
CONSTRAINT SATISFACTION

PROBLEMS

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

• Constraint satisfaction problems (CSPs)

• Constraint propagation: Inference in CSPs

• Backtracking search for CSPs

• Local search for CSPs

• The structure of problems

2

Constraint satisfaction problem

• Defining the Constraint satisfaction problems

• Example problem: Map coloring and Job-shop scheduling

• Variations on the CSP formalism

3

State-space search problems

4

State-space

…

Each state is atomic

and indivisible

Problem

Formalize

Constraint satisfaction problems

5

Variable

𝑋1

Variable

𝑋2

Variable

𝑋𝑛

…

Value +

Constraints

Value +

Constraints

Value +

Constraints
Each state is

factored

represented

Problem

Constraint satisfaction problem

• State = a set of variables and each of which has a value

• Solution = each variable has a value that satisfies all the

constraints on that variable

• A CSP consists of the following three components

6

𝑿 = 𝑋1, . . , 𝑋𝑛 : a set of variables

𝑫 = 𝐷1, . . , 𝐷𝑛 : a set of domains, one for each variable.

• 𝐷𝑖 = 𝑣1, . . , 𝑣𝑘 : set of allowable values for variable 𝑋𝑖

𝑪: a set of constraints that state allowable combinations

of values.

Constraints in CSPs

• Each 𝐶𝑖 consists of a pair 𝑠𝑐𝑜𝑝𝑒, 𝑟𝑒𝑙

• 𝑠𝑐𝑜𝑝𝑒: a tuple of variables that participate in the constraint

• A relation 𝑟𝑒𝑙 defines the values that participated variables can take

• Assume that both 𝑋1 and 𝑋2 have the domain {𝐴, 𝐵}

• “Two variables must have different values”

• A relation can explicitly list all tuples satisfying the constraint.

• E.g., 𝑋1, 𝑋2 , 𝐴, 𝐵 , (𝐵, 𝐴)

• It can be implicitly an abstract relation that supports two operations

• Test whether a tuple is a member of the relation

• Enumerate the members of the relation

• E.g., 𝑋1, 𝑋2 , 𝑋1 ≠ 𝑋2

7

Solutions for CSPs

• Each state is defined by an assignment of values to some or

all the variables, 𝑋𝑖 = 𝑣𝑖 , 𝑋𝑗 = 𝑣𝑗 , … .

• A solution to a CSP is a consistent – complete assignment.

• A consistent assignment does not violate any constraints.

• A complete assignment has every variable assigned, while a partial

assignment assigns values to only some variables.

