
SOLVING PROBLEMS 

BY SEARCHING

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn



Outline

• Problem-solving agents

• Example problems

• Searching for solutions

2



Problem-solving 
Agents

• Well-defined problems 
and solutions

• Formulating problems

3



A touring holiday in Romania

4

What makes a good trip at Arad?

• take in the sights, enjoy the foods, etc.

• avoid hangovers

• …

However, there will be your friend’s wedding

tomorrow at Bucharest!!!



Goal-based agents

• Intelligent agents maximize their performance measure.

• Performance measure includes different factors.

• Making decisions involves many tradeoffs.

• Goals help organize behavior by limiting the objectives that

the agent is trying to achieve and the actions it considers.

5



Problem formulation

• Consider a goal to be a set of world states in which the

objective is satisfied.

• Problem formulation is the process of deciding what

actions and states to consider, given a goal.

• E.g., state: being in a particular town, actions: driving from one town

to another→ goal state: being in Bucharest

6



Traveling from Arad to Bucharest

7



Goal-based agents in Romania

• The agent initially does not know which road to follow

→ unknown environment, try an action randomly

• Suppose the agent has a map of Romania.

8

An agent with several immediate options of unknown value

can decide what to do by first examining future actions that

eventually lead to states of known value.

• The agent discovers many hypothetical

journey and finds a journey that

eventually gets to Bucharest.



Properties of the Romania environment

• Observable

• Each city has a sign indicating its presence for arriving drivers.

• The agent always knows the current state.

• Discrete

• Each city is connected to a small number of other cities.

• There are only finitely many actions to choose from any given state.

• Known

• The agent knows which states are reached by each action.

• Deterministic

• Each action has exactly one outcome.

9



Solving problem by searching

• Search: the process of looking for a sequence of actions

that reaches the goal

• A search algorithm takes a problem as input and returns a

solution in the form of an action sequence.

• Execution phase: once a solution is found, the

recommended actions are carried out.

• While executing the solution, the agent ignores its percepts when

choosing an action→ open-loop system

10



Solving problem by searching

11

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seq, an action sequence, initially empty

state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state ← UPDATE-STATE(state, percept)

if seq is empty then

goal ← FORMULATE-GOAL(state)
problem ← FORMULATE-PROBLEM(state, goal)
seq ← SEARCH(problem)
if seq = failure then return a null action

action ← FIRST(seq)
seq ← REST(seq)

return action



Well-define problems and solutions

• A problem can be defined formally by five components.

• Initial state: in which the agent starts

• E.g., the agent in Romania has its initial state described as 𝐼𝑛(𝐴𝑟𝑎𝑑)

• Actions: the possible actions available to the agent

• E.g., 𝐴𝐶𝑇𝐼𝑂𝑁(𝐴𝑟𝑎𝑑) = {𝐺𝑜(𝑆𝑖𝑏𝑖𝑢), 𝐺𝑜(𝑇𝑖𝑚𝑖𝑠𝑜𝑎𝑟𝑎), 𝐺𝑜(𝑍𝑒𝑟𝑖𝑛𝑑)}

• Transition model: what each action does

• E.g., 𝑅𝑒𝑠𝑢𝑙𝑡 𝐼𝑛 𝐴𝑟𝑎𝑑 , 𝐺𝑜 𝑍𝑒𝑟𝑖𝑛𝑑 = 𝐼𝑛(𝑍𝑒𝑟𝑖𝑛𝑑)

• Successor: a state reachable from a given state by a single action

12



The state space

• The set of states that are reachable from the initial state by

any sequence

• It is implicitly defined by the initial state, actions, and transition model

• Directed graph – nodes are states and the links between

nodes are actions.

13

A path in the state space is a

sequence of states connected by

a sequence of actions.



Well-define problems and solutions

• Goal test: determine whether a given state is a goal state

• The goal is specified by either an explicit set of possible goal states

or an abstract property.

• E.g., 𝐼𝑛(𝐵𝑢𝑐ℎ𝑎𝑟𝑒𝑠𝑡), checkmate

• Path cost: a function that sets a numeric cost to each path

• Nonnegative, reflecting the agent’s performance measure

• E.g., 𝑐 𝐼𝑛 𝐴𝑟𝑎𝑑 , 𝐺𝑜 𝑍𝑒𝑟𝑖𝑛𝑑 , 𝐼𝑛 𝑍𝑒𝑟𝑖𝑛𝑑 = 75

• An optimal solution has the lowest path cost.

