols.


Summary: Varying V_{DS} with $V_{GS} = 0V$


Summary: Varying V_{GS}

JFET Transfer Curve

BJT vs. JFET

JFET Specification Sheet

N-Channel General Purpose Amplifier

This device is a low level audio amplifier and switching transistors, and can be used for analog switching applications. Sourced from Process 55.

Absolute Maximum Ratings* TA = 25°C unles

igs* ⊤	A = 25°C unless otherwise noted	
--------	---------------------------------	--

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	- 25	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

11 Basic Electronics, FETEL 2021

Electr	cal Characteristics TA =	25°C unless otherwise noted				
Symbol	Parameter	Test Conditions	Min	Тур	Max	Un
OFF CHAI	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	I _G = 10 μA, V _{DS} = 0	- 25			
I _{GSS}	Gate Reverse Current	V _{GS} = -15 V, V _{DS} = 0			- 1.0 - 200	
$V_{\text{GS(off)}}$	Gate-Source Cutoff Voltage	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	- 0.5 - 1.0 - 2.0		- 200 - 6.0 - 7.0 - 8.0	
V _{GS}	Gate-Source Voltage	$ \begin{array}{ll} V_{DS} = 15 \ V, \ I_D = 100 \ \mu A & {\color{red} 5457} \\ V_{DS} = 15 \ V, \ I_D = 200 \ \mu A & {\color{red} 5458} \end{array} $		- 2.5 - 3.5	0.0	
		V _{DS} = 15 V, I _D = 400 μA 5459		- 4.5		<u> </u>
ON CHAR	ACTERISTICS	V _{DS} = 15 V, I _D = 400 μA 5459		- 4.5		
ON CHAR	ACTERISTICS Zero-Gate Voltage Drain Current*	$V_{DS} = 15 \text{ V}, \text{I}_{D} = 400 \ \mu\text{A} \qquad \textbf{5459}$ $V_{DS} = 15 \text{ V}, \text{V}_{GS} = 0 \qquad \textbf{5457}$ $\textbf{5458}$ $\textbf{5459}$	1.0 2.0 4.0	3.0 6.0 9.0	5.0 9.0 16	m
I _{DSS}	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0 5457 5458 5459	2.0	3.0 6.0	9.0	m
I _{DSS}	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0 5457 5458	2.0	3.0 6.0	9.0	m m m
IDSS SMALL SI	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0 5457 5458 5459 V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz 5457 5458	2.0 4.0 1000 1500	3.0 6.0	9.0 16 5000 5500	μmi μmi
IDSS SMALL SI grs	Zero-Gate Voltage Drain Current* GNAL CHARACTERISTICS Forward Transfer Conductance*	V _{DS} = 15 V, V _{GS} = 0 5457 5458 5459 V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz 5457 5458 5459	2.0 4.0 1000 1500	3.0 6.0 9.0	9.0 16 5000 5500 6000	m m μml μml μml
IDSS SMALL SI grs gos	Zero-Gate Voltage Drain Current* GNAL CHARACTERISTICS Forward Transfer Conductance* Output Conductance*	V _{DS} = 15 V, V _{GS} = 0 5457 5458 5459 V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz 5457 5458 5459 V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz	2.0 4.0 1000 1500	3.0 6.0 9.0	9.0 16 5000 5500 6000 50	mm mm μmt μmt μmt μmt

2N5457 / 5458 / 5459 / MMBF5457 / 5458 / 5459

2N5457 / 5458 / 5459 / MMBF5457 / 5458 / 5459

Example

The partial datasheet for a 2N5459 JFET indicates that typically $I_{DSS} = 9$ mA and $V_{GS(off)} = -8$ V (maximum). Using these values, determine the drain current for VGS = 0 V, -1 V, and -4 V.

For $V_{\rm GS} = 0$ V,

$$I_{\rm D} = I_{\rm DSS} = 9 \,\mathrm{mA}$$

For $V_{\rm GS} = -1 \, \rm V$,

$$I_{\rm D} \approx I_{\rm DSS} \left(1 - \frac{V_{\rm GS}}{V_{\rm GS(off)}} \right)^2 = (9 \text{ mA}) \left(1 - \frac{-1 \text{ V}}{-8 \text{ V}} \right)^2$$
$$= (9 \text{ mA})(1 - 0.125)^2 = (9 \text{ mA})(0.766) = 6.89 \text{ mA}$$

For
$$V_{\text{GS}} = -4 \text{ V}$$
,
 $I_{\text{D}} \approx (9 \text{ mA}) \left(1 - \frac{-4 \text{ V}}{-8 \text{ V}}\right)^2 = (9 \text{ mA})(1 - 0.5)^2 = (9 \text{ mA})(0.25) = 2.25 \text{ mA}$