8

Incomplete,
consistent
assignment

Complete,
inconsistent
assignment

Complete,
consistent
assignment

• Color each region either red, green, or blue in such a way that no

neighboring regions have the same color

9

Constraint graph

• Nodes are variables

• Arcs are constraints

Example problem: Map coloring

Example problem: Map coloring

• Variables: 𝑋 = {𝑊𝐴,𝑁𝑇, 𝑄, 𝑁𝑆𝑊, 𝑉, 𝑆𝐴, 𝑇}

• Domains: 𝐷𝑖 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

• Constraints: Adjacent regions must have different colors

• where 𝑆𝐴 ≠ 𝑊𝐴 is a shortcut of 𝑆𝐴,𝑊𝐴 , 𝑆𝐴 ≠ 𝑊𝐴

• 𝑆𝐴 ≠ 𝑊𝐴 can be fully enumerated as {(red,green), (red,blue), (green,red),

(green,blue), (blue,red), (blue,green)}

• There are many possible solutions

10

𝐶 =
𝑆𝐴 ≠ 𝑊𝐴, 𝑆𝐴 ≠ 𝑁𝑇, 𝑆𝐴 ≠ 𝑄, 𝑆𝐴 ≠ 𝑁𝑆𝑊 , 𝑆𝐴 ≠ 𝑉,

𝑊𝐴 ≠ 𝑁𝑇,𝑁𝑇 ≠ 𝑄,𝑄 ≠ 𝑁𝑆𝑊 ,𝑁𝑆𝑊 ≠ 𝑉

{𝑊𝐴 = 𝑟𝑒𝑑,𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛, 𝑄 = 𝑟𝑒𝑑,

𝑁𝑆𝑊 = 𝑔𝑟𝑒𝑒𝑛, 𝑉 = 𝑟𝑒𝑑, 𝑆𝐴 = 𝑏𝑙𝑢𝑒, 𝑇 = 𝑟𝑒𝑑}

Aside: The Graph Coloring Problem

11

• More general problem than map coloring

• Planar graph = graph in the 2D plane with no edge crossings

• Guthrie’s conjecture (1852): Every planar graph can

be colored with 4 colors or less.

• Proved (using a computer) in 1977 (Appel and Haken)

Example problem: Job-shop scheduling

• Some tasks must occur before another, and some tasks can go on at once

• E.g., a wheel must be installed before the hubcap is put on

• A task takes a certain amount of time to complete.

12

15 tasks

• Install axles (front and back)

• Affix all four wheels (right and left, front

and back)

• Tighten nuts for each wheel

• Affix hubcaps, and

• Inspect the final assembly

Example problem: Job-shop scheduling

• Variables: 𝑋 = {𝐴𝑥𝑙𝑒𝐹 , 𝐴𝑥𝑙𝑒𝐵 ,𝑊ℎ𝑒𝑒𝑙𝑅𝐹 ,𝑊ℎ𝑒𝑒𝑙𝐿𝐹 ,𝑊ℎ𝑒𝑒𝑙𝑅𝐵,𝑊ℎ𝑒𝑒𝑙𝐿𝐵,

𝑁𝑢𝑡𝑠𝑅𝐹 , 𝑁𝑢𝑡𝑠𝐿𝐹 , 𝑁𝑢𝑡𝑠𝑅𝐵, 𝑁𝑢𝑡𝑠𝐿𝐵,

𝐶𝑎𝑝𝑅𝐹 , 𝐶𝑎𝑝𝐿𝐹 , 𝐶𝑎𝑝𝑅𝐵, 𝐶𝑎𝑝𝐿𝐵 , 𝐼𝑛𝑝𝑠𝑒𝑐𝑡}

• Domains: The time that the task starts

• Assume that the tasks, 𝑇1 and 𝑇2, take duration 𝑑1 and 𝑑2 to complete,

respectively

• Precedence constraints: The task 𝑇1 must occur before the task 𝑇2, i.e.,

𝑻𝟏 + 𝒅𝟏 ≤ 𝑻𝟐

• Disjunctive constraints: The tasks 𝑇1 and 𝑇2 must not overlap in time, i.e.,

𝑻𝟏 + 𝒅𝟏 ≤ 𝑻𝟐 or 𝑻𝟐 + 𝒅𝟐 ≤ 𝑻𝟏

13

Example problem: Job-shop scheduling

• The axles must be in place before the wheels are put on. Installing an axle takes 10

minutes.

• For each wheel, affix the wheel (which takes 1 minute), then tighten the nuts (2

minutes), and finally attach the hubcap (1 minute)

• Suppose we have four workers to install wheels, but they must share one tool that

helps put the axle in place.

• The inspection comes last and takes 3 minutes → for every variable except 𝐼𝑛𝑠𝑝𝑒𝑐𝑡,

add a constraint of the form 𝑋 + 𝑑𝑋 ≤ 𝐼𝑛𝑠𝑝𝑒𝑐𝑡.

• Finally, suppose there is a requirement to get the whole assembly done in 30 minutes

→ limit the domain of all variables to 𝐷𝑖 = {1, 2,3,… , 27}.

