
INFORMED SEARCH

STRATEGIES

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

• Informed (Heuristic) search strategies

• Best-first search

• Greedy best-first search

• A* search

• Memory-bounded heuristic search

• Heuristic functions

2

Informed (Heuristic) search strategies

3

• Use problem-specific knowledge beyond the definition of the

problem itself

• Find solutions more efficiently

• Provide significant speed-up in practice

What are heuristics?

• Additional knowledge of the problem is imparted to the

search algorithm using heuristics.

• A heuristic is any practical approach to problem solving

sufficient for reaching an immediate goal where an optimal

solution is usually impossible.

• Not guaranteed to be optimal, perfect, logical, or rational

• Speed up the process of finding a satisfactory solution

• Ease the cognitive load of making a decision

4

Heuristics: An example

• Availability heuristic: what comes to mind quickly seems to

be significant

5

Heuristics: An example

• Representativeness heuristic: estimate the likelihood of an

event by comparing it to a prototype already exists in mind.

6

The portrait of an old woman
who is warm and caring

with a great love of children

Informed search strategies

7

Best-first search

Greedy best-first search

A*

RBFS

SMA*

Best-first search

• A best-first search algorithm can be either a TREE-SEARCH

or GRAPH-SEARCH instance.

• A node is selected for expansion based on an evaluation

function, 𝒇(𝒏).

• Node with the lowest 𝑓(𝑛) is expanded first

• The choice of 𝑓 determines the search strategy.

8

Heuristic function

• Most best-first algorithms include a heuristic function 𝒉(𝒏)

as a component of 𝑓.

• Unlike 𝑔(𝑛), ℎ(𝑛) depends only on the state at that node

• Assumption of ℎ(𝑛)

• Arbitrary, nonnegative, problem-specific functions

• Constraint: if 𝑛 is a goal node, then 𝒉(𝒏) = 𝟎

9

estimated cost of the cheapest path

from the state at node 𝑛 to a goal
𝒉(𝒏)

Cost function vs. Heuristic function

S

G

n

State space

UCS
𝑓 𝑛 = 𝑔(𝑛)

𝑔 𝑆 = 0

ℎ 𝐺 = 0

10

Greedy best-first search

11

Greedy best-first search

• Expand the node that appears to be closest to goal using

𝒇(𝒏) = 𝒉(𝒏)

12

S

G

n

State space

GBFS
𝑓 𝑛 = ℎ(𝑛)

𝑔 𝑆 = 0

ℎ 𝐺 = 0

Straight-line distance heuristic 𝒉𝑺𝑳𝑫

13

Greedy best-first search: An example

hSLD(Arad)

14

Greedy best-first search: An example

15

Greedy best-first search: An example

16

Greedy best-first search: An example

17

An evaluation of GBFS (graph-search)

• Completeness

• YES – if it is a graph-search instance in finite state spaces

• Time complexity

• 𝑂(𝑏𝑚)→ reduced substantially with a good heuristic

• Space complexity

• 𝑂(𝑏𝑚) – keeps all nodes in memory

• Optimality

• NO

Quiz 01: Greedy best-first search

• Work out the order in which states are expanded, as well as the path

returned by graph search. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.

19

A* Search

20

A* search

• The most widely known form of best-first search

• Use heuristic to guide search, but not only

• Avoid expanding paths that are already expensive

• Ensure to compute a path with minimum cost

• Evaluate nodes by 𝒇 𝒏 = 𝒈 𝒏 + 𝒉(𝒏)

• where 𝑔(𝑛) is the cost to reach the node 𝑛 and ℎ(𝑛) is the cost to get

from 𝑛 to the goal

• 𝑓(𝑛) = estimated cost of the cheapest solution through 𝑛

.

