Week 5 Supplementation

Diode applications

Zener Diode

$$V_z = 6.2 V$$

 $I_{R1} = ?$
 $I_{RL} = ?$

Note: .op

--- Operating Point ---

V(vl):	6.19223	voltage
V(vs):	10 volta	ge
I(D1):	-0.00318854	device_current
I(Rl):	0.000619223	device_current
I(R1):	-0.00380777	device_current
I(V1):	-0.00380777	device_current

EDZV6.2B

Zener Diode

Da	ata	sł	ne	et
		-		_

			 Outline 			
P _D	150	mW	Package Code SOD-523 JEITA Code SC-79 ROHM Code EMD2			
			(2)			
Feature			Inner Circuit			
High reliability						
Small mold type						
			(2) ~ > > ~ > ~ 0	(1) (1)Cathod	e	
				(2)Anode		
 Application 			Packaging Specificati	ion		
Voltage regulation			Packing	Embossed T	āpe	
			Reel Size(mm)	180		
			Taping Width(mm)	8		
 Structure 			Quantity(pcs)	8000		
Silicon Epitaxial Planar			Taping Code	T2R		
			Marking	E2		
Absolute Maximum Rat	ting (T _a = 25°C)	-				
Parameter	Symbol		Limits	Unit		
Power dissipation	PD		150	mW	EDZV Serie	S
Junction temperature	Тј		150	°C	Characteristic	<u>о (т</u>
Storage temperature	T _{stg}		-55 ~ 150	C	Characteristi	
					DA	
					P/N	MIN
						200

• Characteristic ($T_a = 25^{\circ}C$)										
<u> </u>	Symbol									
	P/N	Zen	er Voltage:V	′ _Z (V)	Dynamic Imp	edance:Z _Z (Ω)	Zener Imped	ance:Z _{ZK} (Ω)	Reverse Co	urrent:I _R (µA)
		MIN.	MAX.	l _z (mA)	MAX.	l _z (mA)	MAX.	l _z (mA)	MAX.	V _R (V)
	EDZV 2.0B	2.020	2.200	5.0	100	5.0	1000	0.5	120	0.5
	EDZV 2.2B	2.220	2.410	5.0	100	5.0	1000	0.5	120	0.7
	EDZV 2.4B	2.430	2.630	5.0	100	5.0	1000	0.5	120	1.0
	EDZV 2.7B	2.690	2.910	5.0	110	5.0	1000	0.5	100	1.0
	EDZV 3.0B	3.010	3.220	5.0	120	5.0	1000	0.5	50.0	1.0
	EDZV 3.3B	3.320	3.530	5.0	120	5.0	1000	0.5	20.0	1.0
	EDZV 3.6B	3.600	3.845	5.0	100	5.0	1000	1.0	10.0	1.0
	EDZV 3.9B	3.890	4.160	5.0	100	5.0	1000	1.0	5.0	1.0
	EDZV 4.3B	4.170	4.430	5.0	100	5.0	1000	1.0	5.0	1.0
	EDZV 4.7B	4.550	4.750	5.0	100	5.0	800	0.5	2.0	1.0
	EDZV 5.1B	4.980	5.200	5.0	80	5.0	500	0.5	2.0	1.5
FETE	EL 20 20 20 20 5.6B	5.490	5.730	5.0	60	5.0	200	0.5	1.0 ³	2.5
	EDZV 6.2B	6.060	6.330	5.0	60	5.0	100	0.5	1.0	3.0

Data sheet

SPECIFICATIONS FOR NICHIA WHITE LED MODEL : NSPW500GS-K1

1.SPECIFICATIONS

(1) Absolute Maximum Ratings			$(Ta=25^{\circ}C)$	
	Item	Symbol	Absolute Maximum Rating	Unit	
	Forward Current	IF	30	mA	
	Pulse Forward Current	IFP	100	mA	
	Reverse Voltage	VR	5	V	
	Power Dissipation	Pd	105	mW	
	Operating Temperature	Topr	$-30 \sim + 85$	°C	
	Storage Temperature	Tstg	$-40 \sim +100$	°C	
	Soldering Temperature	Tsld	265°C for 10sec.		

IFP Conditions : Pulse Width ≤ 10 msec. and Duty $\leq 1/10$

(2) Initial Electrical/Optical Characteristics

(Ta=25°C)

(1d 25 V						a 25 C)
Item	Symbol	Condition	Тур.	Max.	Unit	
Forward Voltage		VF	IF=20[mA]	(3.2)	3.5	V
Reverse Current		Ir	$V_{R}=5[V]$	-	50	μΑ
Luminous Intensity		Iv	IF=20[mA]	(30000)	-	mcd
Characticity Coordinate	Х	-	IF=20[mA]	0.31	-	-
Chromaticity Coordinate	у	-	IF=20[mA]	0.32	-	-

Bipolar junction transistors (BJTs)

The BJT is a transistor with three regions and two *pn* junctions. The regions are named the **emitter**, the **base**, and the **collector** and each is connected to a lead.

Transistor working: energy levels point of view

The potential barriers at the junctions for unbiased npn transistor.

