
LOCAL SEARCH ALGORITHMS

AND OPTIMIZATION PROBLEMS

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

• Optimization problems

• Hill-climbing search

• Simulated annealing

• Local beam search

• Genetic algorithm

2

Optimization problems

3

Global search algorithms

• Global search: explore search spaces systematically

• Keep one or more paths in memory and record which alternatives

have been explored at each point along the path

• Many problems do not fit the “standard” search model.

• The final configuration matters, not the order in which it is formed.

• No “goal test” and no “path cost”, e.g., Darwinian evolution with

“natural” reproductive fitness

4

Optimization problems

• Find the best state according to an objective function.

• E.g., the Knight’s tour, TSP, scheduling, integrated-circuit design,

factory-floor layout, automatic programming, vehicle routing, etc.

5

Local search algorithms

• Operate using a single current node and generally move

only to neighbors of that node

• Not systematic

• The paths followed by the search are typically not retained.

• Use very little memory, usually a constant amount

• Find reasonable solutions in large or infinite (continuous)

state spaces

6

Global search: 𝑛 = 200
vs.

Local search: 𝑛 = 1,000,000

Local search and Optimization

7

“Pure optimization” problems

All states have an objective function

Goal is to find state with max (or min)
objective value

Local search can do quite well
on these problems.

State-space landscape

• A landscape has both “location” and “elevation”

• Location state, elevation heuristic cost or objective function

8
A 1D state-space landscape in which elevation corresponds to the objective function.

State-space landscape

• A complete local search algorithm finds a goal if one exists.

• An optimal local search algorithm finds a global extremum.

9

Global minimum Global maximum

Elevation corresponds to cost Elevation corresponds to an

objective function

Find the lowest valley Find the highest peak

Hill-climbing search

10

Hill-climbing search

11

function HILL-CLIMBING(problem) returns a state that is a local maximum

current ← MAKE-NODE(problem.INITIAL-STATE)

loop do

neighbor ← a highest-valued successor of current

if neighbor.VALUE ≤ current.VALUE then return current.STATE

current ← neighbor

A version of HILL-CLIMBING that finds local maximum.

Hill-climbing search

• A loop that continually moves in the direction of increasing

value and terminates when it reaches a “peak”.

• Peaks are where no neighbor has a higher value.

• Not look ahead beyond the immediate neighbors of the

current state

• No search tree maintained, only the state and the objective

function’s value for the current node recorded

• Sometimes called greedy local search

• Grab a good neighbor without thinking ahead about where to go next

12

Hill-climbing: 8-queens problem

• Complete-state formulation

• All 8 queens on the board, one per column

• Successor function

• Move a queen to another square in the same column → 8 × 7 = 56

successors

• Heuristic cost function ℎ(𝑛)

• The number of pairs of queens that are ATTACKING each other,

either directly or indirectly → global minimum has ℎ 𝑛 = 0

• Make rapid progress toward a solution

• 8-queens (88 17 million states): 4 steps on average when succeeds

and 3 when get stuck

13

Hill-climbing: 8-queens problem

• Current state 𝑐1𝑐2𝑐3𝑐4𝑐5𝑐6𝑐7𝑐8 = (5 6 7 4 5 6 7 6) ℎ 𝑛 = 17

• The best successors has ℎ = 12 → choose randomly among

the set of best successors if there is more than one

14

The best moves

Hill climbing and local maxima

• Often suboptimal, due to local maxima, ridges and plateau

• E.g., 8-queens: steepest-ascent hill climbing gets stuck 86% of the

time, solving only 14% of problem instances

15

NP-hard problems typically have an exponential number of local maxima to get stuck on.

The grid of states (dark circles) is
superimposed on a ridge rising from left to
right, creating a sequence of local maxima
that are not directly connected to each other.
From each local maximum, all the available
actions point downhill.

Hill climbing and local maxima

• Current state (8 3 7 4 2 5 1 6) ℎ 𝑛 = 1

• Every successor has a higher cost → local minimum

16

Solutions: Sideways moves

• If no downhill (uphill) moves, the algorithm can escape with

sideways moves.

• A limit on the possible number of sideways moves required to avoid

infinite loops

• For example, 8-queens problem

• Allow sideways moves with a limit of 100 → percentage of problem

instances solved raises from 14 to 94%

• Success comes at a cost: the algorithm averages roughly 21 steps

for each successful instance and 64 for each failure.

17

Solutions: Hill-climbing variants

• Stochastic hill climbing

• Choose at random from among the uphill moves with a probability of

selection varied with the moves’ steepness

• Usually converge more slowly than steepest ascent, but find better

solutions in some cases

• First-choice hill climbing

• Generate successors randomly until one is generated that is better

than the current state

• Good strategy when a state has many successors (e.g., thousands)

18

Solutions: Random-restart hill climbing

• Random-restart hill climbing can find a good solution

quickly after a small number of restarts.

• That is a series of hill-climbing searches from randomly

generated initial states until a goal is found.