21

A* search

S

G

n

State space

A*
𝑓 = 𝑔 + ℎ

𝑔 𝑆 = 0

ℎ 𝐺 = 0

22

A* search example

23

𝑓 = 𝑔 + ℎ

23

24

25

2626

2727

2828

An evaluation of A* (graph-search)

29

• Completeness

• YES if all step costs exceed some finite 𝜖 and if 𝑏 is finite

• (review the condition for completeness of UCS)

• Optimality

• YES – with conditions on heuristic being used

• Time complexity

• Exponential

• Space complexity

• Exponential (keep all nodes in memory)

A* is not always optimal...

In what conditions, A* is optimal?

30

A

GS

1

1
h = 6

h = 0

3

h = 7

Conditions for optimality: Admissibility

• ℎ(𝑛) must be an admissible heuristic

• Never overestimate the cost to reach the goal → optimistic

• E.g., the straight-line distance ℎ𝑆𝐿𝐷

31

Admissible heuristics for 8-puzzle

• h(n) = number of misplaced numbered tiles

• h(n) = sum of the (Manhattan) distance of every numbered tile

to its goal position

32

1 2 3

4 5 6

7 8

1 5

2 6 3

7 4 8

ℎ(𝑛) = 6

1 5

2 6 3

7 4 8

1 2 3

4 5 6

7 8

ℎ = 0 + 2 + 1 + 2 + 2 + 1 + 0 + 1

𝑑 = 𝑑𝑥 + 𝑑𝑦

State 𝑛 Goal state 𝐺

ℎ(𝑛) = 9

Conditions for optimality: Admissibility

• ℎ(𝑛) is admissible if for every node 𝑛, 𝒉(𝒏) ≤ 𝒉∗(𝒏)

• where ℎ∗(𝑛) is the true cost to reach the goal state from 𝑛

• Hence, 𝑓(𝑛) never overestimates the true cost of a solution

along the current path through 𝑛.

• 𝑔(𝑛) is the actual cost to reach 𝑛 along the current path

33

G

n
Estimated cost

True cost

Conditions for optimality: Admissibility

• Suppose some suboptimal goal 𝐺2 has been generated and is in the frontier.

• Let 𝑛 be an unexpanded node in the frontier such that 𝑛 is on a shortest path to

an optimal goal 𝐺.

• 𝑓 𝐺2 = 𝑔(𝐺2) since ℎ(𝐺2) = 0

• 𝑔 𝐺2 > 𝑔(𝐺) since 𝐺2 is suboptimal

• 𝑓 𝐺 = 𝑔(𝐺) since ℎ(𝐺) = 0

𝑓(𝐺2) > 𝑓(𝐺) (1)

• ℎ(𝑛) ≤ ℎ∗(𝑛) since h is admissible

• 𝑔 𝑛 + ℎ 𝑛 ≤ 𝑔 𝑛 + ℎ∗(𝑛)

𝑓(𝑛) ≤ 𝑓(𝐺) (2)

• From (1), (2): 𝑓 𝐺2 > 𝑓(𝑛)→ A* will never select 𝐺2 for expansion

34

If ℎ(𝑛) is admissible, A* using TREE-SEARCH is optimal

• Admissibility is insufficient for graph search.

• The optimal path to a repeated state could be discard if it is not the

first one selected.

• ℎ(𝑛) is consistent if for every node 𝑛, every successor 𝑛′ of 𝑛

generated by any action 𝑎,

𝒉(𝒏) ≤ 𝒄(𝒏, 𝒂, 𝒏′) + 𝒉(𝒏′)

• Every consistent heuristic is also admissible.

Conditions for optimality: Consistency

35

Triangle

inequality

Conditions for optimality: Consistency

• If ℎ(𝑛) is consistent, the values of 𝑓(𝑛) along any path are non-

decreasing.

• Suppose 𝑛′ is a successor of 𝑛 → 𝑔 𝑛′ = 𝑔 𝑛 + 𝑐(𝑛, 𝑎, 𝑛′)

• 𝑓 𝑛′ = 𝑔 𝑛′ + ℎ 𝑛′ = 𝑔 𝑛 + 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′) ≥ 𝑔(𝑛) + ℎ(𝑛) = 𝑓(𝑛)

• Whenever A* selects a node 𝑛 for expansion, the optimal path to that

node has been found.

