
ADVERSARIAL SEARCH

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

• The concept of games in AI

• Optimal decisions in games

• α-β Pruning

• Imperfect, real-time decisions

• Stochastic games

2

The concept
of games in AI

3

Search in multiagent environments

• Each agent needs to consider the actions of other agents

and how they affect its own welfare.

• The unpredictability of other agents introduce contingencies

into the agent’s problem-solving process

4

Game theory

• Game theory views any multiagent environment as a game.

• The impact of each agent on the others is “significant,” regardless of

whether the agents are cooperative or competitive.

• Types of games

5

Deterministic Chance

Perfect

information

Chess, Checkers, Go,

Othello

Backgammon,

Monopoly

Imperfect

information

Bridge, poker, scrabble

nuclear war

Types of Games

6

Adversarial search

• Adversarial search (known as games) covers competitive

environments in which the agents’ goals are in conflict.

• Zero-sum games of perfect information

• Deterministic, fully observable environments, turn-taking, two-player

• The utility values at the end are always equal and opposite.

7

Games vs. Search problems

• Complexity: games are too hard to be solved

• Chess: b 35, d 100 (50 moves/player) → graph of 1040 nodes,

search tree of 35100 or 10154 nodes

• Go: b 1000 (!)

• Time limits: make some decision even when calculating the

optimal decision is infeasible

• Efficiency: penalize inefficiency severely

• Several interesting ideas on how to make the best possible use of

time are spawn in game-playing research.

8

Primary assumptions

• Two players only, called MAX and MIN.

• MAX moves first, and then they take turns moving until the game ends

• Winner gets reward, loser gets penalty.

• Both players have complete knowledge of the game’s state

• E.g., chess, checkers and Go, etc. Counter examples: poker

• No element of chance

• No dice thrown, no cards drawn, etc.

• Zero-sum games

• The total payoff to all players is the same for every game instance.

• Rational players

• Each player always tries to maximize his/her utility

9

Games as search

10

• 𝑆0 – Initial state: How the game is set up at the start

• E.g., board configuration of chess

• 𝑃𝐿𝐴𝑌𝐸𝑅(𝑠): Which player has the move in a state, MAX/MIN?

• 𝐴𝐶𝑇𝐼𝑂𝑁𝑆(𝑠) – Successor function: A list of (move, state) pairs

specifying legal moves.

• 𝑅𝐸𝑆𝑈𝐿𝑇(𝑠, 𝑎) – Transition model: Result of move 𝑎 on state 𝑠

• 𝑇𝐸𝑅𝑀𝐼𝑁𝐴𝐿− 𝑇𝐸𝑆𝑇(𝑠): Is the game finished?

• States where the game has ended are called terminal states

• 𝑈𝑇𝐼𝐿𝐼𝑇𝑌(𝑠, 𝑝) – Utility function: A numerical value of a terminal

state 𝑠 for a player 𝑝

• E.g., chess: win (+1), lose (-1) and draw (0), backgammon: [0, 192]

The game tree of Tic-Tac-Toe

11

MAX uses search tree

to determine next move.

from the point of view of MAX

Examples of game: Checkers

12

• Complexity

• ~ 1018 nodes, which may require 100k years with 106 positions/sec

• Chinook (1989-2007)

• The first computer program that won the world champion title in a

competition against humans

• 1990: won 2 games in competition with world champion Tinsley (final

score: 2-4, 33 draws). 1994: 6 draws

• Chinook’s search

• Ran on regular PCs, played perfectly by using alpha-beta search

combining with a database of 39 trillion endgame positions

Examples of game: Chess

13

• Complexity

• b 35, d 100, 10154 nodes (!!)

• Completely impractical to search this

• Deep Blue (May 11, 1997)

• Kasparov lost a 6-game match against IBM’s Deep Blue (1 win Kasp

– 2 wins DB) and 3 ties.

• In the future, focus will be to allow computers to LEARN to

play chess rather than being TOLD how it should play

Deep Blue

14

• Ran on a parallel computer with 30 IBM RS/6000

processors doing alpha–beta search

• Searched up to 30 billion positions/move, average depth 14

(be able to reach to 40 plies)

• Evaluation function: 8000 features

• highly specific patterns of pieces (~4000 positions)

• 700,000 grandmaster games in database

• Working at 200 million positions/sec, even Deep Blue

would require 10100 years to evaluate all possible games.

• (The universe is only 1010 years old.)

• Now: algorithmic improvements have allowed programs running on standard PCs

to win World Computer Chess Championships.

• Pruning heuristics reduce the effective branching factor to less than 3

GO

15

1 million trillion trillion trillion

trillion more configurations

than chess!

• Complexity

• Board of 19x19, b 361, average depth 200

• 10174 possible board configuration.

