
LOGICAL AGENTS

Artificial Intelligence

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

• Knowledge-based agents

• The Wumpus world

• Propositional logic: A very simple logic

• Propositional theorem proving

• Effective propositional model checking

2

Knowledge-based agents

3

Problem-solving agents

• These agents know things in a very limited,

inflexible sense.

4

• CSP enables some parts of the agent to

work domain-independently

• State = an assignment of values to variables

• Allow for more efficient algorithms

• E.g., an 8-puzzle agent cannot deduce pairs

of unsolvable states from their parities.

Knowledge-based agents

• Supported by logic – a general class of representation

• Combine and recombine information to suit myriad purposes

• Accept new tasks in the form of explicitly described goals

• Achieve competence by learning new knowledge of the environment

• Adapt to changes by updating the relevant knowledge

5

Offline and online decomposition of an agent

(Credit: https://artint.info/html/ArtInt_40.html)

Knowledge-based agents

6

A detailed description of the interface
between the agents and the world

(Credit: https://artint.info/html/ArtInt_40.html)

Knowledge-based agents

• Knowledge base (KB): A set of sentences or facts

• Each sentence represents some assertion about the world.

• Axiom = sentence that is not derived from other sentences

7

• Inference: Derive (infer) new sentences from old ones

• Add new sentences to the knowledge base and

query what is known

Model for reasoning: An example

• A simple model for reasoning

8

A ⇒ (B or C)

A, Not C

p
e

rc
e

iv
e

s

infers B

KB

B

A, Not C,
Inference

added to

Agent

A generic knowledge-based agent

9

Inference mechanisms are hidden inside TELL and ASK

function KB-AGENT(percept) returns an action

persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

action ← ASK(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE(action, t))

t ← t + 1

return action

A generic knowledge-based agent

10

• Declarative approach

• Empty KB → TELL the agent the facts, one by one until it knows how

to operate in its environment

• Procedural approach

• Encode desired behaviors directly as program code

• Combined approach → Partially autonomous

• Learning approach (Chapter 18) → Fully autonomous

• Provide a knowledge-based agent with mechanisms that allow it to

learn for itself

The Wumpus world

11

PEAS Description

12

• Environment

• 4×4 grid of rooms, agent starts in the square [1,1], facing to the right

• The locations of Gold and Wumpus are random

• Each square can be a pit, with probability 0.2

• Performance measure

• +1000 for climbing out of the cave with gold, -1000 for death

• -1 per step, -10 for using the arrow

• The game ends when agent dies or climbs out of the cave

• Actuators: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑, 𝑇𝑢𝑟𝑛𝐿𝑒𝑓𝑡/𝑇𝑢𝑟𝑛𝑅𝑖𝑔ℎ𝑡 by 90o, 𝐺𝑟𝑎𝑏, 𝑆ℎ𝑜𝑜𝑡, 𝐶𝑙𝑖𝑚𝑏

• Sensors: 𝑆𝑡𝑒𝑛𝑐ℎ, 𝐵𝑟𝑒𝑒𝑧𝑒, 𝐺𝑙𝑖𝑡𝑡𝑒𝑟, 𝐵𝑢𝑚𝑝, 𝑆𝑐𝑟𝑒𝑎𝑚

• Percept: [𝑆𝑡𝑒𝑛𝑐ℎ, 𝐵𝑟𝑒𝑒𝑧𝑒, 𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒]

Characterize the Wumpus world

13

• Fully Observable: No – only local perception

• Deterministic: Yes – outcomes exactly specified

• Episodic: No – sequential at the level of actions

• Static: Yes – Wumpus and Pits do not move

• Discrete: Yes

• Single-agent: Yes – Wumpus is essentially a natural feature

Exploring a Wumpus world

14

Exploring a Wumpus world

15

Exploring a Wumpus world

16

Exploring a Wumpus world

17

Propositional logic

18

Logic in general

• A formal language for representing information and then

drawing conclusions.

• Syntax defines the well-formed sentences in the language

• Semantics define the "meaning" of sentences

• I.e., define truth of a sentence with respect to each possible world

• For example, the language of arithmetic

• 𝑥 + 𝑦 = 4 is a sentence while 𝑥4𝑦 +=

• 𝑥 + 𝑦 = 4 is true in a world where 𝑥 = 2 and 𝑦 = 2 while false in a

world where 𝑥 = 1 and 𝑦 = 1

19

Logics in general

• Models (or possible worlds) are mathematical abstractions

that fix the truth or falsehood of every relevant sentence.

