#### **Networking Basics**



The Cisco Certified
Network Associate

Curriculum

**NETWORK** 

**FUNDAMENTALS** 

CISCO SYSTEMS COME COME COME



Version 3.0
Cisco Regional Networking Academy





# Objectives

- Explain the importance of bandwidth in networking.
- Identify each of the seven layers of the OSI & TCP/IP model.
- Describe the similarities and differences between the two models.
- Identify devices used in networking.
- Define LAN, WAN, MAN, and SAN.
- Explain VPNs and their advantages.
- Describe the differences between intranets and extranets

#### **Table of Content**

| 1 | Networking Terminology |
|---|------------------------|
| 2 | Digital Bandwidth      |
| 3 | Network Models         |

cuu duong than cong . com

cuu duong than cong . com



#### **NETWORK TERMINOLOGY**

cuu duong than cong . com

#### Data Networks



- How to avoid duplication of equipment and resources
- How to communicate efficiently
- How to set up and manage a network

# Network history



#### Network Devices









- End-user devices (hosts)
  - Include computers, printers, scanners, etc.
  - Allow users to share, create, and obtain information.
  - Exist without a network, but capabilities are greatly reduced.
  - connected to the network media using a network interface card (NIC)

#### Network Devices (cont)





#### Network devices

- Provide transport for the data that needs to be transferred between end-user devices.
- Provide extension of cable connections, concentration of connections, conversion of data formats, and management of data transfers.
- E.g. Repeaters, Hubs, Bridges, Switches, Routers









- A bus topology uses a single backbone cable that is terminated at both ends.
- All the hosts connect directly to this backbone.



- A ring topology connects one host to the next and the last host to the first.
- This creates a physical ring of cable



A star topology
Connects all cables
to a central point
of concentration.

An extended star topology links individual stars together by connecting the hubs or switches.





- A hierarchical topology is similar to an extended star
- Instead of linking the hubs and/or switches together the system is linked to a computer that controls the traffic on the topology.



- Each host has its own connections to all other hosts
- Although the Internet has multiple paths to any one location, it does not adopt the full mesh topology.

# Network Topology: Logical layout



CuuDuongThanCong.com

https://fb.com/tailieudientucntt

#### Network Protocols

 A protocol is a formal description of a set of rules and conventions that govern a particular aspect of how devices on a network communicate.



#### Network Protocols (cont.)

- Protocols control all aspects of data communication, which include the following:
  - How the physical network is built
  - How computers connect to the network
  - How the data is formatted for transmission
  - How that data is sent
  - How to deal with errors

#### Local-area Networks (LANs)

#### **Local Area Networks and Devices**

#### LANs are designed to:

- Operate within a limited geographic area.
- Allow multi-access to high-bandwidth media.
- Control the network privately under local administration.
- Provide full-time connectivity to local services.
- Connect physically adjacent devices.

#### Using:





#### Wide-area Networks (WANs)

#### Wide Area Networks and Devices

#### WANs are designed to:

CuuDuongThanCong.con

- Operate over large geographical area.
- Allow access over serial interfaces operating at lower speeds.
- Provide full-time and part-time connectivity.
- Connect devices separated over wide, even global areas.

#### Using:



## Metropolitan-area Networks (MANs)



# Storage-area Networks (SANs)

#### Performance

 Concurrent access of disk or tape arrays

#### Availability

disaster tolerance built in

#### Scalability

 easy relocation of backup data, operations, file migration, and data replication between systems



#### Virtual Private Network (VPN)



## Three type of VPNs



#### Intranets and Extranets





# BANDWIDTH

cuu duong than cong . com

# Importance of Bandwidth

- How much information can flow from one place to another in a given amount of time.
- 4 reasons to understanding
  - Bandwidth is finite
  - Bandwidth is not free
  - Bandwidth is a key factor in analyzing network performance, designing new networks, and understanding the Internet.
  - The bandwidth is ever increasing

# **Analogy for Bandwidth: Pipe**

Bandwidth is like pipewidth.







Network devices are like pumps, valves, fittings, and taps.









Packets are like water.