• Proof by contradiction: There would have to be another frontier node 𝑛′ on

the optimal path from the start node to 𝑛 (by the graph separation property)

• 𝑓 is nondecreasing along any path → 𝑓 𝑛′ < 𝑓(𝑛) → 𝑛′ would have been

selected first

36

If ℎ(𝑛) is consistent, A* using GRAPH-SEARCH is optimal

• A* expands nodes in order of increasing 𝑓-value

• Gradually adds "𝑓-contours" of nodes such that contour

𝑖 has all nodes with 𝑓 = 𝑓𝑖 where 𝑓𝑖 < 𝑓𝑖+1

• A* will expand all nodes with costs 𝑓(𝑛) < 𝐶∗

37

Contours of A* search

• The bands of UCS will be “circular” around the start state.

• The bands of A*, with more accurate heuristics, will stretch toward the

goal state and become more narrowly focused around the optimal path.

A* contours vs. UCS contours

38

Comments on A*: The good

39

• Never expand nodes with 𝑓 𝑛 > 𝐶∗

• All nodes like these are pruned while still guaranteeing optimality

• Optimally efficient for any given consistent heuristic

• No other optimal algorithm is guaranteed to expand fewer nodes

Comments on A*: The bad

• A* expands all nodes with 𝑓(𝑛) < 𝐶∗ (and possibly some

nodes with 𝑓 𝑛 = 𝐶∗) with before selecting a goal node.

• This can still be exponentially large

• A* usually runs out of space before it runs out of time

• Exponential growth will occur unless error in ℎ(𝑛) grows no

faster than log(true path cost)

• In practice, error is usually proportional to true path cost (not log)

• So exponential growth is common

→ Not practical for many large-scale problems

40

Quiz 02: A*

• Work out the order in which states are expanded, as well as the path

returned by graph search. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.

41

Memory-bounded heuristic search

42

Memory-bound heuristic search

• In practice, A* usually runs out of space long before it runs

out of time.

• Idea: try something like DFS, but not forget everything about

the branches we have partially explored

43

Iterative-deepening A* (IDA*)

• The main difference with IDS

• Cut-off use the 𝒇-value (𝒈 + 𝒉) rather than the depth

• At each iteration, the cutoff value is the smallest 𝑓-value of any node

that exceeded the cutoff on the previous iteration

• Avoid the substantial overhead associated with keeping a

sorted queue of nodes.

• Practical for many problems with unit step costs, yet difficult

with real valued costs

44

Recursive best-first search (RBFS)

• Keep track of the 𝑓 -value of the best alternative path

available from any ancestor of the current node

→ backtrack when the current node exceeds 𝑓_𝑙𝑖𝑚𝑖𝑡

• As it backtracks, replace the 𝑓-value of each node along the

path with the best 𝑓(𝑛) value of its children

45

RBFS: An example

46

• Path until Rimnicu Vilcea is already expanded

• The path is followed until Pitesti, whose f-value worse than the 𝑓_𝑙𝑖𝑚𝑖𝑡

𝑓_𝑙𝑖𝑚𝑖𝑡 for every

recursive call

𝑓(𝑛)

Recursive best-first search (RBFS)

47

• Unwind recursion and store best 𝑓-value for current best leaf

Rimnicu Vilcea

• result, best.f ← RBFS(problem, best, min(f_limit, alternative))

• best is now Fagaras. Call RBFS for new best

• best value is now 450

• Unwind recursion and store best 𝑓-value for current best leaf of Fagaras

• result, best.f ← RBFS(problem, best, min(f_limit, alternative))

• best is now Rimnicu Viclea (again). Call RBFS for new best

• Subtree is again expanded

• Best alternative subtree is now through Timisoara

• Solution is found since because 447 > 418.
48

Recursive best-first search (RBFS)

49

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL-STATE),∞)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new 𝑓-cost limit

