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Informed (Heuristic) search strategies
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• Use problem-specific knowledge beyond the definition of the

problem itself

• Find solutions more efficiently

• Provide significant speed-up in practice



What are heuristics?

• Additional knowledge of the problem is imparted to the

search algorithm using heuristics.

• A heuristic is any practical approach to problem solving

sufficient for reaching an immediate goal where an optimal

solution is usually impossible.

• Not guaranteed to be optimal, perfect, logical, or rational

• Speed up the process of finding a satisfactory solution

• Ease the cognitive load of making a decision
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Heuristics: An example

• Availability heuristic: what comes to mind quickly seems to

be significant
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Heuristics: An example

• Representativeness heuristic: estimate the likelihood of an

event by comparing it to a prototype already exists in mind.
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The portrait of an old woman 
who is warm and caring 

with a great love of children



Informed search strategies
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Best-first search

Greedy best-first search

A*

RBFS

SMA*



Best-first search

• A best-first search algorithm can be either a TREE-SEARCH

or GRAPH-SEARCH instance.

• A node is selected for expansion based on an evaluation

function, 𝒇(𝒏).

• Node with the lowest 𝑓(𝑛) is expanded first

• The choice of 𝑓 determines the search strategy.
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Heuristic function

• Most best-first algorithms include a heuristic function 𝒉(𝒏)

as a component of 𝑓.

• Unlike 𝑔(𝑛), ℎ(𝑛) depends only on the state at that node

• Assumption of ℎ(𝑛)

• Arbitrary, nonnegative, problem-specific functions

• Constraint: if 𝑛 is a goal node, then 𝒉(𝒏) = 𝟎

9

estimated cost of the cheapest path

from the state at node 𝑛 to a goal
𝒉(𝒏)



Cost function vs. Heuristic function
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UCS
𝑓 𝑛 = 𝑔(𝑛)

𝑔 𝑆 = 0

ℎ 𝐺 = 0
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Greedy best-first search
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Greedy best-first search

• Expand the node that appears to be closest to goal using

𝒇(𝒏) = 𝒉(𝒏)
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𝑓 𝑛 = ℎ(𝑛)

𝑔 𝑆 = 0

ℎ 𝐺 = 0



Straight-line distance heuristic 𝒉𝑺𝑳𝑫
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Greedy best-first search: An example

hSLD(Arad)
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Greedy best-first search: An example
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Greedy best-first search: An example
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Greedy best-first search: An example
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An evaluation of GBFS (graph-search)

• Completeness

• YES – if it is a graph-search instance in finite state spaces

• Time complexity

• 𝑂(𝑏𝑚)→ reduced substantially with a good heuristic

• Space complexity

• 𝑂(𝑏𝑚) – keeps all nodes in memory

• Optimality

• NO



Quiz 01: Greedy best-first search

• Work out the order in which states are expanded, as well as the path

returned by graph search. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.
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A* Search
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A* search

• The most widely known form of best-first search

• Use heuristic to guide search, but not only

• Avoid expanding paths that are already expensive

• Ensure to compute a path with minimum cost

• Evaluate nodes by 𝒇 𝒏 = 𝒈 𝒏 + 𝒉(𝒏)

• where 𝑔(𝑛) is the cost to reach the node 𝑛 and ℎ(𝑛) is the cost to get

from 𝑛 to the goal

• 𝑓(𝑛) = estimated cost of the cheapest solution through 𝑛

.
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A* search
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A*
𝑓 = 𝑔 + ℎ

𝑔 𝑆 = 0

ℎ 𝐺 = 0
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A* search example
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𝑓 = 𝑔 + ℎ
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An evaluation of A* (graph-search)
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• Completeness

• YES if all step costs exceed some finite 𝜖 and if 𝑏 is finite

• (review the condition for completeness of UCS)

• Optimality

• YES – with conditions on heuristic being used

• Time complexity

• Exponential

• Space complexity

• Exponential (keep all nodes in memory)



A* is not always optimal...

In what conditions, A* is optimal?
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Conditions for optimality: Admissibility 

• ℎ(𝑛) must be an admissible heuristic

• Never overestimate the cost to reach the goal → optimistic

• E.g., the straight-line distance ℎ𝑆𝐿𝐷

31



Admissible heuristics for 8-puzzle

• h(n) = number of misplaced numbered tiles

• h(n) = sum of the (Manhattan) distance of every numbered tile

to its goal position
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ℎ(𝑛) = 6

1 5
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𝑑 = 𝑑𝑥 + 𝑑𝑦

State 𝑛 Goal state 𝐺

ℎ(𝑛) = 9



Conditions for optimality: Admissibility 

• ℎ(𝑛) is admissible if for every node 𝑛, 𝒉(𝒏) ≤ 𝒉∗(𝒏)

• where ℎ∗(𝑛) is the true cost to reach the goal state from 𝑛

• Hence, 𝑓(𝑛) never overestimates the true cost of a solution

along the current path through 𝑛.

