
UNINFORMED SEARCH

STRATEGIES

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn



Outline

• Uninformed search strategies

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limit search

• Iterative deepening search

• Bidirectional search

2



Uninformed search strategies

• No additional information about states beyond that provided

in the problem definition

• All they can do is to generate successors and distinguish a goal state

from a non-goal state.

• Also called Blind Search

3



Uninformed search strategies

4

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Bidirectional search

Iterative lengthening search, branch and bound, etc.



Review: Tree search vs. Graph search

• Tree search can end up repeatedly visiting the same nodes.

• E.g., Arad-Sibiu-Arad-Sibiu-Arad-…

• A good search algorithm avoids such paths.

• Graph search: frontier, explored set, etc.

5

Tree search vs. Graph search



Review: Search strategies

• Search strategies are distinguished by the order in which

nodes are expanded

• How to evaluate a search strategy?

• Completeness

• Time complexity

• Space complexity

• Optimality

• 𝑏: maximum branching factor of the search tree

• 𝑑: depth of the least-cost solution

• 𝑚: maximum depth of the state space (may be ∞)

6

Measured by factors 𝑏, 𝑑, and 𝑚



Breadth-first search

7



Breadth-first search (BFS)

• The root node is expanded first, then all the successors of the root,

then their successors, and so on.

• In general, all the nodes are expanded at a given depth in the search

tree before any nodes at the next level are expanded.

8

Example state space graph for 
a tiny search problem



Breadth-first search (BFS)

9

Expansion order: 

(S, d, e, p, b, c, h, 

r, q, a, f, G)

• Expand shallowest unexpanded node

• Implementation: frontier is a FIFO queue



function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node ← a node with STATE = problem.INITIAL-STATE, PATH-COST = 0

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

frontier ← a FIFO queue with node as the only element

explored ← an empty set

loop do

if EMPTY?( frontier) then return failure

node ← POP(frontier) /* chooses the shallowest node in frontier */

add node.STATE to explored

for each action in problem.ACTIONS(node.STATE) do

child ← CHILD-NODE(problem, node, action)

if child.STATE is not in explored and not in frontier then

if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)

frontier ← INSERT(child, frontier)

Breadth-first search on a graph

10



Breadth-first search (BFS)

11

• An instance of the general graph search algorithm

• The shallowest unexpanded node is chosen for expansion

• The goal test is applied to each node when it is generated

rather than when it is selected for expansion

• Discard any new path to a state already in the frontier or in

the explored set



Breadth-first search on a graph

12

Breadth-first search on a simple binary tree.
At each stage, the node to be expanded next is indicated by a marker



Breadth-first search: An example

13

S

Search Tree

d = 0



Breadth-first search: An example

14

S

d e p

Search Tree

d = 1



Breadth-first search: An example

15

S

d e p

c b h r q

Search Tree

d = 2



Breadth-first search: An example

16

S

d e p

c b h r q

a f

Search Tree

d = 3



Breadth-first search: An example

17

S

d e p

c b h r q

a f

G

Search Tree

d = 4



18

S

d e p

c b h r q

a f

G

Search Tree

Search path: S → e → r → f → G

Breadth-first search: An example



An evaluation of BFS 

19

bd

• What nodes does BFS expand?

• Process all nodes above the shallowest solution

• Let the shallowest solution’s depth be 𝑑. Search takes time O(𝑏𝑑).

• How much space does the frontier take?

• Roughly the last tier, so O(𝑏𝑑). 

• Is it complete?

• YES  

• Is it optimal?

• Only if costs are all uniform



The complexity of BFS

20

Time and memory requirements for BFS. The numbers shown assume 
branching factor 𝑏 = 10; 1 million nodes/second; 1000 bytes/node.

The memory requirements are a bigger problem for BFS than the

execution time.

In general, exponential-complexity search problems cannot be
solved by uninformed methods for any but the smallest instance



Quiz 01: Breadth-first search

• Work out the order in which states are expanded, as well as the path

returned by graph search. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.

21



Uniform-cost search

22



Search with varying step costs

23

• BFS finds the path with the fewest steps but does not always

find the cheapest path.

• An algorithm that is optimal with any step-cost function?



Uniform-cost search (UCS)

• UCS expands the node 𝑛 with the lowest path cost 𝑔(𝑛)

• Implementation: frontier is a priority queue ordered by 𝑔

→ Equivalent to breadth-first search if step costs all equal

→ Equivalent to Dijkstra’s algorithm in general

• The goal test is applied to a node when it is selected for

expansion

• A test is added in case a better path is found to a node

currently on the frontier.