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

successors ← []

for each action in problem.ACTIONS(node.STATE) do

add CHILD-NODE(problem, node, action) into successors

if successors is empty then return failure, ∞

for each s in successors do /* update 𝑓 with value from previous search, if any */
s.f ← max(s.g+s.h, node.f))

loop do

best ← the lowest 𝑓-value node in successors

if best.f > f_limit then return failure, best.f

alternative ← the second-lowest f-value among successors

result, best.f ← RBFS(problem, best, min(f_limit, alternative))

if result failure then return result

Evaluation of RBFS

• Optimality

• Like A*, optimal if ℎ(𝑛) is admissible

• Time complexity

• Difficult to characterize

• Depends on accuracy of ℎ(𝑛) and how often best path changes

• Can end up “switching” back and forth

• Space complexity

• Linear time: O(bd)

• Other extreme to A* - uses too little memory even if more memory

were available

50

(Simplified) Memory-bound A* – (S)MA*

• Like A*, but delete the worst node (largest f-value) when

memory is full

• Also backs up the value of the forgotten node to its parent

• If there is a tie (equal 𝑓-values), delete the oldest nodes first

• Find an optimal reachable solution given memory constraint

• The depth of the shallowest goal node is less than the memory size

(expressed in nodes).

• Time can still be exponential.

51

Learning to search better

• Could an agent learn how to search better? YES

• Metalevel state space: in which each state captures the

internal (computational) state of a program that is searching

in an object-level state space.

• For example, the map of Romania problem,

• The internal state of the A* algorithm is the current search tree.

• Each action in the metalevel state space is a computation step that

alters the internal state, e.g., [expands a leaf node and adds its

successors to the tree]

52

Learning to search better

• The expansion of Fagaras is not helpful → harder problems

may even include more such missteps

• A metalevel learning algorithm gains from these experiences

to avoid exploring unpromising subtrees

→ reinforcement learning
53

53

Heuristic functions

54

The 8-puzzle problem

55

• Average solution cost: about 22 steps, branching factor ~ 3.

• 8-puzzle: 9!/2 = 181,440 reachable states

• 15-puzzle: 1.05 x 1013 possible states

A typical instance of the 8-puzzle. The solution is 26 steps long.

Admissible heuristics for 8-puzzle

• h1(n) = number of misplaced numbered tiles (Hamming distance)

• h2(n) = sum of the (Manhattan) distance of every numbered tile

to its goal position

56

Quiz 03: Admissible heuristics

• Knowing that ℎ 𝑛 ≤ ℎ∗(𝑛)

• For 8-puzzle, which of the following heuristics is admissible?

57

• ℎ1(𝑛) = total number of misplaced tiles
• ℎ2(𝑛) = total Manhattan distance
• ℎ3 𝑛 = 0
• ℎ4 𝑛 = 1
• ℎ5(𝑛) = ℎ∗(𝑛)
• ℎ6(𝑛) = min(2, ℎ∗(𝑛))
• ℎ7(𝑛) = max(2, ℎ∗(𝑛))

The effect of heuristic on performance

• Effective branching factor 𝑏∗: the factor that a uniform tree of

depth 𝑑 would have to contain 𝑁 + 1 nodes

𝑵+ 𝟏 = 𝟏 + 𝒃∗ + (𝒃∗)𝟐 + · · · +(𝒃∗)𝒅

• where 𝑁 is the total number of nodes generated by A* for a particular

problem and 𝑑 is the solution depth

• E.g., A* finds a solution at depth 5 using 52 nodes → 𝑏∗ = 1.92

• 𝑏∗ varies across problem instances, but fairly constant for

sufficiently hard problems

• A well-designed heuristic would have a value of 𝑏∗ close to 1

→ fairly large problems solved at reasonable cost

58

Search cost vs. Branching factor

59

Comparison of the search costs and effective branching factors for the ITERATIVE-

DEEPENING-SEARCH and A∗ algorithms with ℎ1, ℎ2. Data are averaged over 100

instances of the 8-puzzle for each of various solution lengths 𝑑.