#### **Measurements**

| Unit of Bandwidth   | Abbrev. | Equivalence                                      |
|---------------------|---------|--------------------------------------------------|
| Bits per second     | bps     | 1 bps = fundamental unit of bandwidth            |
| Kilobits per second | kbps    | 1 kbps = 1,000 bps = 10 <sup>3</sup> bps         |
| Megabits per second | Mbps    | 1 Mbps = $1,000,000$ bps = $10^6$ bps            |
| Gigabits per second | Gbps    | 1 Gbps = 1,000,000,000 bps = 10 <sup>9</sup> bps |

## **Limitations: LAN Media**

| Some Typical Media                                                            | Bandwidth                 | Max. Physical<br>Distance |
|-------------------------------------------------------------------------------|---------------------------|---------------------------|
| 50-Ohm Coaxial Cable<br>(Ethernet 10BASE2, ThinNet)                           | 10-100 Mbps               | 185m                      |
| 50-Ohm Coaxial Cable<br>(Ethernet 10BASE5, ThickNet)                          | 10-100 Mbps               | 500m                      |
| Category 5 Unshielded Twisted Pair (UTP) (Ethernet 10BASE-T)                  | 10 Mbps                   | 100m                      |
| Category 5 Unshielded Twisted Pair (UTP) (Ethernet 100BASE-TX)(Fast Ethernet) | 100 Mbps                  | 100m                      |
| Multimode (62.5/125μm) duong than cons<br>Optical Fiber 100BASE-FX            | 100 Mbps                  | 2000m                     |
| Singlemode (9/125µm core)<br>Optical Fiber 1000BASE-LX                        | 1000 Mbps<br>(1.000 Gbps) | 3000m                     |
| Wireless                                                                      | 11 Mbps                   | a few<br>100meters        |

#### **Limitations: WAN Services**

| Type of<br>WAN service | Typical User                                   | Bandwidth                                          |
|------------------------|------------------------------------------------|----------------------------------------------------|
| Modem                  | Individuals                                    | 56 Kbps = 0.056 Mbps                               |
| ISDN                   | Telecommuters, Small businesses                | 128 Kbps = 0.128 Mbps                              |
| Frame-Relay            | Small institutions (schools);<br>reliable WANs | 56 Kbps - 1544Kbps =<br>0.056 Mbps -<br>1.544 Mbps |
| T1                     | Larger entities                                | 1.544 Mbps                                         |
| Т3                     | Larger entities                                | 44.736 Mbps                                        |
| E1                     | Larger entities                                | 2.048 Mbps                                         |
| E3                     | Larger entities                                | 34.368 Mbps                                        |

# Throughput <= Bandwidth

- Throughput refers to actual measured bandwidth, at a specific time of day, using specific Internet routes, and while a specific set of data is transmitted on the network.
- Factors that determine throughput
  - Type of data being transferred
  - Network topology
  - Number of users on the network
  - User computer
  - Server computer
  - Power conditions

#### Data transfer calculation

| Best Download $T = \frac{S}{BW}$ | Typical Download $T = \frac{S}{P}$                                                                                                           |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| BW = cuu duong than              | Maximum theoretical bandwidth of<br>the "slowest link" between the<br>source host and the destination<br>host. (Measured in bits per second) |
| P =                              | Actual throughput at the moment of transter. (Measured in bits per second                                                                    |
| T = cuu duong than               | Time for file transfer to occur. (Measured in seconds)                                                                                       |
| S =                              | File size in bits.                                                                                                                           |



## **NETWORKING MODELS**

cuu duong than cong . com

# Using Layers To Analyze Problems In A Flow Of Materials

What is flowing?

What objects flowing?

What rules govern flow?

Where does the flow occur?

## Analyzing Data network in layers

What is flowing?

**Data** 

What different forms flow?

Text, Graphic, Video ...

What rules govern flow?

Standard, Protocol ...

Where does the flow occur?

Cable, Atmosphere ...

# **Communication process**



Source Address **Medium** 

**Destination Address** 

#### Communication characteristics

#### Addresses

– Who are the source and the destination of a communication process?

#### Media

– Where is the communication take place?

#### Protocols

 is a set of rules how to make communication on a network more efficient.

## Using Layers To Describe Data Communication





## OSI REFERENCE MODEL

cuu duong than cong . com

## **Evolution of networking standards**



- Interconnection
- Development
- Simplification



TCP/IP

## **OSI** reference model development

- Researched and developed by the ISO -International Organization for Standardizations.
- 1977: establish a subcommittee to develop a communications architecture.
- 1984: publish ISO-7498, the Open System Interconnection (OSI) reference model.