• 𝑔(𝑛) is the actual cost to reach 𝑛 along the current path
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Conditions for optimality: Admissibility 

• Suppose some suboptimal goal 𝐺2 has been generated and is in the frontier.

• Let 𝑛 be an unexpanded node in the frontier such that 𝑛 is on a shortest path to

an optimal goal 𝐺.

• 𝑓 𝐺2 = 𝑔(𝐺2) since ℎ(𝐺2) = 0

• 𝑔 𝐺2 > 𝑔(𝐺) since 𝐺2 is suboptimal 

• 𝑓 𝐺 = 𝑔(𝐺) since ℎ(𝐺) = 0

𝑓(𝐺2) > 𝑓(𝐺) (1)

• ℎ(𝑛) ≤ ℎ∗(𝑛) since h is admissible

• 𝑔 𝑛 + ℎ 𝑛 ≤ 𝑔 𝑛 + ℎ∗(𝑛)

𝑓(𝑛) ≤ 𝑓(𝐺) (2)

• From (1), (2): 𝑓 𝐺2 > 𝑓(𝑛)→ A* will never select 𝐺2 for expansion
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If ℎ(𝑛) is admissible, A* using TREE-SEARCH is optimal



• Admissibility is insufficient for graph search.

• The optimal path to a repeated state could be discard if it is not the

first one selected.

• ℎ(𝑛) is consistent if for every node 𝑛, every successor 𝑛′ of 𝑛

generated by any action 𝑎,

𝒉(𝒏) ≤ 𝒄(𝒏, 𝒂, 𝒏′) + 𝒉(𝒏′)

• Every consistent heuristic is also admissible.

Conditions for optimality: Consistency
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Triangle 

inequality



Conditions for optimality: Consistency

• If ℎ(𝑛) is consistent, the values of 𝑓(𝑛) along any path are non-

decreasing.

• Suppose 𝑛′ is a successor of 𝑛 → 𝑔 𝑛′ = 𝑔 𝑛 + 𝑐(𝑛, 𝑎, 𝑛′)

• 𝑓 𝑛′ = 𝑔 𝑛′ + ℎ 𝑛′ = 𝑔 𝑛 + 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′) ≥ 𝑔(𝑛) + ℎ(𝑛) = 𝑓(𝑛)

• Whenever A* selects a node 𝑛 for expansion, the optimal path to that

node has been found.

• Proof by contradiction: There would have to be another frontier node 𝑛′ on

the optimal path from the start node to 𝑛 (by the graph separation property)

• 𝑓 is nondecreasing along any path → 𝑓 𝑛′ < 𝑓(𝑛) → 𝑛′ would have been

selected first
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If ℎ(𝑛) is consistent, A* using GRAPH-SEARCH is optimal



• A* expands nodes in order of increasing 𝑓-value

• Gradually adds "𝑓-contours" of nodes such that contour

𝑖 has all nodes with 𝑓 = 𝑓𝑖 where 𝑓𝑖 < 𝑓𝑖+1

• A* will expand all nodes with costs 𝑓(𝑛) < 𝐶∗
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Contours of A* search



• The bands of UCS will be “circular” around the start state.

• The bands of A*, with more accurate heuristics, will stretch toward the

goal state and become more narrowly focused around the optimal path.

A* contours vs. UCS contours
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Comments on A*: The good 
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• Never expand nodes with 𝑓 𝑛 > 𝐶∗

• All nodes like these are pruned while still guaranteeing optimality

• Optimally efficient for any given consistent heuristic

• No other optimal algorithm is guaranteed to expand fewer nodes



Comments on A*: The bad

• A* expands all nodes with 𝑓(𝑛) < 𝐶∗ (and possibly some

nodes with 𝑓 𝑛 = 𝐶∗) with before selecting a goal node.

• This can still be exponentially large

• A* usually runs out of space before it runs out of time

• Exponential growth will occur unless error in ℎ(𝑛) grows no

faster than log(true path cost)

• In practice, error is usually proportional to true path cost (not log)

• So exponential growth is common

→ Not practical for many large-scale problems
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Quiz 02: A*

• Work out the order in which states are expanded, as well as the path

returned by graph search. Assume ties resolve in such a way that states

with earlier alphabetical order are expanded first.
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Memory-bounded heuristic search
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Memory-bound heuristic search

• In practice, A* usually runs out of space long before it runs

out of time.

• Idea: try something like DFS, but not forget everything about

the branches we have partially explored
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Iterative-deepening A* (IDA*)

• The main difference with IDS

• Cut-off use the 𝒇-value (𝒈 + 𝒉) rather than the depth

• At each iteration, the cutoff value is the smallest 𝑓-value of any node

that exceeded the cutoff on the previous iteration

• Avoid the substantial overhead associated with keeping a

sorted queue of nodes.