14

𝐴𝑥𝑙𝑒𝐹 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝑅𝐹

𝐴𝑥𝑙𝑒𝐵 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝑅𝐵

𝐴𝑥𝑙𝑒𝐹 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝑅𝐹

𝐴𝑥𝑙𝑒𝐵 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝐿𝐵

𝑊ℎ𝑒𝑒𝑙𝑅𝐹 + 1 ≤ 𝑁𝑢𝑡𝑅𝐹

𝑊ℎ𝑒𝑒𝑙𝐿𝐹 + 1 ≤ 𝑁𝑢𝑡𝐿𝐹

𝑁𝑢𝑡𝑠𝑅𝐹 + 2 ≤ 𝐶𝑎𝑝𝑅𝐹

𝑁𝑢𝑡𝑠𝐿𝐹 + 2 ≤ 𝐶𝑎𝑝𝐿𝐹𝑊ℎ𝑒𝑒𝑙𝑅𝐵 + 1 ≤ 𝑁𝑢𝑡𝑅𝐵

𝑊ℎ𝑒𝑒𝑙𝐿𝐵 + 1 ≤ 𝑁𝑢𝑡𝐿𝐵

𝑁𝑢𝑡𝑠𝑅𝐵 + 2 ≤ 𝐶𝑎𝑝𝑅𝐵
𝑁𝑢𝑡𝑠𝐿𝐵 + 2 ≤ 𝐶𝑎𝑝𝐿𝐵

𝐴𝑥𝑙𝑒𝐹 + 10 ≤ 𝐴𝑥𝑙𝑒𝐵 𝑜𝑟 𝐴𝑥𝑙𝑒𝐵 + 10 ≤ 𝐴𝑥𝑙𝑒𝐹

Why formulate a problem as a CSP?

• Many problems intractable in regular state-space search can

be solved quickly with CSP formulation.

• E.g., the Australian problem

• Better insights to the problem and its solution

• General-purpose rather than problem-specific heuristics

• Identify combinations of variable-value that violate the constraints

→ eliminate large portions of the search space all at once

• Solutions to complex problems

15

𝒃𝒍𝒖𝒆

Search: 35 = 243 assignments

CSP: 25 = 32 assignments 87%

Variations on the CSP formalism

• Discrete and finite variables

• 𝑛 variables, domain size 𝑑→ 𝑂(𝑑𝑛) complete assignments

• E.g., map coloring, scheduling with time limits, 8-queens etc.

• Discrete, infinite domains

• Sets of integers, strings, etc. E.g., job scheduling without deadlines

• Constraint language: understand constraints without enumeration,

e.g., 𝑆𝑡𝑎𝑟𝑡𝐽𝑜𝑏1 + 5 ≤ 𝑆𝑡𝑎𝑟𝑡𝐽𝑜𝑏3

• Continuous domains

• Real-world problems often involve continuous domains and even

real-valued variables.

16

Real-world CSPs

17

• Operations research (scheduling, timetabling)

• Scheduling the time of observations on the Hubble Space Telescope

• Linear programming

• Constraints must be linear equalities or inequalities → solved in time

polynomial in the number of variables.

• Bioinformatics (DNA sequencing)

• Electrical engineering (circuit layout-ing)

• Airline schedules

• Cryptography

• Computer vision: image interpretation

• …

Types of constraints

• Unary constraint: restrict the value of a single variable

• E.g., the South Australians do not like green → 𝑆𝐴 , 𝑆𝐴 ≠ 𝑔𝑟𝑒𝑒𝑛

• Binary constraint: relate two variables

• E.g., adjacent regions are of different colors, 𝑆𝐴,𝑊𝐴 , 𝑆𝐴 ≠ 𝑊𝐴

• Higher-order constraints: involve three or more variables

• E.g., Professors A, B, and C cannot be on a committee together

• Always possible to be represented by multiple binary constraints

• Global constraints: involving an arbitrary number of variables

• 𝐴𝑙𝑙𝑑𝑖𝑓𝑓 = all variables involved must have different values

• E.g., Sudoku: all variables in a row/column must satisfy an 𝐴𝑙𝑙𝑑𝑖𝑓𝑓

18

Preference constraints

• Which solutions are preferred → soft constraints

• E.g., 𝑟𝑒𝑑 is better than 𝑔𝑟𝑒𝑒𝑛 → this can be represented by a cost

for each variable assignment

• Constraint optimization problem (COP): a combination of

optimization with CSPs → linear programming

19

Examples of toy problems in CSP

20

• Variables: 𝑄1, 𝑄2, 𝑄3, 𝑄4

• Domains: D = {1,2,3,4}

• Constraints

• 𝑄𝑖 ≠ 𝑄𝑗 (cannot be in the same row)