• E.g., all possible assignments of real numbers to 𝑥 and 𝑦

• 𝑚 satisfies (or is a model of) 𝛼 if 𝛼 is true in model 𝑚

• 𝑀 𝛼 = the set of all models of 𝛼

20

Entailment in logic

• A sentence follows logically from another sentence: 𝜶 ⊨ 𝜷

• For example,

• 𝑥 = 0 entails 𝑥𝑦 = 0

• The KB containing “Apple is red” and “Tomato is red” entails “Either

the apple or the tomato is red”

• Entailment is a relationship between sentences (i.e., syntax)

that is based on semantics.

21

• 𝜶 ⊨ 𝜷 if and only if, in every model

in which 𝜶 is true, 𝜷 is also true,

i.e. 𝑀 𝛼 ⊆ 𝑀 𝛽

Entailment in logic: Wumpus world

• Consider two possible conclusions 𝛼1 and 𝛼2

“There is no pit in [2,2].”
“There is no pit in [1,2].”

22

𝑲𝑩 ⊭ 𝜶𝟐
𝑲𝑩 ⊨ 𝜶𝟏

Logical inference

• 𝐾𝐵 ⊨𝑖 𝛼 means 𝛼 can be derived from 𝐾𝐵 by procedure 𝑖

• Soundness: 𝑖 is sound if whenever 𝐾𝐵 ⊨𝑖 𝛼, it is also true

that 𝐾𝐵 ⊨ 𝛼

• Completeness: 𝑖 is complete if whenever 𝐾𝐵 ⊨ 𝛼, it is also

true that 𝐾𝐵 ⊨𝑖 𝛼

• That is, the procedure will answer any question whose

answer follows from what is known by the KB.

23

World and representation

24

Socrates is a man Socrates is mortalAll men are mortal

[470 – 399 BC]

No independent access to the world

• The reasoning agent gets its knowledge about the facts of

the world as a sequence of logical sentences

• Conclusions must be drawn only from those → without

agent’s independent access to the world

• Thus, it is very important that the agent’s reasoning is sound!

25

Propositional logic: Syntax

• Constants: TRUE or FALSE

• Symbols stand for propositions (sentences): 𝑃, 𝑄, 𝑃1,𝑊1,3, …

• Logical connectives

• Literal: atomic sentence (P) or negated atomic sentence (P)

26

NOT Negation

AND Conjunction

OR Disjunction

IMPLIES Implication (if..then)

IFF Equivalence, biconditional

Propositional logic: Syntax

27

Propositional logic: Semantics

• Each model specifies true/false for each proposition symbol.

• E.g., 𝑚1 = {𝑃1,2 = 𝑓𝑎𝑙𝑠𝑒, 𝑃2,2 = 𝑓𝑎𝑙𝑠𝑒, 𝑃3,1 = 𝑡𝑟𝑢𝑒}, 8 possible models

• Rules for evaluating truth with respect to a model 𝑚

• Simple recursive process evaluates an arbitrary sentence.

• E.g.,¬𝑃1,2 ∧ 𝑃2,2 ∨ 𝑃3,1 = 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 ∨ 𝑓𝑎𝑙𝑠𝑒 = 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝑡𝑟𝑢𝑒

28

A simple knowledge base

• Symbols for each position [𝑖, 𝑗]

• 𝑃𝑖,𝑗: there is a pit in [𝑖, 𝑗]

• 𝑊𝑖,𝑗: there is a Wumpus in [𝑖, 𝑗]

• Sentences in Wumpus world’s 𝐾𝐵

29

𝑅1: 𝑃1,1

𝑅2: 𝐵1,1 (𝑃1,2 𝑃2,1)

𝑅3: 𝐵2,1 (𝑃1,1 𝑃2,2 𝑃3,1)

𝑅4: 𝐵1,1

𝑅5: 𝐵2,1

• 𝐵𝑖,𝑗: there is a breeze in [𝑖, 𝑗]

• 𝑆𝑖,𝑗: there is a stench in [𝑖, 𝑗]

A simple inference procedure

• Given: a set of sentences, 𝑲𝑩, and sentence 𝜶

• Goal: answer 𝑲𝑩 ⊨ 𝜶? = “Does 𝑲𝑩 semantically entail 𝜶?”