JFET Biasing Circuits

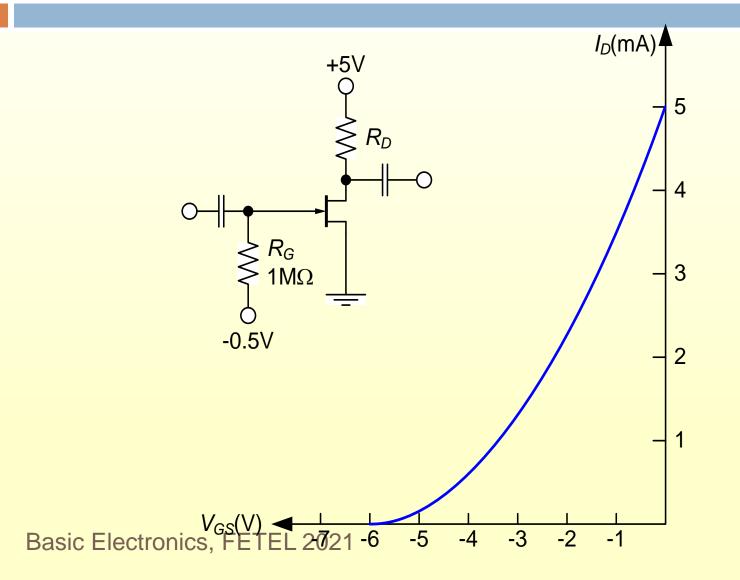
- Gate bias (Fixed bias) circuit
- Self bias circuit

Dasic Electionics, retel 2021

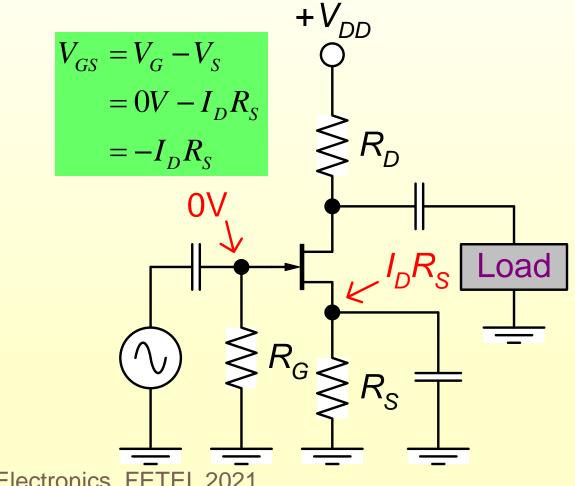
Voltage-divider bias circuit

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

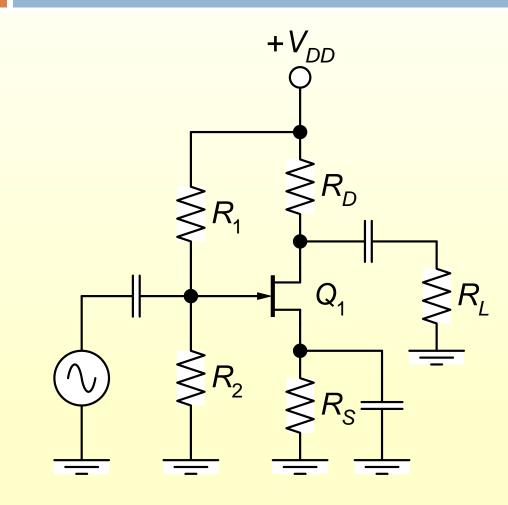
$$V_{GS} = ???? \rightarrow BIAS$$


$$V_{GS} \text{ must be negative for N-channel JFET}$$

$$I_{3} \text{ Basic Electronics, FETEL 2021}$$

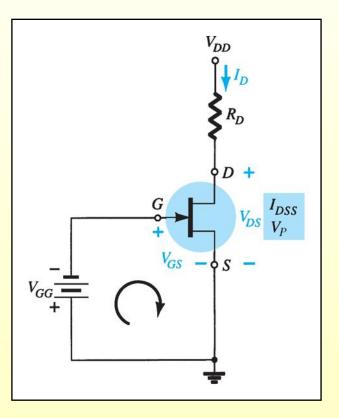

 $V_{GS}(V) \blacktriangleleft$

Gate Bias (Fixed bias)

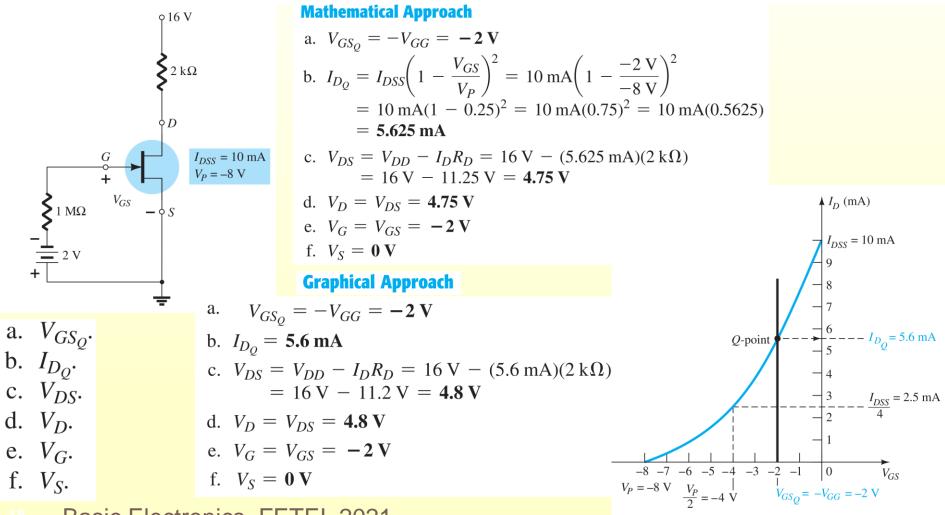

14

Self bias circuit.