• 𝑄𝑖 − 𝑄𝑗 ≠ 𝑖 − 𝑗 (cannot be in the same diagonal)

4-Queens Problem

• Variables: 𝐹 𝑇 𝑈𝑊 𝑅 𝑂 𝐶1 𝐶2𝐶3

• Domains: {0,1,2,3,4,5,6,7,8,9}

• Constraints:

• Alldiff (𝐹, 𝑇, 𝑈,𝑊, 𝑅, 𝑂)

• 𝐶3 = 𝐹, 𝑇 ≠ 0, 𝐹 ≠ 0

• …

The Cryptarithmetic

Constraint propagation

• Node consistency

• Arc consistency

• Path consistency

• K-consistency

• Global constraints

21

Constraint propagation

• Constraints help to reduce the number of legal values for a

variable → legal values for another variable are also reduced

• Intertwined with search, or done as a preprocessing step

• Sometimes the preprocessing can solve the whole problem!

• Enforcing local consistency in each part of a graph causes

inconsistent values to be eliminated throughout the graph

22

Node consistency

• A single variable is node-consistent if all the values in the

variable’s domain satisfy the variable’s unary constraints.

• Eliminate all the unary constraints in a CSP

23

The South Australians dislike

green, the domain of {𝑆𝐴} will be

{𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

X

Arc consistency

• A variable in a CSP is arc-consistent if every value in its

domain satisfies the variable’s binary constraints.

• E.g., (𝑋, 𝑌), { 0, 0 , 1, 1 , 2, 4 , 3, 9 } , both domains are sets of

digits → reduce X’s domain to {0, 1, 2, 3} and Y’s to {0, 1, 4, 9}

• Arc consistency may have no effect in several cases.

• E.g., the Australia map, no matter what value chosen for 𝑆𝐴 (or for

𝑊𝐴), there is a valid value for the other variable.

24

{(red,green), (red,blue), (green,red), (green,blue), (blue,red), (blue,green)}

25

Consider state of search after 𝑊𝐴

and 𝑄 are assigned

• 𝑆𝐴 → 𝑁𝑆𝑊 is consistent if 𝑆𝐴 =

𝑏𝑙𝑢𝑒 and 𝑁𝑆𝑊 = 𝑟𝑒𝑑

• 𝑁𝑆𝑊 → 𝑆𝐴 is consistent if

𝑁𝑆𝑊 = 𝑟𝑒𝑑 and 𝑆𝐴 = 𝑏𝑙𝑢𝑒

𝑁𝑆𝑊 = 𝑏𝑙𝑢𝑒 and 𝑆𝐴 =? ? ?

Arc-consistency can be made by

removing 𝑏𝑙𝑢𝑒 from 𝑁𝑆𝑊

26

Continue to propagate constraints

• Check 𝑉 → 𝑁𝑆𝑊

• Not consistent for 𝑉 = 𝑟𝑒𝑑 →

remove 𝑟𝑒𝑑 from 𝑉

If 𝑋 loses a value, neighbors of 𝑋

need to be rechecked

Arc consistency detects failure

earlier than forward checking

Arc consistency

• Run as a preprocessor before the search starts or after each

assignment

• AC must be run repeatedly until no inconsistency remains.

• Trade-off

• Eliminate large (inconsistent) parts of the state-space,

• Require some overhead to do

• Generally, more effective than direct search

• Need a systematic method for arc-checking

• If 𝑋 loses a value, neighbors of 𝑋 need to be rechecked.

• Incoming arcs can become inconsistent, while outgoing arcs stay still.