• For each restart: run until termination vs run for a fixed time

• Run a fixed number of restarts or run indefinitely

• If each search has a probability 𝑝 of success, the expected

number of restarts required is 1/𝑝

• Very effective indeed for 8-queens

19

Quiz 01: 4-queens problem

20

• Consider the following 4-queen problem

• Apply (first-choice) hill-climbing to find a solution, using the

heuristic “The number of pairs of queens ATTACKING each

other.”

Simulated annealing

21

Simulated annealing

• Combine hill climbing with a random walk in some way that

yields both efficiency and completeness

• Shake hard (i.e., at a high temperature) and then gradually

reduce the intensity of shaking (i.e., lower the temperature)

22

Simulated annealing

23

function SIMULATED-ANNEALING(problem, schedule)

returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

current ← MAKE-NODE(problem.INITIAL-STATE)

for t = 1 to ∞ do

T ← schedule(t)

if T = 0 then return current

next ← a randomly selected successor of current

ΔE ← next.VALUE – current.VALUE

if ΔE > 0 then current ← next

else current ← next only with probability eΔE/T

Local beam search

24

Local beam search

• Keep track of 𝑘 states rather than just one

• Begin with 𝑘 randomly generated states

• At each step, all successors of all 𝑘 states are generated

• If the goal is not found, select the 𝑘 best successors from the

complete list and repeat

25

Local beam search

• Useful information is passed among the parallel search

threads → major difference from random-restart search

• Possibly suffer from a lack of diversity among the 𝑘 states

• Quickly concentrate in a small region of the state space → an

expensive version of hill climbing

• Stochastic beam search

• Choose 𝑘 successors at random, with the probability of choosing a

given successor being an increasing function of its value

26

Genetic algorithms

27

Genetic algorithms

• A variant of stochastic beam search

• Successor states are generated by combining two parent

states rather than by modifying a single state

• The reproduction are sexual rather than asexual

28

Genetic algorithms: 8-queens

29

4 states for

8-queens

problem

2 pairs of 2 states randomly

selected based on fitness.

Random crossover points

selected

New states

after crossover
Random

mutation

applied

Genetic algorithms

• Population: a set of 𝑘 randomly generated states to begin with

• Fitness function: an objective function that rates each state

• Higher values for better state

• E.g., 8-queens: the number of nonattacking pairs of queens (min = 0,

max = 8×7/2 = 28)

• Produce the next generation

by “simulated evolution”

• Random selection

• Crossover

• Random mutation

30

Representation of Individuals

• Each state, or individual, is represented as a string over a

finite alphabet – most commonly, a string of 0s and 1s.

• E.g., 8-queens: 8 × log2 8 = 24 bits

• Alternatively, the state could be represented as 8 digits, each

in the range from 1 to 8.
31

Reproduction

• Pairs are selected at random for reproduction.

• The probability of being chosen for reproducing is directly

proportional to the fitness score.

• E.g., 24/(24+23+20+11) = 31%, 23/(24+23+20+11) = 29%, etc.

• One individual may be selected several times or not at all.

32

Reproduction: Roulette wheel

33

Quiz 02: Calculate fitness scores

• The current generation include 4 states, S1, S2, S3, and S4.

• Their evaluation functions’ values are:

Eval(S1) = 7, Eval(S2) = 15,

Eval(S3) = 10, Eval(S4) = 18

• Calculate the probability (the fitness that) each of them will

be chosen in the “selection” step.

• Which two of four states have the highest possibilities to be

selected for the next generation?

34

Crossover operation

• For each pair to be mated, a crossover point is chosen

randomly from the positions in the string.

• Effectively “jump” to a completely different new part of the

search space (quite non-local)
35

Mutation operation

• Each location is subject to random mutation with a small

independent probability.

• E.g., 8-queens: choosing a queen at random and moving it to a

random square in its column

36

Next generation building

A workflow of Genetic algorithms

37

Initial
Population

Fitness
calculation

STOP?

New population

Start

End
Yes

No

Selection Cross-over Mutation

Genetic algorithms

38

function GENETIC-ALGORITHM(population, FITNESS-FN)

returns an individual

inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat

new_population ← empty set

for i = 1 to SIZE(population) do

x ← RANDOM-SELECTION(population, FITNESS-FN)

y ← RANDOM-SELECTION(population, FITNESS-FN)

child ← REPRODUCE(x , y)

if (small random probability) then child ← MUTATE(child)

add child to new_population

population ← new_population

until some individual is fit enough, or enough time has elapsed

return the best individual in population, according to FITNESS-FN

Genetic algorithms

39

function REPRODUCE(x , y) returns an individual

inputs: x , y, parent individuals

n ← LENGTH(x); c ← random number from 1 to n

return APPEND(SUBSTRING(x , 1, c), SUBSTRING(y, c + 1, n))

Comments on Genetic algorithms

• Random exploration find solutions that local search does not

• Via crossover primarily

• Can solve “hard” problem

• Rely on very little domain knowledge

• Appealing connection to human evolution

40

Comments on Genetic algorithms

• Large number of “tunable” parameters

• Difficult to replicate performance from one problem to another

• Lack of good empirical studies comparing to simpler methods

• Useful on some (small?) sets of problem, yet no convincing

evidence that GAs are better than hill-climbing w/random restarts

in general.

• Require careful engineering of the representation

• Application: Genetic Programming!

41

42

THE END