• In all interpretations in which 𝐾𝐵’s sentences are true, is 𝛼 also true?

• E.g., in the Wumpus world, 𝐾𝐵 ⊨ 𝑃1,2? = “Is there is a pit in [1,2]?”

30

Model-checking approach (Inference by enumeration)

Inference rules

Conversion to the inverse SAT problem (Resolution refutation)

Model-checking approach

• Check if 𝛼 is true in every model in which 𝐾𝐵 is true.

• E.g., the Wumpus’s KB has 7 symbols → 27 = 128 models

• Draw a truth table for checking

31

No pit in [1,2]

Inference by (depth-first) enumeration

32

function TT-ENTAILS?(KB,α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols ← a list of the proposition symbols in KB and α

return TT-CHECK-ALL(KB,α,symbols,{ })

function TT-CHECK-ALL(KB,α,symbols,model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB,model) then return PL-TRUE?(α,model)

else return true // when KB is false, always return true

else do

P ← FIRST(symbols)

rest ← REST(symbols)

return (TT-CHECK-ALL(KB,α,rest,model ∪ {P = true})

and TT-CHECK-ALL(KB,α,rest,model ∪ {P = false}))

sound and complete

Time complexity 𝑂(2𝑛), space complexity 𝑂(𝑛)

Quiz 01: Model-checking approach

• Given a KB containing the following rules and facts

R1: IF hot AND smoky THEN fire

R2: IF alarm_beeps THEN smoky

R3: IF fire THEN sprinklers_on

F1: alarm_beeps

F2: hot

• Represent the KB in propositional logic with given symbols

• H = hot, S = smoky, F = fire, A = alarms_beeps, R = sprinklers_on

• Answer the question “Sprinklers_on?” by using the model-

checking approach.

33

Propositional theorem proving

34

• Proof by Resolution

• Forward and Backward Chaining

Inference rules approach

• Theorem proving: Apply rules of inference directly to the

sentences in KB to construct a proof of the desired sentence

without consulting models

• More efficient than model checking when the number of

models is large, yet the length of the proof is short

35

Logical equivalence

• Two sentences, 𝛼 and 𝛽, are logically equivalent if they are

true in the same set of models.

𝜶 ≡ 𝜷 𝒊𝒇𝒇 𝜶 ⊨ 𝜷 𝒂𝒏𝒅 𝜷 ⊨ 𝜶

36

Validity

• A sentence is valid if it is true in all models.

• E.g., 𝑃 ∨ ¬𝑃, 𝑃 ⇒ ¬𝑃, (P ∧ 𝑃 ⇒ 𝑄) ⇒ 𝑄

• Valid sentences are also known as tautologies.

• Validity is connected to inference via the Deduction Theorem

𝛼 ⊨ 𝛽 𝑖𝑓𝑓 𝛼 ⇒ 𝛽 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑

37

Satisfiability

• A sentence is satisfiable if it is true in some model.

• E.g., 𝑃 ∨ 𝑄, 𝑃

• A sentence is unsatisfiable if it is true in no models.

• E.g., 𝑃 ∧ ¬𝑃

• Satisfiability is connected to inference via the following

𝛼 ⊨ 𝛽 𝑖𝑓𝑓 𝛼 ∧ ¬𝛽 𝑖𝑠 𝑢𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒

→ Refutation or proof by contradiction

• The SAT problem determines the satisfiability of sentences

in propositional logic (NP-complete)

• E.g., in CSPs, the constraints are satisfiable by some assignment.