• Practical for many problems with unit step costs, yet difficult

with real valued costs
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Recursive best-first search (RBFS)

• Keep track of the 𝑓 -value of the best alternative path

available from any ancestor of the current node

→ backtrack when the current node exceeds 𝑓_𝑙𝑖𝑚𝑖𝑡

• As it backtracks, replace the 𝑓-value of each node along the

path with the best 𝑓(𝑛) value of its children
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RBFS: An example
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• Path until Rimnicu Vilcea is already expanded

• The path is followed until Pitesti, whose f-value worse than the 𝑓_𝑙𝑖𝑚𝑖𝑡

𝑓_𝑙𝑖𝑚𝑖𝑡 for every 

recursive call 

𝑓(𝑛)



Recursive best-first search (RBFS)
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• Unwind recursion and store best 𝑓-value for current best leaf

Rimnicu Vilcea

• result, best.f ← RBFS(problem, best, min(f_limit, alternative))

• best is now Fagaras. Call RBFS for new best

• best value is now 450



• Unwind recursion and store best 𝑓-value for current best leaf of Fagaras

• result, best.f ← RBFS(problem, best, min(f_limit, alternative)) 

• best is now Rimnicu Viclea (again). Call RBFS for new best

• Subtree is again expanded

• Best alternative subtree is now through Timisoara

• Solution is found since because 447 > 418.
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Recursive best-first search (RBFS)
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function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem, MAKE-NODE(problem.INITIAL-STATE),∞)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new 𝑓-cost limit

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

successors ← [ ]

for each action in problem.ACTIONS(node.STATE) do

add CHILD-NODE(problem, node, action) into successors

if successors is empty then return failure, ∞

for each s in successors do /* update 𝑓 with value from previous search, if any */
s.f ← max(s.g+s.h, node.f))

loop do

best ← the lowest 𝑓-value node in successors

if best.f > f_limit then return failure, best.f

alternative ← the second-lowest f-value among successors

result, best.f ← RBFS(problem, best, min(f_limit, alternative))

if result  failure then return result



Evaluation of RBFS

• Optimality

• Like A*, optimal if ℎ(𝑛) is admissible

• Time complexity

• Difficult to characterize

• Depends on accuracy of ℎ(𝑛) and how often best path changes

• Can end up “switching” back and forth

• Space complexity

• Linear time: O(bd)

• Other extreme to A* - uses too little memory even if more memory

were available
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(Simplified) Memory-bound A* – (S)MA*

• Like A*, but delete the worst node (largest f-value) when

memory is full

• Also backs up the value of the forgotten node to its parent

• If there is a tie (equal 𝑓-values), delete the oldest nodes first

• Find an optimal reachable solution given memory constraint

• The depth of the shallowest goal node is less than the memory size

(expressed in nodes).

• Time can still be exponential.
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Learning to search better

• Could an agent learn how to search better? YES

• Metalevel state space: in which each state captures the

internal (computational) state of a program that is searching

in an object-level state space.

• For example, the map of Romania problem,

• The internal state of the A* algorithm is the current search tree.

• Each action in the metalevel state space is a computation step that

alters the internal state, e.g., [expands a leaf node and adds its

successors to the tree]
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Learning to search better

• The expansion of Fagaras is not helpful → harder problems

may even include more such missteps

• A metalevel learning algorithm gains from these experiences

to avoid exploring unpromising subtrees

→ reinforcement learning
53
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Heuristic functions
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The 8-puzzle problem
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• Average solution cost: about 22 steps, branching factor ~ 3.

• 8-puzzle: 9!/2 = 181,440 reachable states

• 15-puzzle: 1.05 x 1013 possible states

A typical instance of the 8-puzzle. The solution is 26 steps long.



Admissible heuristics for 8-puzzle

• h1(n) = number of misplaced numbered tiles (Hamming distance)

• h2(n) = sum of the (Manhattan) distance of every numbered tile

to its goal position
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Quiz 03: Admissible heuristics

• Knowing that ℎ 𝑛 ≤ ℎ∗(𝑛)

• For 8-puzzle, which of the following heuristics is admissible?
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• ℎ1(𝑛) = total number of misplaced tiles
• ℎ2(𝑛) = total Manhattan distance
• ℎ3 𝑛 = 0
• ℎ4 𝑛 = 1
• ℎ5(𝑛) = ℎ∗(𝑛)
• ℎ6(𝑛) = min(2, ℎ∗(𝑛))
• ℎ7(𝑛) = max(2, ℎ∗(𝑛))