24



Uniform-cost search (UCS)

25

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node ← a node with STATE = problem.INITIAL-STATE, PATH-COST = 0

frontier ← a priority queue ordered by PATH-COST, with node as the element

explored ← an empty set

loop do

if EMPTY?( frontier) then return failure

node ← POP(frontier) /* chooses the lowest-cost node in frontier */

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

add node.STATE to explored

for each action in problem.ACTIONS(node.STATE) do

child ← CHILD-NODE(problem, node, action)

if child.STATE is not in explored and not in frontier then

frontier ← INSERT(child, frontier)

else if child.STATE is in frontier with higher PATH-COST then

replace that frontier node with child



Uniform-cost search 

26

Expansion order

S,p,d,b,e,a,r,f,e,G



S

Uniform-cost search: An example

27

PQ = { (S:0) }

frontier

Search Tree



S

Uniform-cost search: An example

28

p d e

PQ = { (p:1), (d:3), (e:9) }

frontier

Selected for 

expansion

Search Tree



Uniform-cost search: An example

29

PQ = { (d:3), (e:9), (q:16) }

q

S

p d e

expanded

Search Tree



Uniform-cost search: An example

30

PQ = { (b:4), (e:5), (c:11), (q:16) }

q

S

p e

e cb

d

Update path cost of e
Search Tree



Uniform-cost search: An example

31

PQ = { (e:5), (a:6), (c:11), (q:16) }

q

S

p d e

cb e

a

Search Tree



Uniform-cost search: An example

32

PQ = { (a:6), (r:7), (c:11), (h:13), (q:16) }

q

S

p d e

c

a

eb

r h

Search Tree



Uniform-cost search: An example

33

PQ = { (r:7), (c:11), (h:13), (q:16) }

q

S

p d e

ceb

r ha

Search Tree



r

Uniform-cost search: An example

34

PQ = { (f:8), (c:11), (h:13), (q:16) }

q

S

p d e

c

a

eb

h

f

Search Tree



r

Uniform-cost search: An example

35

PQ = { (G:10), (c:11), (h:13), (q:16) }

q

S

p d e

c

a

eb

h

f

G
Not update path cost of c

Search Tree



r

Uniform-cost search: An example

36

PQ = { (c:11), (h:13), (q:16) }

Goal is taken out of PQ → STOP

Search path: S → d → e → r → f → G, cost = 10

q

S

p d e

c

a

eb

h

f

G
Search Tree



Uniform-cost search: An example

37



Uniform-cost search: Suboptimal path

38



An evaluation of UCS 

39

• What nodes does UCS expand?

• Process all nodes with cost less than cheapest solution!

• Let 𝐶∗ be the cost of the optimal solution and assume that every

action costs at least 𝜖.

• Take time 𝑂(𝑏1+ 𝐶∗/𝜖 ) (exponential in effective depth)

• How much space does the frontier take?

• Roughly the last tier, so 𝑂(𝑏1+ 𝐶∗/𝜖 )

• Is it complete?

• Assume that the best solution has a finite cost

and minimum arc cost is positive, YES

• Is it optimal?

• YES



An evaluation of UCS 

40

• Optimality of UCS: proof by contradiction

• Suppose UCS terminates at goal state𝑛with path cost 𝑔(𝑛) = 𝐶 but

there exists another goal state 𝑛′ with 𝑔 𝑛′ < 𝐶

• There must exist a node 𝑛′′ on the frontier that is on the optimal path

to 𝑛′.

• Since 𝑔(𝑛′′) < 𝑔(𝑛′) < 𝑔(𝑛), 𝑛′′ should have been expanded first!

• UCS expands nodes in order of their optimal path cost.

• Graph separation property: every path from the initial state to

an unexplored state must pass through a state on the frontier.

• Proved inductively



An evaluation of UCS 

• The complexity of 𝑂(𝑏1+ 𝐶∗/𝜖 ) can be greater than 𝑂(𝑏𝑑).

• UCS can explore large trees of small steps before exploring paths

involving large and perhaps useful steps.

• When all step costs are equal, 𝑂(𝑏1+ 𝐶∗/𝜖 ) is just 𝑂(𝑏𝑑+1).

• UCS does strictly more work by unnecessarily expanding nodes at

depth 𝑑, while BFS stops as soon as it generates a goal.

41



Quiz 02: Uniform-cost search

• Work out the order in which states are expanded, as well as the path

returned by graph search. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.

42



Depth-first search

43



Depth-first search (DFS)

• Expand deepest unexpanded node

• Implementation: frontier is a LIFO Stack

44

Expansion order: 

S,d,b,a,c,a,e,h,p,q,q,r,f,c,a,G



Depth-first search: An example

45



An evaluation of DFS

46

• What nodes DFS expand?