14



Formulating problems by abstraction

• The process of removing detail from a representation

• Navigation example: how do we define states and actions?

• First abstract “the big picture”, i.e., solve a map problem

• Nodes = cities, links = roads connecting cities (a high-level description)

• Later worry about details

• E.g., traveling companions, road condition, weather, etc. Similarly for

driving action – time, fuel consumption, pollution, etc.
15



Formulating problems by abstraction

• Abstraction creates an approximate and simplified model of

the world, which is critical for automated problem solving.

• A good abstraction remove as much detail as possible, while

retaining validity, and ensure that the abstract actions are

easy to be carried out.

16



Example 
problems

• Toy problems

• Real-world problems

17



Toy problems vs. Real-world problems

18

Toy problems Real-world problems

Exercise problem-solving methods

Compare performance of methods

Bring solutions to practical issues

Concise, exact description No single, agreed-upon description

E.g., 8-puzzle, 8-queens problem, 

cryptarithmetic, vacuum world, 

missionaries and cannibals, simple 

route finding

E.g., route finding, touring and 

traveling salesperson problems, 

VLSI layout, robot navigation, 

assembly sequencing



The Vacuum-cleaner world

• States: determined by the agent location and the dirt locations

• 2 × 22 = 8 possible world states (𝑛 × 2𝑛 in general)

• Initial state: Any state can be designated as the initial state.

• Actions: Left, Right, and Suck

• Larger model may include Up and Down, etc.

• Transition model: The actions have their expected effects.

• Except that moving Left in the leftmost square, moving Right in the

rightmost square, and Sucking in a clean square have no effect.

• Goal test: whether all the squares are clean

• Path cost: each step costs 1

19



The Vacuum-cleaner world

20

The state space for the vacuum world
Links denote actions: L = Left, R = Right, S = Suck.



The 8-puzzle

• States: the location of each of the eight tiles and the blank

• Initial state: any state can be designated as the initial state

• Actions: movements of the blank space

• Left, Right, Up, or Down. Different subsets of these are possible

depending on where the blank is

• Transition model: return a resulting state given a state and an

action

• Goal test: check whether the state matches the goal configuration

• Path cost: each step costs 1

21



The 8-puzzle

• A member of the family of sliding-block puzzles, NP-complete

• 8-puzzle: 9!/2 = 181,440 reachable states→ easily solved.

• 15-puzzle: 1.3 trillion (1012) states→ optimally solved in a few millisecs

• 24-puzzle: around 1025 states→ optimally solved in several hours

22



The 8-queens

• Incremental formulation: add a queen

step-by-step to the empty initial state

• Complete-state formulation: start with

all 8 queens on the board and move

them around

• The path cost is trivial because only

the final state counts

23



The 8-queens: Incremental formulation

• States: any arrangement of 0 to 8 queens on the board

• Initial state: no queens on the board

• Actions: add a queen to any empty square

• Transition model: returns the board with a queen added to the 

specified square

• Goal test: 8 queens are on the board, none attacked

• 64 ∙ 63⋯57 ≈ 1.8 × 1014 possible sequences to investigate

24



The 8-queens: Incremental formulation

• A better formulation would prohibit placing a queen in any

square that is already attacked.

• States: All possible arrangements of 𝑛 queens (0 ≤ 𝑛 ≤ 8),

one per column in the leftmost 𝑛 columns, with no queen

attacking another

• Actions: Add a queen to any square in the leftmost empty

column such that it is not attacked by other queens

• 8-queens: from 1.8 × 1014 states to just 2,057 states

• 100-queens: from 10400 states to about 1052 states

25



Knuth’s 4 problem

• Devised by Donald Knuth (1964)

• Illustration of how infinite state spaces can arise

• Knuth’s conjecture: Starting with the number 4, a sequence of factorial,

square root, and floor operations will reach any desired positive integer.

• States: positive numbers.

• Initial state: 4

• Actions: apply factorial, square root, or floor operation (factorial for

integers only)

• Transition model: given by the operations’ mathematical definitions

• Goal test: whether it is the desired positive integer

26



The route-finding problem 

• Consider the airline travel problems solved by a travel-planning Web site.

• States: a location (e.g., an airport) and the current time

• Extra information about “historical” aspects, e.g., previous segments, fare

bases, statuses as domestic or international, are needed.

• Initial state: specified by the user’s query

• Actions

• Take any flight from the current location, in any seat class, leaving after the

current time, leaving enough time for within-airport transfer if needed

• Transition model

• Current location: the flight’s destination, current time: the flight’s arrival time

• Goal test: whether the agent is at the destination specified by the user.

