Artificial Intelligence

“ “

Nguy&n Ngoc Thao — Nguy&n Hai Minh !
{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

« Optimization problems
* Hill-climbing search

« Simulated annealing

» Local beam search

« Genetic algorithm

Optimization problems

Global search algorithms

» Global search: explore search spaces systematically

« Keep one or more paths in memory and record which alternatives
have been explored at each point along the path

« Many problems do not fit the “standard” search model.

« The final configuration matters, not the order in which it is formed.

 No “goal test” and no “path cost’, e.g., Darwinian evolution with
“natural” reproductive fitness

19411

Optimization problems

* Find the best state according to an objective function.

 E.g., the Knight's tour, TSP, scheduling, integrated-circuit design,
factory-floor layout, automatic programming, vehicle routing, etc.

Least cost, constrained, schedule

—

Time

Machines

Local search algorithms

Operate using a single current node and generally move
only to neighbors of that node

Not systematic

« The paths followed by the search are typically not retained.

Use very little memory, usually a constant amount

Find reasonable solutions in large or infinite (continuous)
state spaces

W
W
Global search: n = 200 o
W
VS. Wy
Local search: n = 1,000,000 [y
W
w

Local search and Optimization

“Pure optimization” problems Local search can do quite well
on these problems.
All states have an objective function

Goal is to find state with max (or min)
objective value

State-space landscape

» Alandscape has both “location” and “elevation”

« Location « state, elevation <« heuristic cost or objective function

objective function

A

— global maximum

shoulder

N

local maximum

“flat” local maximum

_—

& state space
current
state

A 1D state-space landscape in which elevation corresponds to the objective function.

State-space landscape

Global minimum Global maximum

Elevation corresponds to cost Elevation corresponds to an
objective function

Find the lowest valley Find the highest peak

« A complete local search algorithm finds a goal if one exists.

« An optimal local search algorithm finds a global extremum.

Hill-climbing search

Hill-climbing search

~

function HILL-CLIMBING(problem) returns a state that is a local maximum
current < MAKE-NODE(problem.INITIAL-STATE)
loop do
neighbor < a highest-valued successor of current
if neighbor.VALUE < current.VALUE then return current.STATE

_ current < neighbor)

A version of HILL-CLIMBING that finds local maximum.

11

Hill-climbing search

* A loop that continually moves in the direction of increasing
value and terminates when it reaches a “peak”.

« Peaks are where no neighbor has a higher value.

 Not look ahead beyond the immediate neighbors of the
current state

* No search tree maintained, only the state and the objective
function’s value for the current node recorded

 Sometimes called greedy local search

« Grab a good neighbor without thinking ahead about where to go next

12

Hill-climbing: 8-queens problem

« Complete-state formulation

 All 8 queens on the board, one per column

e Successor function

 Move a gqueen to another square in the same column — 8 X 7 = 56
successors

 Heuristic cost function h(n)

 The number of pairs of queens that are ATTACKING each other,
either directly or indirectly — global minimum has h(n) =0

» Make rapid progress toward a solution

« 8-queens (8% ~ 17 million states): 4 steps on average when succeeds
and 3 when get stuck

Hill-climbing: 8-queens problem

18 |48 14 13 (1] 14 l The best moves

16 15 (82| 14 (H2H| 16

14

14 W/ 13 | 16 16

[—
=
[—
oL
[—
n

18 W F15 | 15 ikl
14 17 |12 14 |12}

18

» Current state (cycyc3¢4¢5cc7cg) =(56745676) h(n) =17
* The best successors has h = 12 — choose randomly among

the set of best successors if there iIs more than one

14

Hill climbing and local maxima

« Often suboptimal, due to local maxima, ridges and plateau

* E.g., 8-queens: steepest-ascent hill climbing gets stuck 86% of the
time, solving only 14% of problem instances

The grid of states (dark circles) s
superimposed on a ridge rising from left to
right, creating a sequence of local maxima
that are not directly connected to each other.
From each local maximum, all the available
actions point downbhill.