38

Quiz 02: Validity and Satisfiability

• Check the validity and satisfiability of the below sentences

using the truth table

1. 𝐴 ∨ 𝐵 ⇒ 𝐴 ∧ 𝐶

2. 𝐴 ∧ 𝐵 ⇒ 𝐴 ∨ 𝐶

3. (𝐴 ∨ 𝐵) ∧ (¬𝐵 ∨ 𝐶) ⇒ 𝐴 ∨ 𝐶

4. (𝐴 ∨ ¬𝐵) ⇒ 𝐴 ∧ 𝐵

39

Inference and Proofs

• Proof: A chain of conclusions leads to the desired goal

• Example sound rules of inference

40

α β

α

∴ β

α β

β

∴ α

α

β

∴ α β

α β

∴ α

Modus Ponens Modus Tollens AND-Introduction AND-Elimination

Inference rules: An example

41

No. Sentences Explanation

1 𝑃 ∧ 𝑄 From KB

2 𝑃 ⇒ 𝑅 From KB

3 𝑄 ∧ 𝑅 ⇒ 𝑆 From KB

4 𝑃 1 And-Elim

5 𝑅 4,2 Modus Ponens

6 𝑄 1 And-Elim

7 𝑄 ∧ 𝑅 5,6 And-Intro

8 𝐒 3,7 Modus Ponens

KB

𝑃 ∧ 𝑄

𝑃 ⇒ 𝑅

𝑄 ∧ 𝑅 ⇒ 𝑆

𝑺?

Inference rules in Wumpus world

• Bi-conditional elimination to 𝑅2 : 𝑅6 : 𝐵1,1 ⇒ 𝑃1,2 𝑃2,1 ∧ 𝑃1,2 𝑃2,1 ⇒ 𝐵1,1

• And-Elimination to 𝑅6 : 𝑅7 : 𝑃1,2 𝑃2,1 ⇒ 𝐵1,1

• Logical equivalence for contrapositives: 𝑅8 : 𝐵1,1 ⇒ 𝑃1,2 𝑃2,1

• Modus Ponens with 𝑅8 and the percept 𝑅4 : 𝑅9: 𝑃1,2 𝑃2,1

• De Morgan’s rule: 𝑅10 : 𝑃1,2 ∧ 𝑃2,1

42

Proof: 𝑃1,2𝑅1: 𝑃1,1

𝑅2: 𝐵1,1 (𝑃1,2 𝑃2,1)

𝑅3: 𝐵2,1 (𝑃1,1 𝑃2,2 𝑃3,1)

𝑅4: 𝐵1,1

𝑅5: 𝐵2,1

Proving by search

• Search algorithms can be applied to find a sequence of

steps that constitutes a proof.

• INITIAL STATE: the initial knowledge base

• ACTIONS: apply all inference rules to all the sentences that match

the top half of the inference rule

• RESULT: add the sentence in the bottom half of the inference rule

• GOAL: a state that contains the sentence need to be proved

• The proof can ignore irrelevant propositions, no matter how

many of them there are → more efficient

• E.g., in the Wumpus world, 𝐵2,1 , 𝑃1,1 , 𝑃2,2 𝑎𝑛𝑑 𝑃3,1 are not mentioned.

43

Monotonicity

• The set of entailed sentences only increases as information

is added to the knowledge base.

𝑖𝑓 𝐾𝐵 ⊨ 𝛼 𝑡ℎ𝑒𝑛 𝐾𝐵 ∧ 𝛽 ⊨ 𝛼

• Additional conclusions can be drawn without invalidating any

conclusion 𝛼 already inferred.

44

Proof by Resolution

• Proof by Inference Rules: sound but not complete

• If the rules are inadequate, then the goal is not reachable.

• Resolution: sound and complete, a single inference rule

• A complete inference algorithm when coupled with any complete

search algorithm

• Unit resolution inference rule

• Full resolution rule

45

𝑙1 ∨ ⋯∨ 𝑙𝑘

𝑚

𝑙1 ∨ ⋯∨ 𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ⋯∨ 𝑙𝑘
where 𝑙𝑖 and 𝑚 are complementary literals

𝑙1 ∨ ⋯∨ 𝑙𝑘

𝑚1 ∨ ⋯∨𝑚𝑛

𝑙1 ∨ ⋯∨ 𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ⋯∨ 𝑙𝑘 ∨ 𝑚1 ∨ ⋯∨𝑚𝑗−1 ∨ 𝑚𝑗+1 ∨ ⋯∨𝑚𝑛

where 𝑙𝑖 and 𝑚𝑗 are complementary literals

Inference rules in Wumpus world

46

𝑅1: 𝑃1,1

𝑅2: 𝐵1,1 (𝑃1,2 𝑃2,1)