27

The AC-3 algorithm

28

function AC-3(csp) returns false if an inconsistency is found

and true otherwise

inputs: csp, a binary CSP with components (X, D, C)

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi , Xj) ← REMOVE-FIRST(queue)

if REVISE(csp, Xi , Xj) then

if size of Di = 0 then return false

for each Xk in Xi.NEIGHBORS - {Xj} do

add (Xk , Xi) to queue

return true

The worst-case complexity is 𝑂(𝑐𝑑3)

𝑛: number of variables, each has domain size 𝑑, 𝑐 binary constraints (arc)

The AC-3 algorithm

29

function REVISE(csp, Xi , Xj) returns true iff we revise the domain of Xi

revised ← false

for each x in Di do

if no value y in Dj allows (x ,y) to satisfy the constraint between Xi and Xj

then

delete x from Di

revised ← true

return revised

Backtracking Search

• Backtracking search

• Variable and value ordering

• Interleaving search and inference: Forward checking

30

CSP as a Search problem

• Let's start with the straightforward approach, then fix it.

• States are defined by the values assigned so far

• Initial state: empty assignment { }

• Successor function: assign a value to an unassigned variable that

agrees with the current assignment → fail if no legal assignments

• Goal test: the current assignment is complete

• This is the same for all CSPs

• Every solution appears at depth 𝑛 with 𝑛 variables → use depth-first

(or depth-limited) search

• Given 𝑑 is the domain size, the branching factor 𝑏 = (𝑛 − 𝑙)𝑑 at

depth 𝑙, 𝑛! ∙ 𝑑𝑛 leaves with only 𝑑𝑛 complete assignments!

31

Backtracking search

• Variable assignments are commutative.

• E.g., [𝑊𝐴 = 𝑟𝑒𝑑 then 𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛] = [𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛 then 𝑊𝐴 = 𝑟𝑒𝑑]

• Only need to consider assignments to a single variable at

each node → branching factor 𝑏 = 𝑑, 𝑑𝑛 leaves

• Depth-first search: choose values for one variable at a time

and backtrack when a variable has no legal values left

32

Backtracking search

33

Which variable should

be assigned next?

In what order should

its values be tried?

What inferences

should be performed?

function BACKTRACKING-SEARCH(csp) returns a solution, or failure

return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

inferences ← INFERENCE(csp, var, value)

if inferences failure then

add inferences to assignment

result ← BACKTRACK(assignment, csp)

if result failure then

return result

remove {var = value} and inferences from assignment

return failure

Backtracking search: An example

34

Variable and value ordering

• Minimum-remaining-values (MRV) heuristic: choose the

variable with the fewest legal values

• E.g., after [𝑊𝐴 = 𝑟𝑒𝑑,𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛] only one possible value for 𝑆𝐴

• Failure will be detected immediately, avoiding pointless searches

• MRV usually performs better than a random/static ordering,

sometimes by a factor of 1,000 or more.

35

Variable and value ordering

• Degree heuristic (DH): choose the variable that involves in

the largest number of constraints on other unassigned

variables

• E.g., 𝑆𝐴 has a highest degree of 5, other variables except 𝑇 have

degrees of 2 or 3.

• DH is the tie-breaker among most constrained variables

36

Variable and value ordering

• Least constraining value (LCV) heuristic: given a variable,

choose the value that leaves the maximum flexibility for

subsequent variable assignments

• Combining the three heuristics makes 1000 queens feasible

37

Why should variable selection be fail-first,

but value selection be fail-last?

Inference: Forward checking

• Supervise remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

• MRV heuristic + forward checking → more effective search

• It can detect many inconsistencies but not all of them.

• Make only the current variable arc-consistent, but do not look ahead

and make all the other variables arc-consistent

38

39

✓ Assign {𝑊𝐴 = 𝑟𝑒𝑑}
✓ Effects on other variables

connected by constraints to WA
– 𝑁𝑇 can no longer be red

– 𝑆𝐴 can no longer be red

✓ Assign {𝑄 = 𝑔𝑟𝑒𝑒𝑛}
✓ Effects on other variables

connected by constraints to 𝑄
• 𝑁𝑇 can no longer be green

• 𝑆𝐴 can no longer be green

• 𝑁𝑆𝑊 can no longer be green

✓ Assign {𝑉 = 𝑏𝑙𝑢𝑒}
✓ Effects on other variables

connected by constraints to 𝑉
• 𝑁𝑆𝑊 can no longer be blue

• 𝑆𝐴 is empty

FC has detected that partial assignment is inconsistent

with the constraints and backtracking can occur.