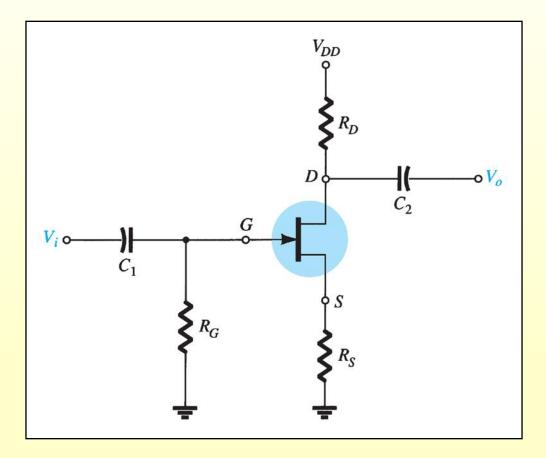
Voltage-divider bias.


$$V_G = V_{DD} \frac{R_2}{R_1 + R_2}$$

$$I_D = \frac{V_S}{R_S} = \frac{V_G - V_{GS}}{R_S}$$
$$\therefore I_D \Big|_{V_{GS} = 0} = \frac{V_G}{R_S}$$
$$\therefore V_{GS} \Big|_{I_D = 0} = V_G$$


JFET Biasing: Gate bias/Fixed Bias Configuration

$$V_{DS} = V_{DD} - I_D R_D$$
$$V_S = 0 V$$
$$V_C = V_{DS}$$
$$V = V_{GS}$$
$$V_{GS} = -V_{GG}$$


$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Example

JFET Biasing: Self-Bias Configuration

¹⁹ Basic Electronics, FETEL 2021

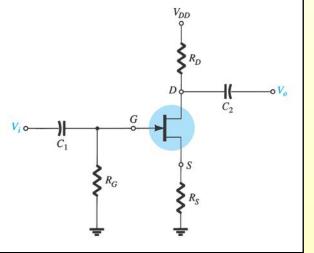
JFET Biasing:

Self-Bias Calculations

Graphical calculations

$$V_{GS} = -I_D R_S$$

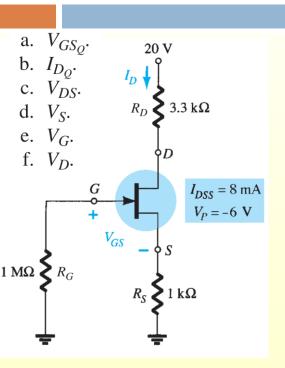
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

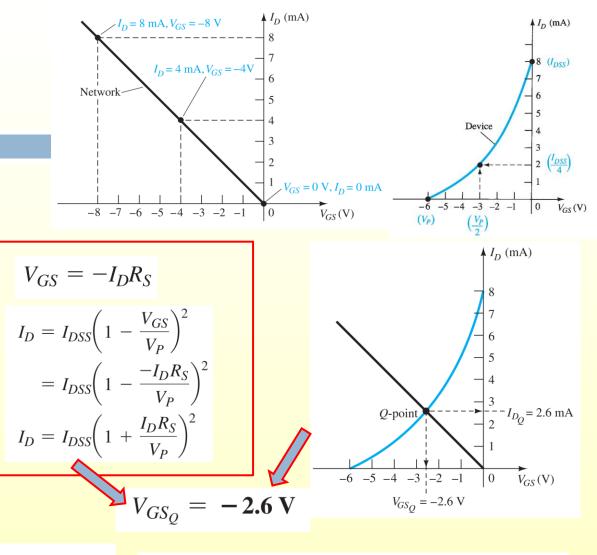

1. Select a value of $I_D < I_{DSS}$ and use the component value of R_S to calculate V_{GS} . Plot the point identified by I_D and V_{GS} and draw a line from the origin of the axis to this point.

2. Plot the transfer curve using I_{DSS} and V_P ($V_P = |V_{GSoff}|$ on spec sheets) and a few points such as $V_{GS} = V_P / 4$ and $V_{GS} = V_P / 2$ etc.

The Q-point is located where the first line intersects the transfer curve. Using the value of I_D at the Q-point (I_{DQ}):

$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$


$$V_{S} = I_{D}R_{S}$$



$$V_D = V_{DS} + V_S = V_{DD} - V_{RD}$$

²⁰ Basic Electronics, FETEL 2021

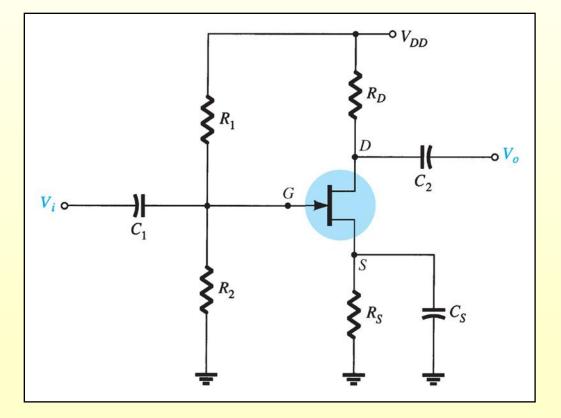
Example

b. At the quiescent point

21

$$I_{D_Q} = 2.6 \text{ mA}$$

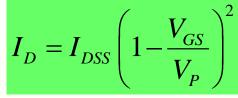
c. $V_{DS} = V_{DD} - I_D(R_S + R_D)$
 $= 20 \text{ V} - (2.6 \text{ mA})(1 \text{ k}\Omega + 3.3 \text{ k}\Omega)$
 $= 20 \text{ V} - 11.18 \text{ V}$
Basic Electronics VETEL 2021


d.
$$V_S = I_D R_S$$

 $= (2.6 \text{ mA})(1 \text{ k}\Omega)$
 $= 2.6 \text{ V}$
e. $V_G = 0 \text{ V}$
f. $V_D = V_{DS} + V_S = 8.82 \text{ V} + 2.6 \text{ V} = 11.42 \text{ V}$
 $V_D = V_{DD} - I_D R_D = 20 \text{ V} - (2.6 \text{ mA})(3.3 \text{ k}\Omega) = 11.42 \text{ V}$