𝑅3: 𝐵2,1 (𝑃1,1 𝑃2,2 𝑃3,1)

𝑅4: 𝐵1,1

𝑅5: 𝐵2,1

𝑅6: 𝐵1,1 ⇒ 𝑃1,2 𝑃2,1 ∧ 𝑃1,2 𝑃2,1 ⇒ 𝐵1,1

𝑅7: 𝑃1,2 ∧ 𝑃2,1 ⇒ 𝐵1,1

𝑅8: 𝐵1,1 ⇒ 𝑃1,2 𝑃2,1

𝑅9 : 𝑃1,2 𝑃2,1

𝑅10 : 𝑃1,2 ∧ 𝑃2,1

Inference rules in Wumpus world

47

𝑅1: 𝑃1,1

…

𝑅11: 𝐵1,2

𝑅12: 𝐵1,2 𝑃1,1 𝑃2,2 𝑃1,3

𝑅13: 𝑃2,2

𝑅14: 𝑃1,3

𝑅15: 𝑃1,1 𝑃2,2 𝑃3,1

𝑅16: 𝑃1,1 𝑃3,1

𝑅17: 𝑃3,1

P2,2 resolves with P2,2

P1,1 resolves with P1,1

Proof by Resolution

• Factoring: the resulting clause should contain only one copy

of each literal.

• E.g., resolving (𝐴 ∨ 𝐵) with (𝐴 ∨ ¬𝐵) obtains (𝐴 ∨ 𝐴)→ reduced to 𝐴

• For any sentences 𝛼 and 𝛽 in propositional logic, a

resolution-based theorem prover can decide whether 𝛼 ⊨ 𝛽.

48

Conjunctive Normal Form (CNF)

• Resolution applies only to clauses, i.e., disjunctions of literals

→ Convert all sentences in KB into clauses (CNF form)

• For example, convert 𝐵1,1 (𝑃1,2 𝑃2,1) into CNF

(¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1) ∧ (¬𝑃1,2 ∨ 𝐵1,1) ∧ (¬𝑃2,1 ∨ 𝐵1,1)

→ A conjunction of 3 clauses

49

Conversion to CNF

1. Eliminate : 𝛼 ⇔ 𝛽 ≡ 𝛼 ⇒ 𝛽 ∧ 𝛽 ⇒ 𝛼

2. Eliminate : 𝛼 ⇒ 𝛽 ≡ ¬𝛼 ∨ 𝛽

3. The operator ¬ appears only in literals: “move ¬ inwards”

¬¬𝛼 ≡ 𝛼 (double-negation elimination)

¬(𝛼 ∧ 𝛽) ≡ ¬𝛼 ∨ ¬𝛽 (De Morgan)

¬(𝛼 ∨ 𝛽) ≡ ¬𝛼 ∧ ¬𝛽 (De Morgan)

4. Apply the distributivity law to distribute ∨ over ∧

(𝛼 ∧ 𝛽) ∨ 𝛾 ≡ (𝛼 ∨ 𝛾) ∧ (𝛽 ∨ 𝛾)

50

Quiz 03: Conversion to CNF

• Convert the following sentences into CNF

1. (𝐴 ∧ 𝐵) ⇒ (𝐶 ⇒ 𝐷)

2. 𝑃 ∨ 𝑄 𝑅 ∧ ¬𝑄 ⇒ 𝑃

51

The resolution algorithm

• Proof by contradiction (resolution refutation): To show that

𝐾𝐵 ⊨ 𝛼, prove 𝐾𝐵 ∧ ¬𝛼 is unsatisfiable

52

function PL-RESOLUTION(KB,α) returns true or false

inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of KB ∧ ¬α

new ← { }

loop do

for each pair of clauses Ci , Cj in clauses do

resolvents ← PL-RESOLVE(Ci , Cj)

if resolvents contains the empty clause then return true

new ← new ∪ resolvents

if new ⊆ clauses then return false

clauses ← clauses ∪ new

The resolution algorithm

• Many resolution steps are pointless.

• Clauses with two complementary literals can be discarded.