#### OSI reference model

- The OSI reference model: A framework that is used to understand how information travels throughout a network.
  - It provided vendors with a set of standards that ensured greater compatibility and interoperability between the various types of network technologies that were produced by the many companies around the world.

# **Proprietary vs. Open**

#### **OSI reference model (cont.)**

- Dividing the network into seven layers provides the following advantages:
  - It breaks network communication into smaller, more manageable parts.
  - It standardizes network components to allow multiple vendor development and support.
  - It allows different types of network hardware and software to communicate with each other.
  - It prevents changes in one layer from affecting other layers.
  - It divides network communication into smaller parts to make learning it easier to understand.

#### **Benefits of the OSI model**

- Reduces complexity
- Standardizes interfaces an cong a com
- Facilitates modular engineering
- Insures interoperable technology
- Accelerates evolution cong...com
- Simplifies teaching & learning

## Layers of OSI reference model

- Layer 6 Presentation
- Layer 5 Session
- Layer 4 Transport
- Layer 3 Network
- Layer 2 Data Link
- Layer 1 Physical

All People Seem To Need Data Processing

- 7 Application
- 6 Presentation
- 5 Session due g than cong.com
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

g than cong . com

Binary Transmission

Wires, connectors, voltages, data rates

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

#### Direct Link Control, Access to Media

- Provides reliable transfer of data across media
- Physical addressing, network topology, error notification, flow control

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

#### Address and Best Path

- Provides connectivity and path selection between two end systems
  - Domain of routing

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- Data Link
- 1 Physical

#### **End-to-end Connections**

- Concerned with transportation issues between hosts
- Data transport reliability
- Establish, maintain, terminate virtual circuits
- Fault detection and recovery information flow control

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

#### Interhost Communication

 Establishes, manages, and terminates sessions between applications

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

#### **Data Representation**

- Ensure data is readable by receiving system
- Format of data
  - Data structures
- Negotiates data transfer syntax for application layer

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

#### Network Processes to Applications

 Provides network services to application processes (such as electronic mail, file transfer, and terminal emulation)

g than cong . com

ng than cong . com

## **OSI layers: Summary**

Network Processes to Applications Application Data Representation Presentation Interhost Communication Session 5 End-to-end Connections Transport Network Address and Best Path **Data Link** Access to Media **Physical** Binary Transmission

## **Peer-to-peer communications**



#### The TCP/IP model

- Layer 4: Application
- Layer 3: Transport
- Layer 2: Internet
- Layer 1: Network access

Application

**Transport** 

Internet

**Network Access** 

It is important to note that some of the layers in the TCP/IP model have the same name as layers in the OSI model.

Do not confuse the layers of the two models.

## TCP/IP protocol stack



## Comparing TCP/IP with OSI



#### Comparing TCP/IP with OSI (cont.)

#### Similarities:

- Both have layers.
- Both have application layers, though they include very different services.
- Both have comparable transport and network layers.
- Both models need to be known by networking professionals.
- Both assume packets are switched.

## Comparing TCP/IP with OSI (cont.)

#### Differences:

- TCP/IP combines the presentation and session layer issues into its application layer.
- TCP/IP combines the OSI data link and physical layers into the network access layer.
- TCP/IP appears simpler because it has fewer layers.

#### Focus of the CCNA curriculum

#### The OSI Model

| 7 | Application  | FTP, TFTP, HTTP, SMTP,<br>DNS, TELNET, SNMP |
|---|--------------|---------------------------------------------|
| 6 | Presentation | Very little focus                           |
| 5 | Session      |                                             |
| 4 | Transport    | TCP (the Internet)                          |
| 3 | Network      | IP (the Internet)                           |
| 2 | Data Link    | Ethernet (common LAN technology)            |
| 1 | Physical     |                                             |

#### Common TCP/IP Protocols



#### **Detailed Encapsulation Process**



## **Encapsulation example: E-mail**



## Summary



- The seven layers of the OSI are application, presentation, session, transport, network, data link, and physical
- The four layers of the TCP/IP are application, transport, internet, and network access
- The TCP/IP application layer is equivalent to the OSI application, presentation, and session layers
- LANs and WANs developed in response to business and government computing needs
- Fundamental networking devices are hubs, bridges, switches, and routers





# Enjoy the Course