• Some left prefix of the tree, and it could process the whole tree!

• If the maximum depth 𝑚 is finite, it takes time 𝑂(𝑏𝑚)

• How much space does the frontier take?

• Only has siblings on path to root, so 𝑂(𝑏𝑚)→ linear space

• Is it complete?

• 𝑚 could be infinite

• YES if loops prevented

• Is it optimal?

• NO, the “leftmost” solution,

regardless of depth or cost



Completeness of DFS

• Graph-search: complete, while tree-search: not complete

• Avoid repeated states by checking new states against those

on the path from the root to the current node.

• Infinite loops in finite state spaces are avoided, but the proliferation

of redundant paths remains.

• Infinite state spaces: both versions fail if an infinite non-goal

path is encountered.

• E.g., the Knuth’s 4 problem → keep applying the factorial operator

47



Comparison of BFS and DFS

48

DFS BFS

Space complexity Linear space Maybe the whole search space

Time complexity Same, better on the average 

(many goals, no loops, and 

no infinite paths)

Same, better in worst-cases

In general better if many goals, not 

many loops, and much better 

in terms of memory.

better if goal is not deep, 

infinite paths, many loops, or 

small search space

• The goal test is applied to each node when it is generated rather than when it is
selected for expansion.

• Avoid repeated states by checking new states against those on the path from the root to
the current node.

DFS in use



Quiz 03: Depth-first search

• Work out the order in which states are expanded, as well as the path

returned by the algorithm. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.

49



Depth-limited search

50



Depth-limited search (DLS)

• Standard DFS with a predetermined depth limit 𝑙

• Nodes at depth 𝑙 are treated as if they have no successors → infinite

problems solved.

• Depth limits can be based on knowledge of the problem.

• Diameter of state-space, typically unknown ahead of time in practice

51

E.g., 20 cities in the Romania map
→ 𝑙 = 19

but any city is reached from any other
city in at most 9 steps

→ 𝑙 = 9 is better



Depth-limited search (DLS)

52

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or 
failure/cutoff

return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), 
problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or 
failure/cutoff

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else cutoff_occurred? ← false
for each action in problem.ACTIONS(node.STATE) do

child ← CHILD-NODE(problem, node, action)
result ← RECURSIVE-DLS(child, problem, limit – 1)
if result = cutoff then cutoff occurred? ← true
else if result  failure then return result

if cutoff occurred? then return cutoff else return failure

• Failure: no solution

• Cutoff: no solution 

within the depth limit



An evaluation of DLS

• Completeness

• Maybe NO if 𝑙 < 𝑑

• Optimality

• NO if 𝑙 > 𝑑

• Time complexity

• 𝑂(𝑏𝑙)

• Space complexity

• 𝑂(𝑏𝑙)

53

DFS is a special case of DLS 

when 𝑙 = ∞



Iterative deepening search

54



Iterative deepening search (IDS)

• General strategy, often used in combination with depth-first

tree search to find the best depth limit

• Gradually increase the limit until a goal is found.

• The depth limit reaches the depth 𝑑 of the shallowest goal node.

55

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure

for depth = 0 to ∞ do

result ← DEPTH-LIMITED-SEARCH(problem, depth)

if result  cutoff then return result



Iterative deepening search (IDS)

56



Iterative deepening search (IDS) 

57



An evaluation of IDS

• Completeness

• YES when the branching factor is finite

• Optimality

• YES if step cost = 1

• Time complexity

• 𝑑 + 1 𝑏0 + 𝑑𝑏1 + 𝑑 − 1 𝑏𝑑 = 𝑂(𝑏𝑑)

• Space complexity

• 𝑂(𝑏𝑑), similar to DFS

• Preferred when the search space is large and the depth of

the solution is not known

58

Similar to BFS



Quiz 04: Iterative deepening search

59

• IDS seem to be wasteful because states are generated

multiple times. However, it turns out to be not too costly,

compared to BFS.

• Why?



Bidirectional search

60



Bidirectional search

• Two simultaneous searches: one from the initial state

towards, and the other from the goal state backwards

• Hoping that two searches meet in the middle

61



Bidirectional search

• Goal test: whether the frontiers of two searches intersect

• Optimality: maybe NO

• Time and Space complexity: 𝑂(𝑏𝑑/2)

• It sounds attractive, but what is the tradeoff?

• Space requirement for the frontiers of at least one search

• Not easy to search backwards (predecessors required)

• In case there are more than 1 goals

• Especially if the goal is an abstract description (no queen attacks

another queen)

62



A summary of uninformed search

• Comparison of uninformed algorithms (tree-search versions)

63



64

THE END