• E.g., 𝐵1,1 ¬𝐵1,1 𝑃2,1 ≡ 𝑇𝑟𝑢𝑒 𝑃2,1 ≡ 𝑇𝑟𝑢𝑒

53

Problems of inference rules

• Too many propositions to handle

• The statement “Do not go forward if the Wumpus is in front of you”

requires 16 squares 4 orientations = 64 propositional rules.

• It will take thousands of rules to build an agent.

• Changes of the KB over time is difficult to represent

• Standard technique is to index facts with the time when they are true

• This means we have a separate KB for every time point.

54

Quiz 04: The resolution algorithm

• Given the following hypotheses

• If it rains, Joe brings his umbrella.

• If Joe brings his umbrella, Joe does not get wet.

• If it does not rain, Joe does not get wet.

• Prove that Joe does not get wet.

55

Quiz 04: The resolution algorithm

• The KB contains facts and hypotheses

• Check if the sentence

¬𝑊 is entailed by KB?

KB

𝑅 ⇒ 𝑈

𝑈 ⇒ ¬𝑊

¬𝑅 ⇒ ¬𝑊

No. Sentences Explanation

1 ¬𝑅 ∨ 𝑈 From KB

2 ¬𝑈 ∨ ¬𝑊 From KB

3 𝑅 ∨ ¬𝑊 From KB

4 𝑊 Negated conclusion

5 ¬𝑅 ∨ ¬𝑊 1 and 2

6 ¬𝑊 3 and 5

7 ⚫ 4 and 6 56

Horn clauses and Definite clauses

• Definite clause: a disjunction of literals of which exactly one

is positive.

• E.g., ¬𝑃 ∨ ¬𝑄 ∨ 𝑅 is a definite clause, whereas ¬𝑃 ∨ 𝑄 ∨ 𝑅 is not.

• Horn clause: a disjunction of literals of which at most one is

positive.

• All definite clauses are Horn clauses

• Goal clause: clauses with no positive literals

• Horn clauses are closed under resolution

• Resolving two Horn clauses will get back a Horn clause.

57

Backus normal form (BNF)

58

KB of definite clauses

• KB containing only definite clauses are interesting.

• Every definite clause can be written as an implication.

• Premise (body) is a conjunction of positive literals and Conclusion

(head) is a single positive literal (fact)→ easier to understand

• E.g., ¬𝑃 ∨ ¬𝑄 ∨ 𝑅 ≡ 𝑃 ∧ 𝑄 ⇒ 𝑅

• Inference can be done with forward-chaining and backward-

chaining algorithms

• This type of inference is the basis for logic programming.

• Deciding entailment can be done in linear time.

59

KB: Horn clauses vs. CNF clauses

60

Clause 1 Clause 2 Clause n

Disjuctions of literals

(𝑙1 ∨ 𝑙2 ∨ ⋯∨ 𝑙𝑚)

∧ ∧ … ∧

Disjunctions of literals of which at most one is positive

(¬𝑙1 ∨ ¬𝑙2 ∨ ⋯∨ 𝑙𝑚)

Restricted form

CNF clauses

Horn clauses

Forward chaining

• Key idea: Fire any rule whose premises are satisfied in the

KB, add its conclusion to the KB, until the query is found.

61

OR

AND

The forward chaining algorithm

62

function PL-FC-ENTAILS?(KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional definite clauses

q, the query, a proposition symbol

count ← a table, where count[c] is the number of symbols in c’s premise

inferred ← a table, where inferred[s] is initially false for all symbols

agenda ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do

p ← POP(agenda)

if p = q then return true

if inferred[p] = false then

inferred[p] ← true

for each clause c in KB where p is in c.PREMISE do

decrement count[c]

if count[c] = 0 then add c.CONCLUSION to agenda

return false

Sound and complete

Forward chaining: An example

63

Forward chaining: An example

64

Forward chaining: An example

65

Forward chaining: An example

66

Forward chaining: An example

67

Forward chaining: An example

68

Forward chaining: An example

69

Forward chaining: An example

70

Forward chaining: Another example

71

No. Sentences Explanation

1 𝐴 ∧ 𝐵 ⇒ 𝐶 From KB

2 𝐶 ∧ 𝐷 ⇒ 𝐸 From KB

3 𝐶 ∧ 𝐹 ⇒ 𝐺 From KB

4 𝐴 From KB

5 𝐵 From KB

6 𝐷 From KB

7 𝐶 1, 4 and 5

8 𝑬 2, 6, and 7

KB

𝐴 ∧ 𝐵 ⇒ 𝐶

𝐶 ∧ 𝐷 ⇒ 𝐸

𝐶 ∧ 𝐹 ⇒ 𝐺

𝐴

𝐵

𝐷

𝑬?