• Control of territory is unpredictable until the endgame

• AlphaGo (2016) by Google

• Beat 9-dan professional Lee Sedol (4-1)

• Machine learning + Monte Carlo search guided by a “value network”

and a “policy network” (implemented using deep neural network

technology)

• Learn from human + Learn by itself (self-play games)

An overview of AlphaGo

16

Optimal
decisions
in games

17

• Minimax algorithm

• Optimal decisions in multiplayer games

Optimal decision in games

18

• Normal search problem

• The optimal solution is a sequence of action leading to a goal state.

• Games

• The optimal strategy is a search path that guarantee win for a player

• This can be determined from the minimax value of each node.

For MAX

Assume that both players play optimally from there to the end of the game

An example of two-ply game tree

19

Utility values for MAX

MAX best move

MIN best move

Minimax algorithm

• Make a minimax decision from the current state, using a

recursive computation of minimax values at each successor

• The recursion proceeds all the way down to the leaves, and then

back up the minimax values through the tree as it unwinds.

20

Minimax algorithm

21

function MINIMAX-DECISION(state) returns an action

return arg maxa ∈ ACTIONS(s) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← -∞

for each a in ACTIONS(state) do

v ← MAX(v, MIN-VALUE(RESULT(s, a)))

return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← ∞

for each a in ACTIONS(state) do

v ← MIN(v, MAX-VALUE(RESULT(s, a)))

return v

Minimax algorithm

• A complete depth-first exploration of the game tree

• Completeness

• Yes (if tree is finite)

• Optimality

• Yes (against an optimal opponent)

• Time complexity

• 𝑂(𝑏𝑚)

• Space complexity

• 𝑂(𝑏𝑚) (depth-first exploration)

22

For chess, 𝑏 ≈ 35,𝑚 ≈ 100 for "reasonable" games

→ exact solution completely infeasible

Note:

m: the maximum depth of the tree

b: the legal moves at each point

23

Quiz 01: Minimax algorithm

• Calculate the utility value for the remaining nodes

• Which node should MAX and MIN choose?

Optimality in multiplayer games

• A single value is replaced with a vector of values.

→ the UTILITY function return a vector of utilities

• For terminal states, this vector gives the utility of the state

from each player’s viewpoint.

24

Optimality in multiplayer games

• Multiplayer games usually involve alliances, which are made

and broken as the game proceeds.

• If the game is not zero-sum, then collaboration can also

occur with just two players.

25

C becomes weak.

A or B could violate the agreement

A and B are weak while C is strong.

A forms an alliance with B.

26

Alpha-beta
pruning

Problem with minimax search

27

• The number of game states is exponential in the tree’s depth

→ Do not examine every node

• Alpha-beta pruning: Prune away branches that cannot

possibly influence the final decision

• Bounded lookahead

• Limit depth for each search

• This is what chess players do: look ahead for a few moves and see

what looks best

Alpha-beta pruning: An example

28

29

Another way to look at this is as a simplification of the formula for MINIMAX.

Let the two unevaluated successors of node 𝐶 have values 𝑥 and 𝑦.

Then the value of the root node is given by

Alpha-beta pruning

• If a move 𝑛 is determined to be

worse than move 𝑚 that has

already been examined and

discarded, then examining move

𝑛 once again is pointless.

30

𝜶 = the value of the best (i.e., highest-value) choice we have found so far

at any choice point along the path for MAX.

β = the value of the best (i.e., lowest-value) choice we have found so far

at any choice point along the path for MIN.

Alpha-beta search algorithm

31

function ALPHA-BETA-SEARCH(state) returns an action

v ← MAX-VALUE(state,-∞,+∞)

return the action in ACTIONS(state) with value v

function MAX-VALUE(state,α,β) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← -∞

for each a in ACTIONS(state) do

v ← MAX(v, MIN-VALUE(RESULT(s,a),α,β))

if v ≥ β then return v

α ← MAX(α, v)

return v

Alpha-beta search algorithm

32

function MIN-VALUE(state,α,β) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

v ← +∞

for each a in ACTIONS(state) do

v ← MIN(v, MAX-VALUE(RESULT(s,a) ,α,β))

if v ≤ α then return v

β ← MIN(β, v)

return v

Properties of alpha-beta pruning

• Pruning does not affect the result

• Its worst case is as good as the minimax algorithm

• Good move ordering improves effectiveness of pruning

• With "perfect ordering,“: time complexity 𝑂(𝑏𝑚/2)→ x2 search depth

• In chess, Deep Blue achieved depth reduction from 38 to 6

• Killer move heuristic

• First, IDS search with 1 ply deep and record the best path.