The effect of heuristic on performance

• Effective branching factor 𝑏∗: the factor that a uniform tree of

depth 𝑑 would have to contain 𝑁 + 1 nodes

𝑵+ 𝟏 = 𝟏 + 𝒃∗ + (𝒃∗)𝟐 + · · · +(𝒃∗)𝒅

• where 𝑁 is the total number of nodes generated by A* for a particular

problem and 𝑑 is the solution depth

• E.g., A* finds a solution at depth 5 using 52 nodes → 𝑏∗ = 1.92

• 𝑏∗ varies across problem instances, but fairly constant for

sufficiently hard problems

• A well-designed heuristic would have a value of 𝑏∗ close to 1

→ fairly large problems solved at reasonable cost
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Search cost vs. Branching factor

59

Comparison of the search costs and effective branching factors for the ITERATIVE-

DEEPENING-SEARCH and A∗ algorithms with ℎ1, ℎ2. Data are averaged over 100 

instances of the 8-puzzle for each of various solution lengths 𝑑.



Heuristic dominance

• Given two admissible heuristics, ℎ1 and ℎ2

• If ℎ2(𝑛) ≥ ℎ1(𝑛), for all 𝑛, then ℎ2 dominates ℎ1

• A* using ℎ2 will never expand more nodes than A* using ℎ1

• Better to use a heuristic function with higher values, provided 

it is consistent and its computation time is not too long.
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How might one have come up with ℎ2? 

Is it possible to invent such a heuristic mechanically?



Relaxed problems

• Problems with fewer restrictions on the actions

• The cost of an optimal solution to a relaxed problem is an

admissible heuristic for the original problem
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Relaxed problem state-space

Original problem 

state-space
S

G

n

The state-space graph

of the relaxed problem

is a supergraph of the

original state space



Relaxed problems of the 8-puzzle

• Original problem:

• A tile can move from square A to square B if A is horizontally or

vertically adjacent to B and B is blank

• Relaxed problems are generated by removing one or both

conditions

• A tile can move from square A to square B if A is adjacent to B.

• A tile can move from square A to square B if B is blank.

• A tile can move from square A to square B.
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Manhattan 

distance

Misplaced 

tiles

It is crucial that the relaxed problems generated by this 

technique can be solved essentially without search



Relaxed problems

• Given a collection of admissible heuristics, 𝒉𝟏, 𝒉𝟐,…, 𝒉𝒎,

available for a problem and none of them dominates any of

the others.

• The composite heuristic function is defined as

𝒉 𝒏 = 𝐦𝐚𝐱{𝒉𝟏 𝒏 , 𝒉𝟐 𝒏 , . . , 𝒉𝒎 𝒏 }

• ℎ 𝑛 is consistent and dominates all component heuristics



A subproblem of the 8-puzzle instance

• Get tiles 1, 2, 3, and 4 into their correct positions, without

worrying about what happens to the other tiles

• Optimal cost of this subproblem ≤ cost of the original problem

• More accurate than Manhattan distance in some cases
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Pattern databases

• Admissible heuristics can also be derived from the solution

cost of a subproblem of the given problem.

• This cost is a lower bound on the cost of the complete problem.

• Pattern databases (PDB): store the exact solution costs for

every possible subproblem instances

• E.g., every possible configuration of the four tiles and the blank

• The complete heuristic is constructed using the patterns in

the databases.
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Heuristic from Pattern databases

31 moves is a lower bound on the total number of moves 

needed to solve this particular state
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https://courses.cs.washington.edu/courses/cse473/12sp/slides/04-heuristics.pdf



Heuristic from Pattern databases

31 moves needed to solve red tiles

22 moves needed to solve blue tiles

→ Overall heuristic is maximum of 31 moves
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https://courses.cs.washington.edu/courses/cse473/12sp/slides/04-heuristics.pdf



• Limitation of traditional PDB: Take max → diminish returns

on additional DBs

• Disjoint pattern databases: Count only moves of the pattern

tiles, ignoring non-pattern moves.

• If no tile belongs to more than one pattern, add their heuristic values.

Additive pattern databases
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The 7-tile database contains 58 million entries.

The 8-tile database contains 519 million entries.



Additive pattern databases

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

→ Overall heuristic is 20 + 25 = 45 moves
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Performance of PDB
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• 15 Puzzle 

• 2000 speedup vs. Manhattan distance

• IDA* with the two DBs solves 15-puzzles optimally in 30 milliseconds 

• 24 Puzzle 

• 12 million  speedup vs. Manhattan 

• IDA* can solve random instances in 2 days.

• Requires 4 DBs as shown

• Each DB has 128 million entries 

• Without PDBs: 65,000 years



Learning heuristics from experience

• Experience means solving a lot of instances of a problem.

• E.g., solving lots of 8-puzzles

• Each optimal solution to a problem instance provides

examples from which ℎ(𝑛) can be learned

• Learning algorithms

• Neural nets

• Decision trees

• Inductive learning

• …
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THE END