Backward chaining

• Key idea: Work backwards from the query 𝒒

• Check if 𝒒 is known already, or

• Recursively prove by BC all premises of some rule concluding 𝒒

• Avoid loops: A new subgoal is already on the goal stack?

• Avoid repeated work: A new subgoal has already been

proved true, or has already failed?

72

Backward chaining: An example

73

Backward chaining: An example

Q? P Q

P?

74

Backward chaining: An example

Q? P Q

P? L M P

L?

75

Backward chaining: An example

Q? P Q

P? L M P

L? A B L

A? ✓

76

Backward chaining: An example

Q? P Q

P? L M P

L? A B L

A? ✓

B? ✓

77

Backward chaining: An example

Q? P Q

P? L M P

L? ✓

A? ✓

B? ✓

78

Backward chaining: An example

Q? P Q

P? L M P

L? ✓

A? ✓

B? ✓

M? L B M

L?

B?

79

Backward chaining: An example

Q? P Q

P? L M P

L? ✓

A? ✓

B? ✓

M?✓

L? ✓

B? ✓

80

Backward chaining: An example

Q? ✓

P? ✓

L? ✓

A? ✓

B? ✓

M?✓

L? ✓

B? ✓

81

Backward chaining: An example

Q? ✓

P? ✓

L? ✓

A? ✓

B? ✓

M?✓

L? ✓

B? ✓

82

Backward chaining: Another example

83

KB

𝐴 ∧ 𝐵 ⇒ 𝐶

𝐶 ∧ 𝐷 ⇒ 𝐸

𝐶 ∧ 𝐹 ⇒ 𝐺

𝐴

𝐵

𝐷

𝑬?

• E? 𝐶 ∧ 𝐷 ⇒ 𝐸

• C? 𝐴 ∧ 𝐵 ⇒ 𝐶

• A?

• B?

• D?

• A, B and D are given → All needed rules

are satisfied → The goal is proven.

Forward vs. Backward chaining

• Forward chaining: data-driven, automatic, unconscious

processing

• E.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal

• Backward chaining: goal-driven, good for problem-solving

• E.g., Where are my keys? How do I get into a PhD program?

• Complexity can be much less than linear in size of KB

84

Quiz 05: Forward vs. Backward chaining

• Given a KB containing the following rules and facts

R1: IF hot AND smoky THEN fire

R2: IF alarm_beeps THEN smoky

R3: IF fire THEN sprinklers_on

F1: alarm_beeps

F2: hot

• Represent the KB in propositional logic with given symbols

• H = hot, S = smoky, F = fire, A = alarms_beeps, R = sprinklers_on

• Answer the question “Sprinklers_on?” by using the forward

chaining and backward chaining approaches

85

Effective model checking

86

• A complete backtracking algorithm

• Local search algorithms

Efficient propositional inference

• The SAT problem (checking satisfiability)

• Testing entailment, 𝛼 ⊨ 𝛽? = testing unsatisfiability of 𝛼 ∧ ¬𝛽

• Two families of efficient algorithms for general propositional

inference based on model checking

1. Complete backtracking search algorithms

• DPLL algorithm (Davis, Putnam, Logemann, Loveland)

2. Incomplete local search algorithms (hill-climbing)

• WalkSAT algorithm

87

The DPLL algorithm

88

• Often called the Davis-Putnam algorithm (1960)

• Determine whether an input propositional logic sentence (in

CNF) is satisfiable.

• A recursive, depth-first enumeration of possible models.

• Improvements over truth table enumeration

1. Early termination

2. Pure symbol heuristic

3. Unit clause heuristic

Improvements in DPLL

89

• Early termination: A clause is true if any literal is true, and a sentence is

false if any clause is false.

• Avoid examination of entire subtrees in the search space

• E.g., (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶) is true if 𝐴 is true, regardless 𝐵 and 𝐶

• Pure symbol heuristic: A pure symbol always appears with the same

"sign" in all clauses.