• Then search 1 ply deeper with the recorded path to inform move

ordering

• Transposition table avoids re-evaluation a state

33

34

Quiz 02: Alpha-beta pruning

• Calculate the utility value for the remaining nodes.

• Which nodes should be pruned?

Imperfect
real-time
decisions

35

• Evaluation functions

• Cutting off search

• Forward pruning

• Search versus Lookup

Heuristic minimax

• Both minimax and alpha-beta pruning search all the way to

terminal states.

• This depth is usually impractical because moves must be made in a

reasonable amount of time (~ minutes).

• Cut off the search earlier with some depth limit

• Use an evaluation function

• An estimation for the desirability of position (win, lose, tie?)

36

Evaluation functions

• These evaluation function should order the terminal states in

the same way as the true utility function does

• States that are wins must evaluate better than draws, which in turn

must be better than losses.

• The computation must not take too long!

• For nonterminal states, their orders should be strongly

correlated with the actual chances of winning.

37

Evaluation functions

38

• For chess, typically linear weighted sum of features

𝑬𝒗𝒂𝒍(𝒔) = 𝒘𝟏𝒇𝟏 (𝒔) + 𝒘𝟐𝒇𝟐(𝒔) + … +𝒘𝒏𝒇𝒏(𝒔)

• where 𝑓𝑖 could be the numbers of each kind of piece on the board,

and 𝑤𝑖 could be the values of the pieces

• E.g., 𝐸𝑣𝑎𝑙(𝑠) = 9𝑞 + 5𝑟 + 3𝑏 + 3𝑛 + 𝑝

• Implicit strong assumption: the contribution of each feature is

independent of the values of the other features.

• E.g., assign the value 3 to a bishop ignores the fact that bishops are

more powerful in the endgame → Nonlinear combination

Cutting off search

• Minimax Cutoff is identical to Minimax Value except

1. 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙? is replaced by 𝐶𝑢𝑡𝑜𝑓𝑓?

2. 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 is replaced by 𝐸𝑣𝑎𝑙

• Does it work in practice?

• 𝑏𝑚 = 106, 𝑏 = 35→ 𝑚 = 4

• 4-ply lookahead is a hopeless chess player!

• 4-ply ≈ human novice, 8-ply ≈ typical PC, human master, 12-ply ≈

Deep Blue, Kasparov

39

if CUTOFF-TEST(state, depth) then return EVAL(state)

A more sophisticated cutoff test

• Quiescent positions are those unlikely to exhibit wild swings

in value in the near future.

• E.g., in chess, positions in which favorable captures can be made

are not quiescent for an evaluation function counting material only

• Quiescence search: expand nonquiescent positions until

quiescent positions are reached.

40

Quiescent positions: An example

41

Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be
enough to win the game. In (b), White will capture the queen, giving it an
advantage that should be strong enough to win.

A more sophisticated cutoff test

• Horizon effect: The program is facing an evitable serious

loss and temporarily avoid it by delaying tactics.

42

With Black to move, the black bishop is
surely doomed. But Black can forestall
that event by checking the white king
with its pawns, forcing the king to
capture the pawns.

A more sophisticated cutoff test

• Singular extension: a move that is “clearly better” than all

other moves in a given position.

• The algorithm allows for further consideration on a legal singular

extension → deeper search tree, yet only a few singular extensions.

• Beam search

• Forward pruning, consider only a “beam” of the 𝑛 best moves only

• Most humans consider only a few moves from each position

• PROBCUT, or probabilistic cut, algorithm (Buro, 1995)

• Search vs. Lookup

• Use table lookup rather than search for the opening and ending

43

Stochastic
games

44

Stochastic behaviors

• Uncertain outcomes controlled by chance, not an adversary!

• Why wouldn’t we know what the result of an action will be?

• Explicit randomness: rolling dice

• Unpredictable opponents: the ghosts respond randomly

• Actions can fail: when a robot is moving, wheels might slip

45

Expectimax search

• Values reflect the average-case (expectimax) outcomes, not

worst-case (minimax) outcomes

• Expectimax search: compute the

average score under optimal play

• Max nodes as in minimax search

• Chance nodes are like min nodes, but the outcome is uncertain

• Calculate expected utilities, i.e., take weighted average of children

• For minimax, terminal function scale doesn't matter

• Monotonic transformations: better states to have higher evaluations

• For expectimax, we need magnitudes to be meaningful

46

Expectimax search: Pseudo code

47

Expectimax pruning

48

Is it possible to perform pruning in expectimax search?

Expectimax pruning

• Pruning can only be possible with knowledge of a fix range.

49

• Each child have an equal
probability of being chosen

• The values can only be in the
range 0-9 (inclusive).

How to prune this tree?

Depth-limited expectimax

50

51

THE END