JFET Biasing:

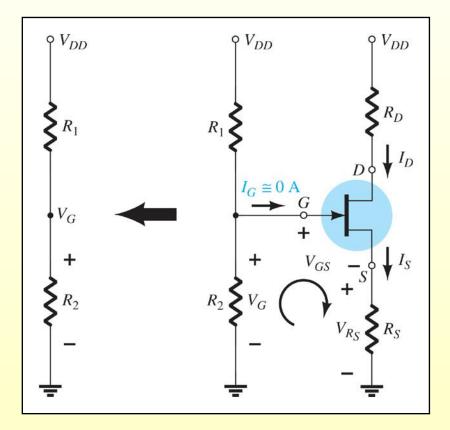
Voltage-Divider Bias


 $I_{G} = 0 A$

 I_D responds to changes in V_{GS} .

²² Basic Electronics, FETEL 2021

JFET Biasing: Voltage-Divider Bias Calculations



 V_G is equal to the voltage across divider resistor R_2 :

 $V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$

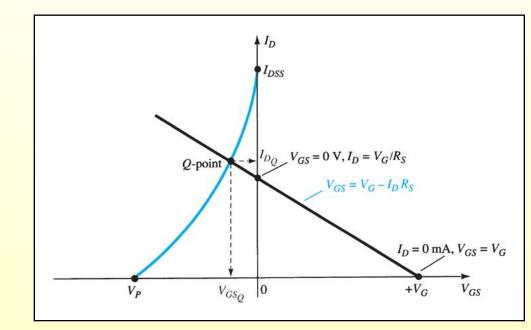
Using Kirchhoff's Law:

$$V_{GS} = V_G - I_D R_S$$

The Q-point is established by plotting a line that intersects the transfer curve.

²³ Basic Electronics, FETEL 2021

JFET Biasing:


Voltage-Divider Q-Point

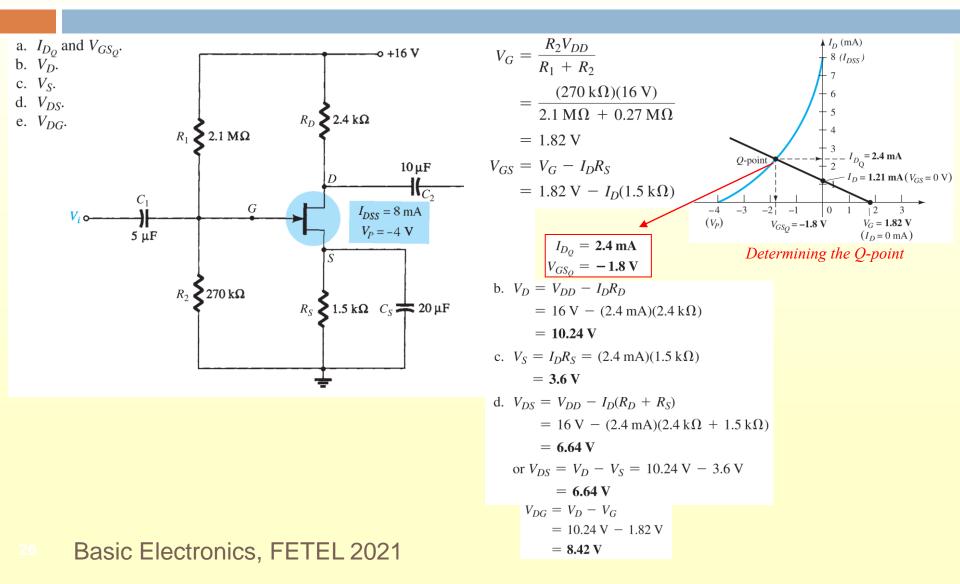
Plot the line that is defined by these two points:

$$V_{GS} = V_G, \ I_D = 0 \text{ A}$$

$$V_{GS} = 0$$
 V, $I_D = V_G / R_S$

Plot the transfer curve by plotting I_{DSS} , V_P and the calculated values of I_D

The Q-point is located where the line intersects the transfer curve

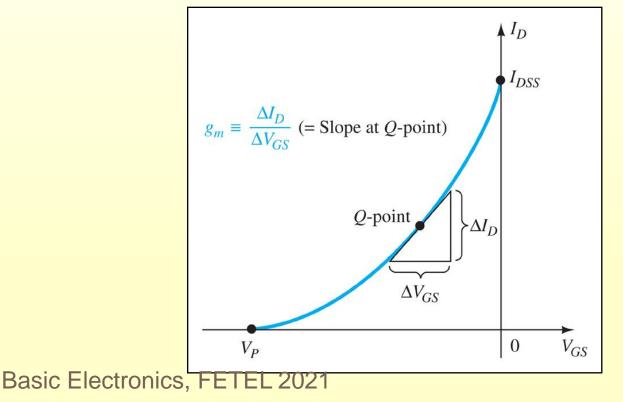

JFET Biasing: Voltage-Divider Bias Calculations

Using the value of I_D at the Q-point, solve for the other values in the voltage-divider bias circuit:

$$V_{DS} = V_{DD} - I_D(R_D + R_S)$$
$$V_D = V_{DD} - I_D R_D$$
$$V_S = I_D R_S$$

²⁵ Basic Electronics, FETEL 2021

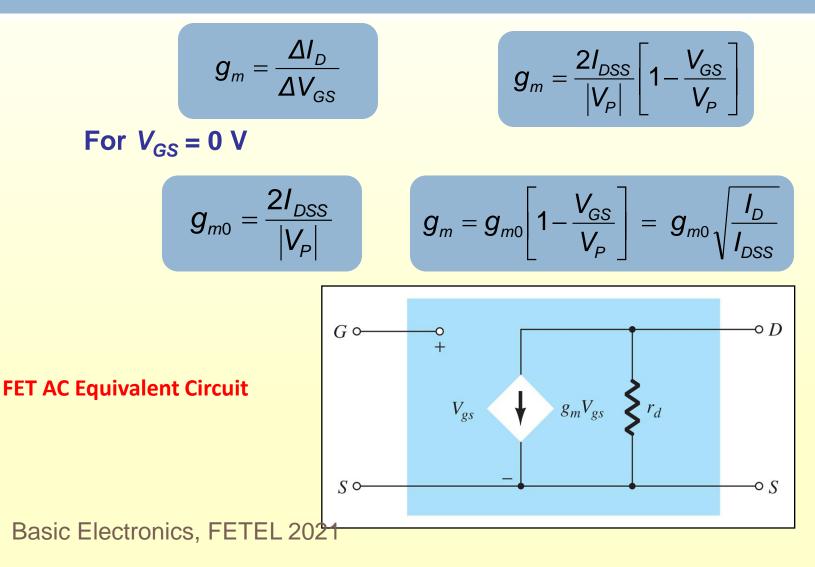
Example


JFET Amplifiers

JFET amplifier:

FET Small-Signal Model

Transconductance: The ratio of a change in I_D to the corresponding change in V_{GS}


• Transconductance is denoted g_m and given by:

 $=\frac{\Delta I_{D}}{\Delta V_{C}}$ g_m

JFET amplifier:

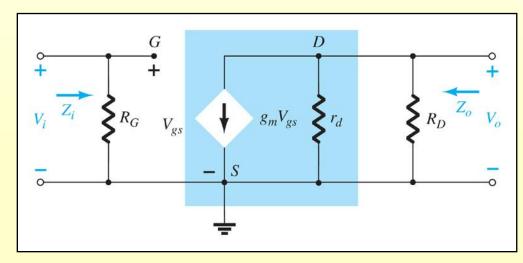
Mathematical Definitions of g_m

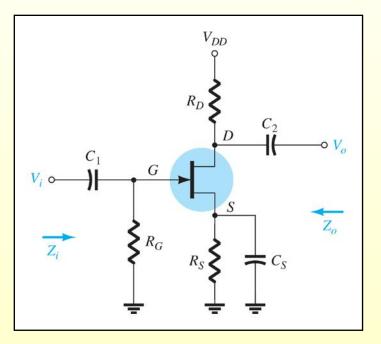
JFET amplifier: FET Impedance

Input impedance:

$$Z_i = \infty \Omega$$

Output Impedance:


$$Z_o = r_d = \frac{1}{y_{os}}$$
 where $r_d = \frac{\Delta V_{DS}}{\Delta I_D} \Big|_{V_{GS} = \text{constant}}$


 y_{os} = admittance parameter listed on FET spec sheets

³⁰ Basic Electronics, FETEL 2021

JFET amplifier: Common-Source (CS) Self-Bias

This is a common-source amplifier configuration, so the input is applied to the gate and the output is taken from the drain.

There is a 180° phase shift between input and output.

JFET amplifier:

Common-Source (CS) Self-Bias Calculation

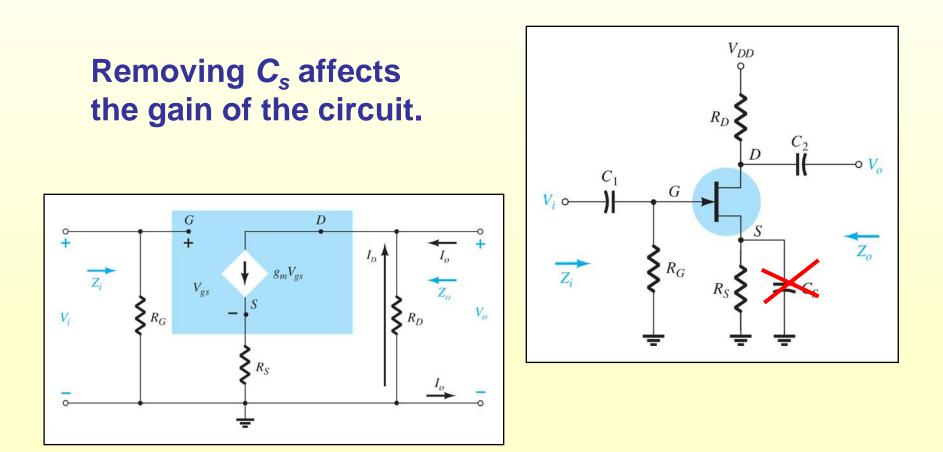
Input impedance:

 $Z_i = R_G$

Output impedance:

$$Z_o = r_d || R_D$$
$$Z_o \cong R_D \Big|_{r_d \ge 10 R_D}$$

 $\begin{array}{c} & & & & \\ \bullet & & \\ \bullet & & \\ &$


Voltage gain:

$$A_{v} = -g_{m}(r_{d}||R_{D})$$
$$A_{v} = -g_{m}R_{D}|_{r_{d} \ge 10R_{D}}$$

Electronic Devices and Circuit Theory Pearson Higher Education, Inc

Basic Electronics, Fetel 2019

JFET amplifier: Common-Source (CS) Self-Bias Calculation, without C_s

JFET amplifier: Common-Source (CS) Self-Bias Calculation, without C_s

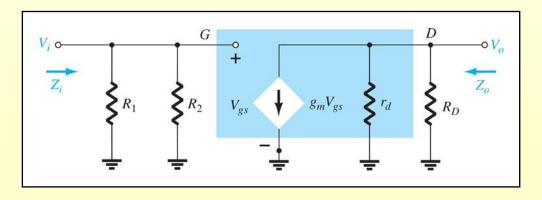
Input impedance: $Z_i = R_G$

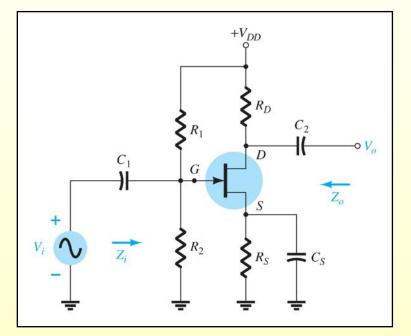
Output impedance:

 $Z_o \cong R_D \Big|_{r_d \ge 10 R_D}$

Voltage gain:

$$\begin{array}{c} & & & \\ & &$$


$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}}$$
$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}\Big|_{r_{d} \ge 10(R_{D} + R_{S})}$$


³⁴ Basic Electronics, FETEL 2021

JFET amplifier:

Common-Source (CS) Voltage-Divider Bias

This is a common-source amplifier configuration, so the input is applied to the gate and the output is taken from the drain.

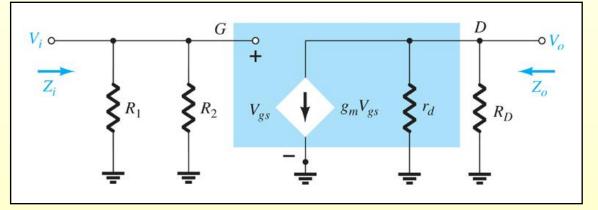
³⁵ Basic Electronics, FETEL 2021

JFET amplifier:

Common-Source (CS) Voltage-Divider Bias

Impedances

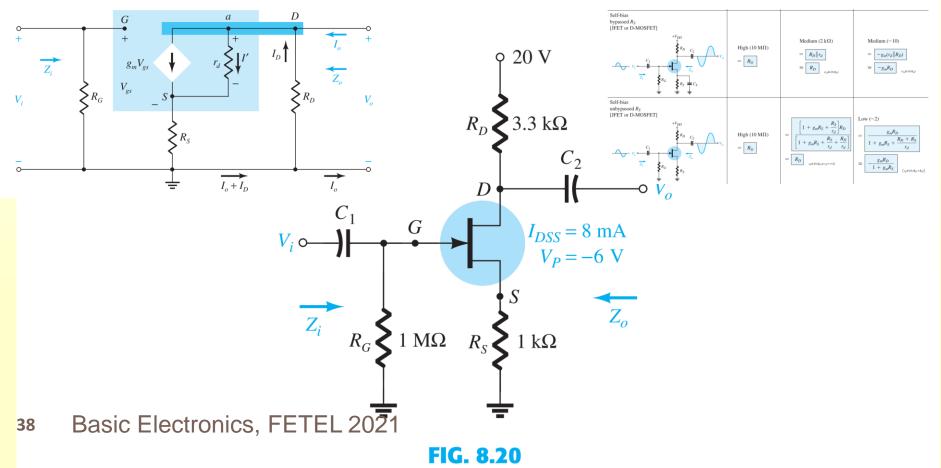
Input impedance:


$$Z_i = R_1 || R_2$$

Output impedance:

$$Z_{o} = I_{d} \prod X_{D}$$
$$Z_{o} \cong R_{D} \Big|_{r_{d} \ge 10 R_{D}}$$

Voltage gain:


$$A_{v} = -g_{m}(r_{d}||R_{D})$$
$$A_{v} = -g_{m}R_{D}|_{r_{d} \ge 10R_{D}}$$

EXAMPLE 8.8 The self-bias configuration of Example 7.2 has an operating point defined by $V_{GS_Q} = -2.6$ V and $I_{D_Q} = 2.6$ mA, with $I_{DSS} = 8$ mA and $V_P = -6$ V. The network is redrawn as Fig. 8.20 with an applied signal V_i . The value of g_{os} is given as 20 μ S.

- a. Determine g_m .
- b. Find r_d .
- c. Find Z_i .
- d. Calculate Z_o with and without the effects of r_d . Compare the results.
- e. Calculate A_v with and without the effects of r_d . Compare the results.