• E.g., 𝐴 ∨ ¬𝐵 , ¬𝐵 ∨ ¬𝐶 , (𝐴 ∨ 𝐶), 𝐴 and 𝐵 are pure, 𝐶 is impure.

• Make a pure symbol true → Doing so never make a clause false

• Unit clause heuristic: there is only one literal in the clause and thus this

literal must be true

• Unit propagation: if the model contains 𝐵 = 𝑡𝑟𝑢𝑒 then ¬𝐵 ∨ ¬𝐶 simplifies

to a unit clause ¬𝐶 → 𝐶 must be false (so that ¬𝐶 is true) → 𝐴 must be true

(so that 𝐴 ∨ 𝐶 is true)

90

The DPLL procedure

1. Early

Termination
2

3

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value ← FIND-PURE-SYMBOL(symbols, clauses, model)

if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})

P, value ← FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})

P ← FIRST(symbols); rest ← REST(symbols)

return DPLL(clauses, rest, model ∪ {P=true}) or

DPLL(clauses, rest, model ∪ {P=false}))

function DPLL-SATISFIABLE?(s) returns true or false

inputs: s, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s

symbols ← a list of the proposition symbols in s

return DPLL(clauses, symbols,{ })

The Davis-Putnam procedure

91

function DP()

for in vocabulary () do

var ’ { };

for1 in for2 in such that 1 2 do

var’ 1 – {} 2 – {};

if not tautology(’) then ’ ’ (’);

 – { | or } ’ ;

return {if { } then unsatisfiable else satisfiable};

function tautology()

 and

DPLL procedure vs. DP procedure

• DP can cause a quadratic expansion every time it is applied.

• This can easily exhaust space on large problems.

• DPLL attacks the problem by sequentially solving smaller

problems.

• Basic idea: Choose a literal. Assume true, simplify clause set, and try

to show satisfiable. Repeat for the negation of the literal.

• Good because we do not cross multiply the clause set

92

DPLL procedure vs. DP procedure

93

Reference: http://logic.stanford.edu/classes/cs157/2011/lectures/lecture04.pdf

The WalkSAT algorithm

• Incomplete, local search algorithm

• Evaluation function: min-conflict heuristic, to minimize the

number of unsatisfied clauses

• Balance between greediness and randomness

94

The WalkSAT algorithm

• The algorithm returns a model → satisfiable

• The algorithm returns false → unsatisfiable OR more time is

needed for searching

• WalkSAT cannot always detect unsatisfiability

• It is most useful when a solution is expected to exist.

• For example,

• An agent cannot reliably use WALKSAT to prove that a square is

safe in the Wumpus world.

• Instead, it can say, “I thought about it for an hour and couldn’t come

up with a possible world in which the square isn’t safe.”

95

Inference-based agents in the Wumpus world

• A Wumpus-world agent using propositional logic will have a

KB of 64 distinct proposition symbols, 155 sentences.

P1,1

W1,1

Bx,y (Px,y+1 Px,y-1 Px+1,y Px-1,y)

Sx,y (Wx,y+1 Wx,y-1 Wx+1,y Wx-1,y)

W1,1 W1,2 … W4,4

W1,1 W1,2

W1,1 W1,3

…

96

Limitation of propositional logic

• The propositional logic encounters expressiveness limitation.

• KB contains "physics" sentences for every single square

• E.g., for every time 𝑡 and every location [𝑥, 𝑦]

𝐿𝑥,𝑦 ∧ 𝐹𝑎𝑐𝑖𝑛𝑔𝑅𝑖𝑔ℎ𝑡𝑡 ∧ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑡 ⇒ 𝐿𝑥+1,𝑦

• Rapid proliferation of clauses

97

Quiz 06: DPLL and DP

• Given a KB as shown aside

• Using either DPLL or DP to check whether KB entails each

of the following sentences

• 𝑪

• 𝑩 ⇒ ¬𝑪

98

KB

𝐴 ⇒ 𝐵 ∨ C

𝐴 ⇒ 𝐷

C ∧ D ⇒ ¬𝐹

𝐵 ⇒ 𝐹

𝐴

99

THE END