Forward checking vs. Arc consistency

40

• Given a constraint 𝐶𝑋𝑌 between two variables 𝑋 and 𝑌.

• For any value of 𝑋, there is a consistent value that can be

chosen for 𝑌 such that 𝐶𝑋𝑌 is satisfied, and visa versa.

• Arc consistency is directed, which is checked in both

directions for two connected variables.

• Forward checking only checks variables that directly connect

to the variable being considered.

• Arc consistency is stronger than forward checking

41

𝑴𝑹𝑽 +𝑫𝑯

42

𝑴𝑹𝑽 +𝑫𝑯

Quiz 01: Map coloring problem

• Coloring each region either red, yellow, or blue in such a

way that no neighboring regions have the same color

43

Quiz 02: AC vs. Forward checking

• The graph shown aside is a constraint

graph for a CSP that has only binary

constraints. Initially, no variables have

been assigned.

44

• For each of the given scenarios, mark all variables for which the

specified filtering might result in their domain being changed. Note that

every scenario is independent from the others.

Quiz 02: AC vs. Forward checking

• A value is assigned to A. Which domains might be changed as a result of

running forward checking for A?

 A B C D E F

• A value is assigned to A, and then forward checking is run for A. Then a

value is assigned to B. Which domains might be changed as a result of

running forward checking for B?

 A B C D E F

• A value is assigned to A. Which domains might be changed as a result of

enforcing arc consistency after this assignment?

 A B C D E F

• A value is assigned to A, and then arc consistency is enforced. Then a

value is assigned to B. Which domains might be changed as a result of

enforcing arc consistency after the assignment to B?

 A B C D E F
45

Quiz 03: Timetable scheduling

• You are scheduling for computer science classes that meet on Mondays,

Wednesdays and Fridays .

• There are 5 classes and 3 professors who will be teaching these classes.

• You are constrained that each professor can only teach one class at a time.

• The classes are:

• Class 1 - Intro to Programming: meets from 8:00-9:00am

• Class 2 - Intro to Artificial Intelligence: meets from 8:30-9:30am

• Class 3 - Natural Language Processing: meets from 9:00-10:00am

• Class 4 - Computer Vision: meets from 9:00-10:00am

• Class 5 - Machine Learning: meets from 9:30-10:30am

• The professors are:

• Professor A, who is available to teach Classes 3 and 4.

• Professor B, who is available to teach Classes 2, 3, 4, and 5.

• Professor C, who is available to teach Classes 1, 2, 3, 4, and 5.
46

Quiz 03: Timetable scheduling

• Formulate this problem as a CSP problem in which there is one variable

per class, stating the domains (i.e., available professors) and constraints.

• Constraints should be specified formally and precisely but may be implicit

rather than explicit.

• Draw the constraint graph associated with your CSP.

• Show the domains of the variables after running arc-consistency on this

initial graph (after having already enforced any unary constraints).

• Give one solution to this CSP.

47

Local search for CSP

48

Local search for CSPs

• Complete-state formulation

• The initial state assigns a value to every variable → violate constraints

49

• The search changes the value of one variable at a time → resolve

the confliction

• Min-conflicts heuristic: the minimum number of conflicts

with other variables

• Min-conflicts is surprisingly effective for many CSPs.

• Million-queens problem can be solved ~ 50 steps

• Hubble Space Telescope: the time taken to schedule a week of

observations down from 3 weeks (!) to ~10 minutes

MIN-CONFLICTS algorithm

50

function MIN-CONFLICTS(csp, max steps) returns a solution or failure

inputs: csp, a constraint satisfaction problem

max steps, the number of steps allowed before giving up

current ← an initial complete assignment for csp

for i = 1 to max steps do

if current is a solution for csp then return current

var ← a randomly chosen conflicted variable from csp.VARIABLES

value ← the value v for var that minimizes CONFLICTS(var, v, current, csp)

set var = value in current

return failure

MIN-CONFLICTS: 8-queens

51

A two-step solution using min-conflicts for an 8-queens problem.
At each stage, a queen is chosen for reassignment in its column.
The number attacking queens (i.e., conflicts) is shown in each square.
The algorithm moves the queen to the min-conflicts square, breaking ties randomly.

