which says that the work done by the force field along \mathcal{C} is equal to the change in kinetic energy at the endpoints of \mathcal{C} .

Now let's further assume that **F** is a conservative force field; that is, we can write $\mathbf{F} = \nabla f$. In physics, the **potential energy** of an object at the point (x, y, z) is defined as P(x, y, z) = -f(x, y, z), so we have $\mathbf{F} = -\nabla P$. Then by Theorem 2 we have

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = -\int_{C} \nabla P \cdot d\mathbf{r} = -[P(\mathbf{r}(b)) - P(\mathbf{r}(a))] = P(A) - P(B)$$

Comparing this equation with Equation 16, we see that

$$P(A) + K(A) = P(B) + K(B)$$

which says that if an object moves from one point A to another point B under the influence of a conservative force field, then the sum of its potential energy and its kinetic energy remains constant. This is called the **Law of Conservation of Energy** and it is the reason the vector field is called *conservative*.

16.3 EXERCISES

1. The figure shows a curve C and a contour map of a function f whose gradient is continuous. Find $\int_C \nabla f \cdot d\mathbf{r}$.

2. A table of values of a function f with continuous gradient is given. Find $\int_C \nabla f \cdot d\mathbf{r}$, where C has parametric equations

$$x = t^2 + 1 \qquad y = t^3 + t \qquad 0 \le t \le 1$$

x y	0	1	2
0	1	6	4
1	3	5	7
2	8	2	9

3–10 Determine whether or not **F** is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.

3.
$$\mathbf{F}(x, y) = (2x - 3y)\mathbf{i} + (-3x + 4y - 8)\mathbf{j}$$

4.
$$\mathbf{F}(x, y) = e^x \cos y \mathbf{i} + e^x \sin y \mathbf{j}$$

5. $\mathbf{F}(x, y) = e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j}$

6.
$$\mathbf{F}(x, y) = (3x^2 - 2y^2)\mathbf{i} + (4xy + 3)\mathbf{j}$$

7.
$$\mathbf{F}(x, y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$$

8.
$$\mathbf{F}(x, y) = (xy \cos xy + \sin xy) \mathbf{i} + (x^2 \cos xy) \mathbf{j}$$

9.
$$\mathbf{F}(x, y) = (\ln y + 2xy^3)\mathbf{i} + (3x^2y^2 + x/y)\mathbf{j}$$

10.
$$\mathbf{F}(x, y) = (xy \cosh xy + \sinh xy) \mathbf{i} + (x^2 \cosh xy) \mathbf{j}$$

- II. The figure shows the vector field $\mathbf{F}(x, y) = \langle 2xy, x^2 \rangle$ and three curves that start at (1, 2) and end at (3, 2).
 - (a) Explain why $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ has the same value for all three curves.
 - (b) What is this common value?

- 12–18 (a) Find a function f such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ along the given curve C.
- 12. $\mathbf{F}(x, y) = x^2 \mathbf{i} + y^2 \mathbf{j}$, C is the arc of the parabola $y = 2x^2$ from (-1, 2) to (2, 8)
- 13. $F(x, y) = xy^2 i + x^2 y j$, C: $\mathbf{r}(t) = \langle t + \sin \frac{1}{2}\pi t, t + \cos \frac{1}{2}\pi t \rangle, \quad 0 \le t \le 1$
- **14.** $\mathbf{F}(x, y) = \frac{y^2}{1 + x^2} \mathbf{i} + 2y \arctan x \mathbf{j}$, C: $\mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j}, \quad 0 \le t \le 1$
- $\mathbf{I5.} \ \mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k},$ C is the line segment from (1, 0, -2) to (4, 6, 3)
- **16.** $\mathbf{F}(x, y, z) = (2xz + y^2)\mathbf{i} + 2xy\mathbf{j} + (x^2 + 3z^2)\mathbf{k}$, C: $x = t^2$, y = t + 1, z = 2t - 1, $0 \le t \le 1$
- 17. $F(x, y, z) = y^2 \cos z \, \mathbf{i} + 2xy \cos z \, \mathbf{j} xy^2 \sin z \, \mathbf{k}$, C: $\mathbf{r}(t) = t^2 \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le \pi$
- **18.** $\mathbf{F}(x, y, z) = e^{y}\mathbf{i} + xe^{y}\mathbf{j} + (z + 1)e^{z}\mathbf{k}$, C: $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}, \quad 0 \le t \le 1$
- 19-20 Show that the line integral is independent of path and evaluate the integral.
- 19. $\int_C \tan y \, dx + x \sec^2 y \, dy$, C is any path from (1, 0) to $(2, \pi/4)$
- **20.** $\int_C (1 ye^{-x}) dx + e^{-x} dy$, C is any path from (0, 1) to (1, 2)
- **21–22** Find the work done by the force field \mathbf{F} in moving an object from P to Q.
- **21.** $\mathbf{F}(x, y) = 2y^{3/2}\mathbf{i} + 3x\sqrt{y}\mathbf{j}; P(1, 1), Q(2, 4)$
- **22.** $\mathbf{F}(x, y) = e^{-y}\mathbf{i} xe^{-y}\mathbf{j}; \quad P(0, 1), \quad Q(2, 0)$
- **23–24** Is the vector field shown in the figure conservative? Explain.