• Path cost: depend on different factors of the per performance measure

27



The touring problems

• Actions: correspond to trips between adjacent cities

• Each state must include not just the current location but also

the set of cities the agent has visited.

• For example, the touring holiday in Romania

• In(Bucharest), Visited({Bucharest}): initial state

• In(Vaslui), Visited({Bucharest, Urziceni, Vaslui}): intermediate state

• Goal test: whether in Bucharest and all 20 cities have been visited.

• Traveling salesperson problem (TSP): NP-hard

• Every city must be visited exactly once, and the tour is shortest.

• Plan movements of automatic circuit-board drills or stocking

machines on shop floors, etc.

28



Other real-world problems

29

Automatic assembly sequencing of 
complex objects by a robot Robot navigation

VLSI layout problem



Quiz 01: The Towers of Hanoi

• Formulate the Tower of Hanoi problem with three pegs and three

disks.

• Initial state:

• Actions: take the upper disk from one of the rods and sliding it

onto another rod, on top of the other disks that may already be

present on that rod, without violating the rule of disk sizes.

• Transition model: return a state given a state and an action

• Goal test:

• Path cost: each step costs 1

• Formulate the Towers of Hanoi problem with three pegs and

three disks.

30



Searching 
for solutions

• Infrastructure for 
search algorithms

• Measuring problem-
solving performance

31



Search tree 

• Search algorithms consider many possible action sequences

to find the solution sequence.

• Search tree: the possible action sequences starting at the

initial state (root)

• Branches are actions and nodes are states in the state space

• Frontier: the set of all leaf nodes available for expansion at

any given point

32

Search algorithms all share the basic structure while vary 

according to how they choose which state to expand next 

-- called search strategy.



33



TREE-SEARCH algorithms

34

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier



Redundant paths

• Redundant paths are unavoidable.

• Following redundant paths may cause a tractable problem to

become intractable.

• This is true even for algorithms that know how to avoid infinite loops

35

Each state has four successors.

A search tree of depth 𝑑: 4𝑑 leaves with

repeated states, about 2𝑑2 distinct states

within 𝑑 steps of any given state

For 𝑑 = 20: a trillion nodes but only about

800 distinct states.



GRAPH-SEARCH algorithms

• The explored set remembers every expanded node.

• Generated nodes that match previously generated nodes, i.e., those in

the explored set or the frontier — can be discarded
36

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

add the node to the explored set

expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set



37

GRAPH-SEARCH examples



GRAPH-SEARCH separation property

• The frontier separates the state-space graph into two

components: explored region vs. unexplored region.

• Every path from the initial state to an unexplored state must pass

through a state in the frontier.

38

• The algorithm systematically

examines the states in the

state space, one by one, until

it finds a solution.



Infrastructure for search algorithms

• Each node 𝑛 is structuralized by four components.

• 𝒏. 𝐒𝐓𝐀𝐓𝐄: the state in the state space to which the node corresponds

• 𝒏. 𝐏𝐀𝐑𝐄𝐍𝐓: the node in the search tree that generated the node 𝑛

• 𝒏. 𝐀𝐂𝐓𝐈𝐎𝐍: the action applied to the parent to generate 𝑛

• 𝒏. 𝐏𝐀𝐓𝐇 − 𝐂𝐎𝐒𝐓 : the cost, denoted by 𝒈(𝒏), of the path from the

initial state to the node, as indicated by the parent pointer

• Frontier can be implemented with a (priority) queue or stack.

• Explored set can be a hash table that allows for efficient

checking of repeated states

• Canonical form: logically equivalent states should map to the same

data structure

39



Infrastructure for search algorithms

40

function CHILD-NODE(problem, parent, action) returns a node

return a node with

STATE = problem.RESULT(parent.STATE, action),

PARENT = parent, ACTION = action,

PATH-COST = parent.PATH-COST 

+ problem.STEP-COST(parent.STATE, action)



• Completeness: does it always find a solution if one exists?

• Time complexity: how long does it take to find a solution?

• Space complexity: how much memory is needed to perform

the search?

• Optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of

• 𝑏: maximum branching factor of the search tree

• 𝑑: depth of the least-cost solution

• 𝑚: maximum depth of the state space (may be ∞)

41

Measuring problem-solving performance



Quiz 02: The Towers of Hanoi

• Draw the first two levels of the search tree for the Towers of

Hanoi problem with three pegs and two disks (identical

repeated states on a path can be ignored).

42



43

THE END