Solution:

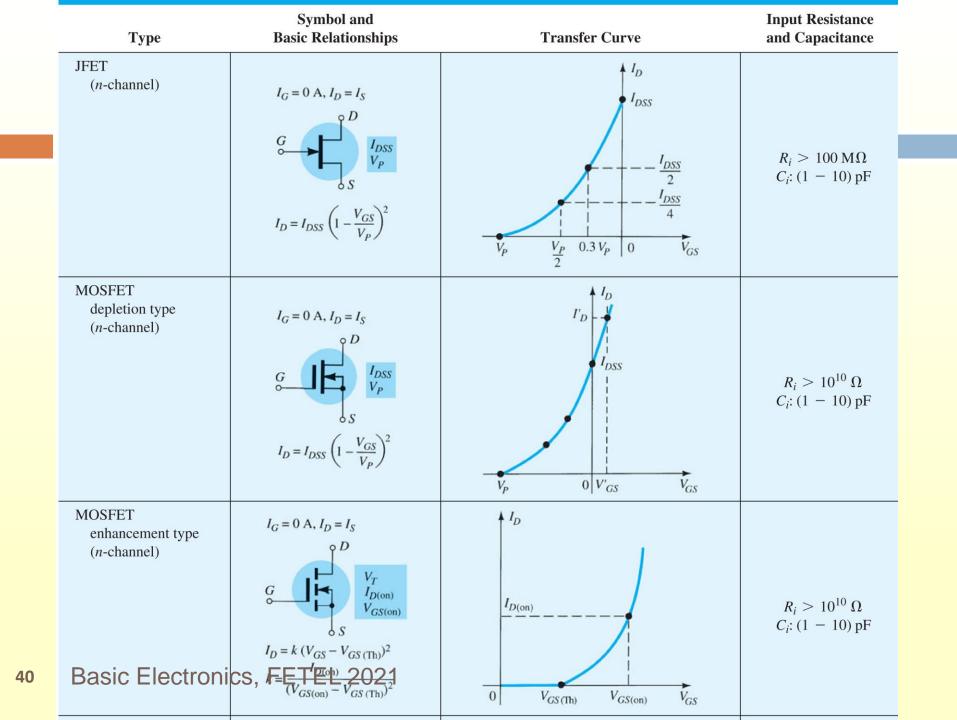
a.
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(8 \text{ mA})}{6 \text{ V}} = 2.67 \text{ mS}$$

 $g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 2.67 \text{ mS} \left(1 - \frac{(-2.6 \text{ V})}{(-6 \text{ V})} \right) = 1.51 \text{ mS}$
b. $r_d = \frac{1}{y_{os}} = \frac{1}{20 \,\mu\text{S}} = 50 \text{ k}\Omega$
c. $Z_i = R_G = 1 \text{ M}\Omega$
d. With r_d ,
 $r_d = 50 \text{ k}\Omega > 10R_D = 33 \text{ k}\Omega$