25. If $\mathbf{F}(x, y) = \sin y \mathbf{i} + (1 + x \cos y) \mathbf{j}$, use a plot to guess whether \mathbf{F} is conservative. Then determine whether your guess is correct.

26. Let $\mathbf{F} = \nabla f$, where $f(x, y) = \sin(x - 2y)$. Find curves C_1 and C_2 that are not closed and satisfy the equation.

(a)
$$\int_C \mathbf{F} \cdot d\mathbf{r} = 0$$

(b)
$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 1$$

27. Show that if the vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is conservative and P, Q, R have continuous first-order partial derivatives, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \qquad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \qquad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

$$\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$$

$$\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$$

- **28.** Use Exercise 27 to show that the line integral $\int_C y \, dx + x \, dy + xyz \, dz$ is not independent of path.
- 29-32 Determine whether or not the given set is (a) open, (b) connected, and (c) simply-connected.
- **29.** $\{(x, y) \mid x > 0, y > 0\}$ **30** $\{(x, y) \mid x \neq 0\}$
- **31.** $\{(x, y) | 1 < x^2 + y^2 < 4\}$
- **32.** $\{(x, y) \mid x^2 + y^2 \le 1 \text{ or } 4 \le x^2 + y^2 \le 9\}$
- 33. Let $\mathbf{F}(x, y) = \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}$.
 - (a) Show that $\partial P/\partial y = \partial Q/\partial x$.
 - (b) Show that $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ is not independent of path. [*Hint:* Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ and $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C_1 and C_2 are the upper and lower halves of the circle $x^{2} + y^{2} = 1$ from (1, 0) to (-1, 0).] Does this contradict Theorem 6?
- **34.** (a) Suppose that \mathbf{F} is an inverse square force field, that is,

$$\mathbf{F}(\mathbf{r}) = \frac{c\mathbf{r}}{|\mathbf{r}|^3}$$

- for some constant c, where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Find the work done by \mathbf{F} in moving an object from a point P_1 along a path to a point P_2 in terms of the distances d_1 and d_2 from these points to the origin.
- (b) An example of an inverse square field is the gravitational field $\mathbf{F} = -(mMG)\mathbf{r}/|\mathbf{r}|^3$ discussed in Example 4 in Section 16.1. Use part (a) to find the work done by the gravitational field when the earth moves from aphelion (at a maximum distance of 1.52×10^8 km from the sun) to perihelion (at a minimum distance of 1.47×10^8 km). (Use the values $m = 5.97 \times 10^{24}$ kg, $M = 1.99 \times 10^{30}$ kg, and $G = 6.67 \times 10^{-11}$ N·m²/kg².)
- (c) Another example of an inverse square field is the electric force field $\mathbf{F} = \varepsilon q Q \mathbf{r} / |\mathbf{r}|^3$ discussed in Example 5 in Section 16.1. Suppose that an electron with a charge of -1.6×10^{-19} C is located at the origin. A positive unit charge is positioned a distance 10⁻¹² m from the electron and moves to a position half that distance from the electron. Use part (a) to find the work done by the electric force field. (Use the value $\varepsilon = 8.985 \times 10^9$.)