Local search for CSPs

• The landscape of a CSP under the min-conflicts heuristic

usually has a series of plateau.

• There are millions of variable assignments that are only one conflict

away from a solution.

• Plateau search: allow sideways moves to another state with

the same score

• Tabu search: keep a small list of recently visited states and

forbid the algorithm to return to those states

• Simulated annealing can also be used

52

Constraint weighting

• Concentrate the search on the important constraints

• Each constraint is given a numeric weight, 𝑊𝑖, initially all 1.

• At each step, choose a variable/value pair to change that

has the lowest total weight of all violated constraints

• Increase the weight of each constraint that is violated by the

current assignment

53

Local search in online setting

• Scheduling problems: online setting

• A weekly airline schedule may involve thousands of flights and tens

of thousands of personnel assignments

• The bad weather at one airport can render the schedule infeasible.

• The schedule should be repaired with a minimum number of

changes.

• Done easily with a local search starting from the current schedule

• A backtracking search with the new set of constraints usually

requires much more time and might find a solution with many

changes from the current schedule

54

The structure of problems

55

Independent subproblems

• If assignment 𝑆𝑖 is a solution of 𝐶𝑆𝑃𝑖, then 𝑖ڂ 𝑆𝑖 is a solution

of 𝑖ڂ 𝐶𝑆𝑃𝑖.

• For example, the Australia map coloring: Tasmania and the mainland

• Suppose each 𝐶𝑆𝑃𝑖 has 𝑐 variables from 𝑛 variables.

• Then there are 𝑛/𝑐 subproblems, each of which takes at

most 𝑑𝑐 work to solve.

• where 𝑐 is a constant and 𝑑 is the size of the domain.

• Hence, the total work is 𝑂(𝑑𝑐𝑛/𝑐), which is linear in 𝑛.

• Without the decomposition, the total work is 𝑂(𝑑𝑛).

56

Tree-structured CSP

• A constraint graph is a tree when any two variables are

connected by only one path.

• Any tree-structured CSP can be solved in time linear in the

number of variables

• Directed arc consistency (DAC): A CSP is directed arc-

consistent under an ordering of variables 𝑋1, 𝑋2, … , 𝑋𝑛 iff

every 𝑋𝑖 is arc-consistent with each 𝑋𝑗 for 𝑗 > 𝑖.

57

Tree-structured CSP

• Topological sort: first pick any variable to be the root of the

tree and choose an ordering of the variables such that each

variable appears after its parent in the tree.

58

(a) The constraint graph of a tree-structured CSP.
(b) A linear ordering of the variables consistent with the tree with A as the root.

Reducing graphs to trees

• Assign values to some variables so that the remaining

variables form a tree

• E.g., fix a value for 𝑆𝐴 and delete from other variables’ domains any

values that are inconsistent with the value chosen for 𝑆𝐴

59

Reducing graphs to trees

• Construct a tree decomposition of the constraint graph into a

set of connected subproblems.

• Each subproblem is solved independently and the resulting

solutions are then combined.

60

The structure of values

• Consider the map-coloring problem with 𝑛 colors.

• For every consistent solution, there is a set of 𝑛! solutions

formed by permuting the color names.

• E.g., 𝑊𝐴, 𝑁𝑇, and 𝑆𝐴 must all have different colors, but there are 3!

ways to assign the three colors to these three regions.

• Symmetry-breaking constraint: Impose an arbitrary ordering

constraint that requires the values to be in alphabetical order

• E.g., 𝑁𝑇 < 𝑆𝐴 < 𝑊𝐴 → only one solution possible: {𝑁𝑇 = 𝑏𝑙𝑢𝑒,

𝑆𝐴 = 𝑔𝑟𝑒𝑒𝑛,𝑊𝐴 = 𝑟𝑒𝑑}

61

62

THE END