Heuristic dominance

• Given two admissible heuristics, ℎ1 and ℎ2

• If ℎ2(𝑛) ≥ ℎ1(𝑛), for all 𝑛, then ℎ2 dominates ℎ1

• A* using ℎ2 will never expand more nodes than A* using ℎ1

• Better to use a heuristic function with higher values, provided

it is consistent and its computation time is not too long.

60

How might one have come up with ℎ2?

Is it possible to invent such a heuristic mechanically?

Relaxed problems

• Problems with fewer restrictions on the actions

• The cost of an optimal solution to a relaxed problem is an

admissible heuristic for the original problem

61

Relaxed problem state-space

Original problem

state-space
S

G

n

The state-space graph

of the relaxed problem

is a supergraph of the

original state space

Relaxed problems of the 8-puzzle

• Original problem:

• A tile can move from square A to square B if A is horizontally or

vertically adjacent to B and B is blank

• Relaxed problems are generated by removing one or both

conditions

• A tile can move from square A to square B if A is adjacent to B.

• A tile can move from square A to square B if B is blank.

• A tile can move from square A to square B.

62

Manhattan

distance

Misplaced

tiles

It is crucial that the relaxed problems generated by this

technique can be solved essentially without search

Relaxed problems

• Given a collection of admissible heuristics, 𝒉𝟏, 𝒉𝟐,…, 𝒉𝒎,

available for a problem and none of them dominates any of

the others.

• The composite heuristic function is defined as

𝒉 𝒏 = 𝐦𝐚𝐱{𝒉𝟏 𝒏 , 𝒉𝟐 𝒏 , . . , 𝒉𝒎 𝒏 }

• ℎ 𝑛 is consistent and dominates all component heuristics

A subproblem of the 8-puzzle instance

• Get tiles 1, 2, 3, and 4 into their correct positions, without

worrying about what happens to the other tiles

• Optimal cost of this subproblem ≤ cost of the original problem

• More accurate than Manhattan distance in some cases

64

Pattern databases

• Admissible heuristics can also be derived from the solution

cost of a subproblem of the given problem.

• This cost is a lower bound on the cost of the complete problem.

• Pattern databases (PDB): store the exact solution costs for

every possible subproblem instances

• E.g., every possible configuration of the four tiles and the blank

• The complete heuristic is constructed using the patterns in

the databases.

65

Heuristic from Pattern databases

31 moves is a lower bound on the total number of moves

needed to solve this particular state

66

https://courses.cs.washington.edu/courses/cse473/12sp/slides/04-heuristics.pdf

Heuristic from Pattern databases

31 moves needed to solve red tiles

22 moves needed to solve blue tiles

→ Overall heuristic is maximum of 31 moves

67

https://courses.cs.washington.edu/courses/cse473/12sp/slides/04-heuristics.pdf

• Limitation of traditional PDB: Take max → diminish returns

on additional DBs

• Disjoint pattern databases: Count only moves of the pattern

tiles, ignoring non-pattern moves.

• If no tile belongs to more than one pattern, add their heuristic values.

Additive pattern databases

68

The 7-tile database contains 58 million entries.

The 8-tile database contains 519 million entries.

Additive pattern databases

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

→ Overall heuristic is 20 + 25 = 45 moves

69

Performance of PDB

70

• 15 Puzzle

• 2000 speedup vs. Manhattan distance

• IDA* with the two DBs solves 15-puzzles optimally in 30 milliseconds

• 24 Puzzle

• 12 million speedup vs. Manhattan

• IDA* can solve random instances in 2 days.

• Requires 4 DBs as shown

• Each DB has 128 million entries

• Without PDBs: 65,000 years

Learning heuristics from experience

• Experience means solving a lot of instances of a problem.

• E.g., solving lots of 8-puzzles

• Each optimal solution to a problem instance provides

examples from which ℎ(𝑛) can be learned

• Learning algorithms

• Neural nets

• Decision trees

• Inductive learning

• …

71

72

THE END