In the absence of applied voltage, the potential barriers at junctions adjust themselves to a height V_0 so that no current flows across each junction.

In reverse biasing J_2 , the potential barrier at Base-collector increases and only a small reverse saturation current flows. The polarity of the applied voltage is chosen to increase the force pulling the n-type electrons and p-type holes apart. (i.e. we make the Collector positive with respect to the Base.)

After forward biasing emitter-base junction J₂

It is very much important to understand the role of depletion layer at both the junctions J_1 and $J_2.$

BJT construction and schematic symbols

Transistor amplifier voltages

Voltage Abbreviation	Definition
V _{CC}	Collector supply voltage
V _{BB}	Base supply voltage
V _{EE}	Emitter supply voltage
V _C	Voltage between collector and ground
V _B	Voltage between base and ground
V _E	Voltage between emitter and ground
V _{CE}	Voltage between collector and emitter
V _{BE}	Voltage between base and emitter
V _{CB}	Voltage between collector and base

The operating **point** of a device, also known as bias **point**, **quiescent point**, or **Q-point**

BJT construction

Base-Emitter Junc.	Collector-Base Junc.	Operating Region
Reverse	Reverse	Cutoff (switch-off)
Forward	Reverse	Active (amplifier)
Forward	Forward	Saturation (switch-on)

Operating regions

Cutoff

Saturation circuit condition

18

Active operation

Transistor operating region summary

(Assume that $R_E = 0 \Omega$)

Operating Condition	V _{BE}	I _C	V _{CE}	V _{RC}
Cutoff	< 0.5 V	= 0 A	$= V_{CC}$	= 0 V
Active	»0.7 V	$= \beta I_B$	$= V_{CC} - I_C R_C$	$= I_C R_C$
Saturation	»0.8 V	$\cong (V_{CC} - 0.2 \text{ V}) / R_C$ $\cong V_{CC} / R_C$	»0.2 V	$\cong V_{CC} - 0.2 \text{ V}$ $\cong V_{CC}$

Relationship Among I_E , I_C , and I_B

$$I_E = I_C + I_B.$$

If active, then

$$I_C = \beta I_B.$$

So

$$I_E = (\beta + 1) I_B.$$

If $\beta >> 1$, then

$$I_E \cong I_C = \beta I_B.$$

DC Alpha

$$\alpha = \frac{I_C}{I_E}$$

Since I_E is always greater than I_C , $\alpha < 1$.

$$I_{C} = \alpha I_{E}$$
$$I_{B} = I_{E} (1 - \alpha)$$
$$\alpha = \frac{\beta}{\beta + 1}$$
$$\beta = \frac{\alpha}{1 - \alpha}$$

$P_{D(max)} = P_{tot}$ dissipation

The transistor in Figure A has the following maximum ratings: $P_{D(max)} = 800 \text{ mW}$, $V_{CE(max)} = 15 \text{ V}$, and $I_{C(max)} = 100 \text{ mA}$. Determine the maximum value to which V_{CC} can be adjusted without exceeding a rating. Which rating would be exceeded first?

Solution First, find $I_{\rm B}$ so that you can determine $I_{\rm C}$.

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{5 \,\mathrm{V} - 0.7 \,\mathrm{V}}{22 \,\mathrm{k}\Omega} = 195 \,\mu\mathrm{A}$$
$$I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (100)(195 \,\mu\mathrm{A}) = 19.5 \,\mathrm{mA}$$

 $I_{\rm C}$ is much less than $I_{\rm C(max)}$ and ideally will not change with $V_{\rm CC}$. It is determined only by $I_{\rm B}$ and $\beta_{\rm DC}$.

The voltage drop across $R_{\rm C}$ is

$$V_{R_{\rm C}} = I_{\rm C}R_{\rm C} = (19.5 \,{\rm mA})(1.0 \,{\rm k}\Omega) = 19.5 \,{\rm V}$$

Now you can determine the value of V_{CC} when $V_{CE} = V_{CE(max)} = 15$ V.

$$V_{R_{\rm C}} = V_{\rm CC} - V_{\rm CE}$$

So,

$$V_{\rm CC(max)} = V_{\rm CE(max)} + (V_{R_{\rm C}} = 15 \text{ V} + 19.5 \text{ V} = 34.5 \text{ V}$$

 $V_{\rm CC}$ can be increased to 34.5 V, under the existing conditions, before $V_{\rm CE(max)}$ is exceeded. However, at this point it is not known whether or not $P_{\rm D(max)}$ has been exceeded.

$$P_{\rm D} = V_{\rm CE(max)}I_{\rm C} = (15 \text{ V})(19.5 \text{ mA}) = 293 \text{ mW}$$

Since $P_{D(max)}$ is 800 mW, it is *not* exceeded when $V_{CC} = 34.5$ V. So, $V_{CE(max)} = 15$ V is the limiting rating in this case. If the base current is removed causing the transistor to turn off, $V_{CE(max)}$ will be exceeded first because the entire supply voltage, V_{CC} , will be dropped across the transistor.