15

Hill climbing and local maxima

* Current state (83742516)h(n) =1

« Every successor has a higher cost — local minimum

16

Solutions: Sideways moves

* If no downhill (uphill) moves, the algorithm can escape with
sideways moves.
« A limit on the possible number of sideways moves required to avoid
infinite loops
* For example, 8-gueens problem

« Allow sideways moves with a limit of 100 — percentage of problem
Instances solved raises from 14 to 94%

e Success comes at a cost: the algorithm averages roughly 21 steps
for each successful instance and 64 for each failure.

Solutions: Hill-climbing variants

« Stochastic hill climbing

* Choose at random from among the uphill moves with a probability of
selection varied with the moves’ steepness

« Usually converge more slowly than steepest ascent, but find better
solutions in some cases

 First-choice hill climbing

« Generate successors randomly until one is generated that is better
than the current state

« Good strategy when a state has many successors (e.g., thousands)

18

Solutions: Random-restart hill climbing

« Random-restart hill climbing can find a good solution
qguickly after a small number of restarts.

 That is a series of hill-climbing searches from randomly
generated initial states until a goal is found.

 For each restart: run until termination vs run for a fixed time

* Run a fixed number of restarts or run indefinitely

* |f each search has a probability p of success, the expected
number of restarts required is 1/p

* Very effective indeed for 8-queens

Quiz 01: 4-queens problem

» Consider the following 4-queen problem

A B C D
g g

Ww N = O

« Apply (first-choice) hill-climbing to find a solution, using the
heuristic “The number of pairs of queens ATTACKING each
other.”

Simulated annealing

Simulated annealing

« Combine hill climbing with a random walk in some way that
yields both efficiency and completeness

« Shake hard (i.e., at a high temperature) and then gradually
reduce the intensity of shaking (i.e., lower the temperature)

VAN
<

Simulated annealing

Gmction SIMULATED-ANNEALING(problem, schedule) \
returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current « MAKE-NODE(problem.INITIAL-STATE)
fort=1too do

T < schedule(t)

if T = 0 then return current

next < a randomly selected successor of current

AE < next.VALUE - current.VALUE

if AE > 0 then current < next

\ else current < next only with probability e£/T /

23

Local beam search

L ocal beam search

Keep track of k states rather than just one

Begin with k randomly generated states

At each step, all successors of all k states are generated

If the goal is not found, select the k best successors from the
complete list and repeat

L ocal beam search

« Useful information is passed among the parallel search
threads — major difference from random-restart search

» Possibly suffer from a lack of diversity among the k states

e Quickly concentrate in a small region of the state space — an
expensive version of hill climbing

 Stochastic beam search

« Choose k successors at random, with the probability of choosing a
given successor being an increasing function of its value

evaluation selection

B B]]
[] [] -I:I
N N N

0 0

- M

mutation Crossover

Genetic algorithms

Genetic algorithms

* A variant of stochastic beam search

e Successor states are generated by combining two parent
states rather than by modifying a single state

* The reproduction are sexual rather than asexual

Genetic algorithms: 8-queens

24748552

24 31%

32752411

X

23 29%

24415124

20 26%

i/

32543213

11 14%

(a)

Initial Population

/

(b)

Fitness Function

327552411

3274812

24752411

32252124

2441541[7]

4 states for
8-queens
problem

selected

32748552

247;48552 >_< 24752411

327-525411 32752124

24415?124 >_< 24415411
(c) (d)

Selection Crossover

/ /

New states

2 pairs of 2 states randomly
selected based on fitness.
Random crossover points

after crossover

(e)

Mutation

\

Random
mutation
applied

29

Genetic algorithms

« Population: a set of k randomly generated states to begin with

* Fitness function: an objective function that rates each state

« Higher values for better state

* E.g., 8-queens: the number of nonattacking pairs of queens (min = 0,

max = 8x7/2 = 28) ﬁ
new generation
// \\\ bbb b
 Produce the next generati e e o
TP . ” V9 =X
by “simulated evolution @,’. OV TIRR
mutation evaluatl?n of
« Random selection { each individual
\ [
/
« Crossover _ v } _)_ /;?
« Random mutation A T R, Qo
reproduction selection

30

Representation of Individuals

« Each state, or individual, Is represented as a string over a
finite alphabet — most commonly, a string of Os and 1s.