$$r_d = 50 \,\mathrm{k}\Omega > 10R_D = 33 \,\mathrm{k}$$

Therefore,

$$Z_o = R_D = 3.3 \,\mathrm{k}\Omega$$

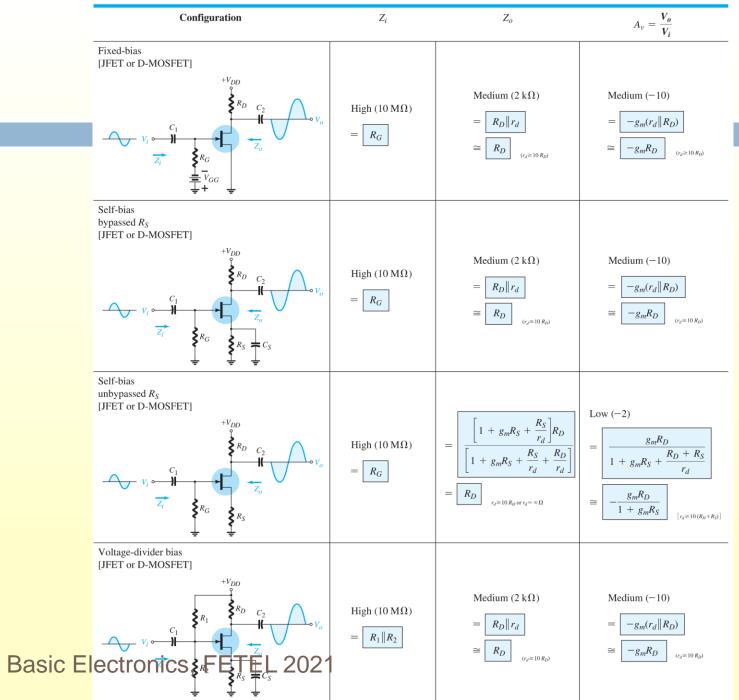

If $r_d = \infty \Omega$,

$$Z_o = R_D = 3.3 \,\mathrm{k}\Omega$$

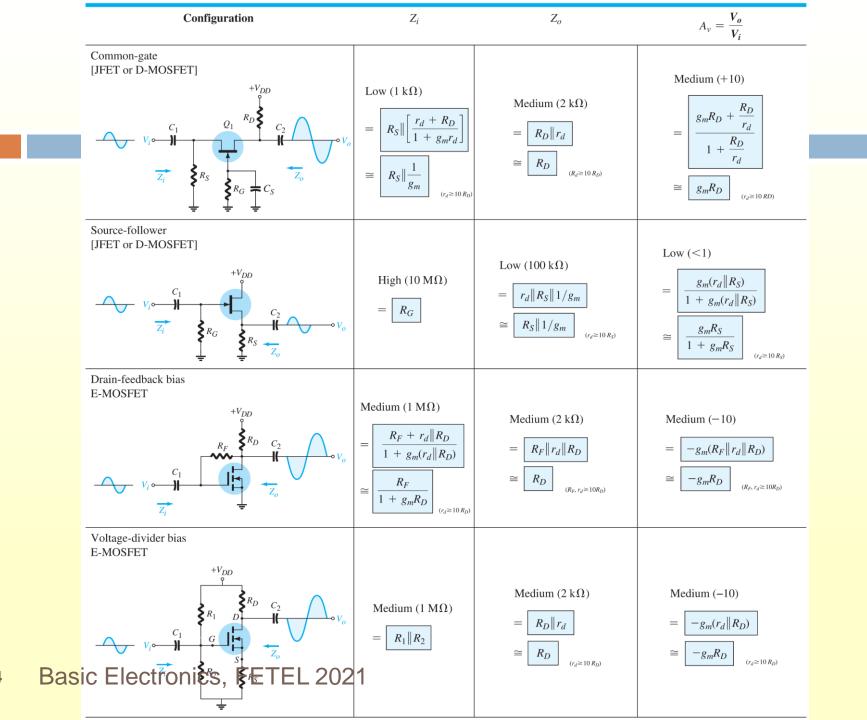
e. With r_d ,

39

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S} + \frac{R_{D} + R_{S}}{r_{d}}} = \frac{-(1.51 \text{ mS})(3.3 \text{ k}\Omega)}{1 + (1.51 \text{ mS})(1 \text{ k}\Omega) + \frac{3.3 \text{ k}\Omega + 1 \text{ k}\Omega}{50 \text{ k}\Omega}}$$
$$= -1.92$$
With $r_{d} = \infty \Omega$ (open-circuit equivalence),
Basic Electronics, $\overline{A_{v}} = \frac{\Xi \Box 2 \partial \Delta A}{1 + g_{m}R_{S}} = \frac{-(1.51 \text{ mS})(3.3 \text{ k}\Omega)}{1 + (1.51 \text{ mS})(1 \text{ k}\Omega)} = -1.98$



FET Bias Configurations


Туре	Configuration	Pertinent Equations	Graphical Solution
JFET Fixed-bias		$V_{GS_Q} = -V_{GG}$ $V_{DS} = V_{DD} - I_D R_S$	$\begin{array}{c c} & I_D \\ I_{DSS} \\ \hline \\ \hline \\ V_P \ V_{GG} \ 0 \\ \hline \\ V_{GS} \end{array}$
JFET Self-bias	R_{G}	$V_{GS} = -I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$Q-\text{point}$ $Q-\text{point}$ $V_{P IV'_{GS}} = 0$ V_{GS}
JFET Voltage-divider bias	R_1	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$Q-\text{point}$ V_{B} V_{G} V_{G} V_{GS}
JFET $(R_D = 0 \ \Omega)$		$V_{GS} = -I_D R_S$ $V_D = V_{DD}$ $V_S = I_D R_S$ $V_{DS} = V_{DD} - I_S R_S$	$Q-\text{point} \qquad V_P + V'_{GS} \qquad 0 \qquad V_{GS}$
JFET Special case $(V_{GS_Q} = 0 \text{ V})$ 41 Basic Ele	ctronics, FETEL 20	$V_{GS_Q} = 0 V$ $I_{D_Q} = I_{DSS}$	$Q\text{-point} \qquad I_D \\ I_{DSS} \\ V_{GSQ} = 0 \text{ V} \\ V_P \qquad 0 \qquad V_{GS}$

Depletion-type MOSFET Fixed-bias (and MESFETs)		$V_{GS_Q} = +V_{GG}$ $V_{DS} = V_{DD} - I_D R_S$	I_{DSS} Q -point I_{DSS} $V_P = 0$ $V_{GG} = V_{GS}$
Depletion-type MOSFET Voltage-divider bias (and MESFETs)	$R_1 R_D V_{DD}$	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_S R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$\begin{array}{c c} V_{G} & I_{D} \\ \hline R_{S} & Q \text{-point} \\ I_{DSS} & Q \text{-point} \\ \hline V_{P} & 0 & V_{G} V_{GS} \end{array}$
Enhancement type MOSFET Feedback configuration (and MESFETs)		$V_{GS} = V_{DS}$ $V_{GS} = V_{DD} - I_D R_D$	$\begin{array}{c c} V_{DD} & I_D \\ \hline R_D \\ I_{D(\text{on})} \\ \hline \end{array} \\ \hline \\ 0 \\ \hline \\ V_{GS(\text{Th})} \\ \hline \\ V_{GS(\text{on})} \\ \hline \\ V_{DD} \\ V_{GS} \\ \hline \end{array}$
Enhancement type MOSFET Voltage-divider bias (and MESFETs)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_D R_S$	$\begin{array}{c c} V_{G} & I_{D} \\ \hline \\ Q\text{-point} \\ \hline \\ 0 & V_{GS(\text{Th})} & V_{G} & V_{GS} \end{array}$

 Z_i , Z_o , and A_v for various FET configurations

43

Admittance is defined as

$$Y \equiv \frac{1}{Z}$$

where

Y is the admittance, measured in <u>siemens</u>, Dẫn nạp Z is the <u>impedance</u>, measured in <u>ohms</u>

$$Y = G + jB$$

here

Y is the admittance, measured in siemens.

G is the <u>conductance</u>, measured in siemens. Độ dẫn

B is the susceptance, measured in siemens. Điện nạp