« E.g., 8-queens: 8 X log, 8 = 24 bits

0001100101 M

111010101100

001110101001

111011011100

(a)

Initial Population

8 32%

6 24%

6 24%

5 20%

(b)

Fitness Function

uumfj 0010111

11010167100

001110101001

~

(c)
Selection

-',j‘ﬁjﬁmmmn 111010010111
000110101100 000110101100
-,11;1#1_4?}]11::01 111ffo101001
001110101100 001110101 10f]
(d) (e)
Cross-Over Mutation

 Alternatively, the state could be represented as 8 digits, each
In the range from 1 to 8.

31

Reproduction

 Pairs are selected at random for reproduction.

 The probability of being chosen for reproducing is directly

proportional to the fithess score.
* E.Q., 24/(24+23+20+11) = 31%, 23/(24+23+20+11) = 29%, etc.

* One individual may be selected several times or not at all.

32

Reproduction: Roulette wheel

point

the roulette wheel

Chromosome

Fitness value

Weakest individual
has smallest share of
the roulette wheel

Cl
C2
C3
C4
CS

31%
5%
38%
12%

14%

33

Quiz 02: Calculate fithess scores

* The current generation include 4 states, S1, S2, S3, and S4.
* Their evaluation functions’ values are:

Eval(S1) =7, Eval(S2) = 15,

Eval(S3) = 10, Eval(S4) = 18

« Calculate the probabillity (the fithess that) each of them will
be chosen in the “selection” step.

 Which two of four states have the highest possibilities to be
selected for the next generation?

Crossover operation

 For each pair to be mated, a crossover point Is chosen
randomly from the positions in the string.

32752411 >_< 32748552
24748552 24752411

.I %I.I
= . IEI.
.I .I |
L I.:.

 Effectively “jump” to a completely different new part of the

search space (quite non-local)
35

Mutation operation

 Each location is subject to random mutation with a small
Independent probability.

« E.g., 8-queens: choosing a gqueen at random and moving it to a
random sqguare in its column

Parents [1]oJo[1[1i[1]o[1]oo]o[1]0] o/o/1]1fof1fol1]0]1]0[1]1
J

\ J\. J/ \ J\
.

Cross-over
Children (1]o]of1/0/1/0/1/0/1]/0 1/1] 001/1/1]/1]ol1]o]ofof1]0O]
I I Mutation
[1ToJof1Tof1]ololol1]o]1]1] olo/1]1[1]1]of1]o]1[0]1]0]

36

A workflow of Genetic algorithms

Initial Fitness
Population calculation

Selection Cross-over

New population

Next generation building

— e e o o o o e o e o o o e e o o

Genetic algorithms

/function GENETIC-ALGORITHM (population, FITNESS-FN) \
returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual
repeat
new_population < empty set
fori=1 to SIZE(population) do
x < RANDOM-SELECTION (population, FITNESS-FN)
y < RANDOM-SELECTION (population, FITNESS-FN)
child < REPRODUCE(x, y)
if (small random probability) then child < MUTATE(child)
add child to new_population
population < new_population

until some individual is fit enough, or enough time has elapsed
\ return the best individual in population, according to FITNESS-FN}S

Genetic algorithms

(")
function REPRODUCE(x, y) returns an individual

inputs: x, y, parent individuals
n < LENGTH(x); ¢ < random number from 1 to n
return APPEND(SUBSTRING(x, 1, ¢), SUBSTRING(y, ¢ + 1, n))

J
Solution Solution
Quality Quality
Search Space Search Space
a. The beginning search space b. The search space after

n generations
39

Comments on Genetic algorithms

« Random exploration find solutions that local search does not

 Via crossover primarily

« Can solve “hard” problem
* Rely on very little domain knowledge

« Appealing connection to human evolution

Comments on Genetic algorithms

Large number of “tunable” parameters

« Difficult to replicate performance from one problem to another

Lack of good empirical studies comparing to simpler methods

Useful on some (small?) sets of problem, yet no convincing
evidence that GAs are better than hill-climbing w/random restarts
In general.

Require careful engineering of the representation

Application: Genetic Programming!

l
nanks:

THE END

