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Representation
revisited
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Programming languages

• By far the largest class of formal languages in common use

• E.g., C++, Java or Lisp, etc.

• Programs represent computational processes while their

data structures represent facts.

• E.g., the Wumpus world can be represented by a 4 × 4 array,

“World[2,2] ← Pit” states that “There is a pit in square [2,2].”
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Programming languages

• Lack of general mechanisms to derive facts from other facts

• Update to a data structure is done by a domain-specific procedure.

• Lack of expressiveness to handle partial information

• E.g., to say “There is a pit in [2,2] or [3,1]”, a program stores a single

value for each variable and allows the value to be “unknown”, while

the propositional logic sentence, 𝑃2,2 ∨ 𝑃3,1, is more intuitive.
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Propositional logic

• Propositional logic is a declarative language.

• Semantics is based on the truth relation between sentences and

possible worlds.

• It handles partial information using disjunction and negation.

• Propositional logic is compositional, which is desirable in

representation languages

• The meaning of a sentence is a function of the meaning of its parts

• E.g., The meaning of 𝑆1,4 ∧ 𝑆1,2 relates the meanings of 𝑆1,4 and 𝑆1,2.
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Propositional logic

• Meaning in propositional logic is context-independent.

• The natural language, on the other hand, are dependent on context.

• Propositional logic has very limited expressive power.

• E.g., cannot say “Pits cause breezes in adjacent squares“, except by

writing one sentence for each square

𝐵1,1 ⇔ 𝑃1,2 ∨ 𝑃2,1 , 𝐵2,2 ⇔ 𝑃1,2 ∨ 𝑃2,1 ∨ 𝑃3,2 ∨ 𝑃3,1 , etc.
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First-order logic

• Objects are referred by nouns and noun phrases.

• E.g., people, houses, numbers, colors, Bill Gates, games, wars, etc.

• Relations can be unary relations (properties) or 𝒏 -ary

relations, representing by verbs and verb phrases

• Properties: red, round, prime, etc.

• 𝑛-ary relations: brother of, bigger than, part of, comes between, etc.

• Functions are relations in which there is only one “value” for

a given “input.”

• E.g., father of, best friend, one more than, etc.

8



First-order logic: Some examples

• “One plus two equals three.”

• Object: one, two, three, one plus two

• Relation: equal

• “Squares neighboring the Wumpus are smelly.”

• Object: squares, Wumpus

• Property: smelly

• “The intelligent AlphaGo beat the world champion in 2016.”

• Object: AlphaGo, world champion, 2016

• Property: intelligent 
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• Function: plus

• Relation: neighboring

• Relation: beat
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Language
Ontological Commitment

(What exists in the world)

Epistemological 

Commitment 

(What an agent believes 

about facts)

Propositional logic Facts True/false/unknown

First-order logic Facts, objects, relations True/false/unknown

Temporal logic Facts, objects, relations, time True/false/unknown

Probability logic Facts Degree of belief ∈ [0,1]

Fuzzy logic
Facts with degree of truth ∈
[0,1]

Known interval value

Types of logics



Syntax and Semantics of FOL
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• Models for First-Order Logic

• Symbols and Interpretations

• Terms

• Atomic Sentences

• Complex Sentences

• Quantifiers

• Equality



Models for a logic language

• Formal structures that constitute the possible worlds under

consideration

• Each model links the vocabulary of sentences to elements of the

possible world → determine the truth of any sentence

• Models for propositional logic link proposition symbols to

predefined truth values.

• Models for first-order logic are more interesting with objects.
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Models for First-order logic

• The domain of a model is the set of objects (or domain

elements) it contains.

• Nonempty — Every possible world must contain at least one

object

• It doesn’t matter what these objects are but how many there are in

each model.
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Models for FOL: A concrete example

• 5 objects

• 2 binary relations

• 3 unary relations

• 1 unary function
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Models for FOL: A concrete example
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• 5 objects 

Richard the Lionheart

(King of England 

1189-1199)

King John 

(King of England

1199-1215)

The left 

leg of 

Richard

The left 

leg of 

John

A crown



Models for FOL: A concrete example

• Binary relations

• The brotherhood relation

{ Richard the Lionheart, King John, King John, Richard the Lionheart }

• The “on head” relation

{ The crown, King John }

• Unary relations: “person”, “king”, “crown” 

• Functions: “left leg”

• Richard the Lionheart → Richard’s left leg

• King John → John’s left leg
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Symbols

• Constant symbols represents objects.

• E.g., Richard, John, etc.

• Predicate symbols stand for relations.

• E.g., Brother , OnHead, Person, King, and Crown, etc.

• Function symbols stand for functions.

• E.g., LeftLeg

• Each predicate or function symbol comes with an arity that

fixes the number of arguments.

• E.g., Brother(x,y) → binary, LeftLeg(x) → unary, etc.

• These symbols begins with uppercase letters by convention.
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Intended interpretation

• Interpretation specifies exactly which objects, relations and

functions are referred to by the symbol.

• Each model includes an (intended) interpretation.

• For example,

• Richard the Lionheart and King John refers two Kings in England.

• Brother refers to the brotherhood relation, OnHead refers to the “on

head” relation that holds between the crown and King John

• Person, King, and Crown refer to the sets of objects that are

persons, kings, and crowns, respectively.

• LeftLeg refers to the “left leg” function
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The syntax of First-order logic
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The syntax of First-order logic
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* The precedence of quantifiers is such that a quantifier holds over everything to

the right of it.



Possible models in First-order logic

• Similar to propositional logic, entailment, validity, and so on

are defined in terms of all possible models.

• The number of possible models is unbounded.

→ checking entailment by the enumeration is infeasible
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137,506,194,466 models with six or fewer objects 



Terms 

• A term is a logical expression that refers to an object

• Constant symbols: 𝐽𝑜ℎ𝑛

• Function symbols: 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝐽𝑜ℎ𝑛)

• A complex term is formed by a function symbol followed by a

parenthesized list of terms as arguments.
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Term = or constant or variable

Complex term

function(term1,...,termn) 



The semantics of terms

• Consider a term, 𝑓(𝑡1, . . , 𝑡𝑛), that refers to some function 𝐹

• The arguments refer to objects in the domain, 𝑑1, . . , 𝑑𝑛.

• The whole term refers to the object that is the value of

applying 𝐹 to 𝑑1, . . , 𝑑𝑛.

• For example,

• The 𝐿𝑒𝑓𝑡𝐿𝑒𝑔 function symbol refers to the mapping between a

person and his left leg, and John refers to King John.

• 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝐽𝑜ℎ𝑛) refers to King John’s left leg.

• In this way, the interpretation fixes the referent of every term.
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Atomic sentence

• An atomic sentence state facts by using a predicate symbol

followed by a parenthesized list of terms.

• For example,

• Brother(Richard, John), Married(Father(Richard), Mother(John))

• It is true if the relation referred to by the predicate symbol

holds among the objects referred to by the arguments
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Atomic sentence = predicate(term1,...,termn)



Complex sentences

• A complex sentences are made from atomic sentences

using connectives.

• For example,

•  𝐵𝑟𝑜𝑡ℎ𝑒𝑟 (𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑), 𝐽𝑜ℎ𝑛)

• 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 (𝑅𝑖𝑐ℎ𝑎𝑟𝑑 , 𝐽𝑜ℎ𝑛) ∧ 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 (𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

• 𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ∨ 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)

•  𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ⇒ 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)

• …

• Syntax and semantics are the same as in propositional logic.
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Truth in First-order logic

• Sentences are true with respect to a model and an

interpretation.

• Model contains objects (domain elements) and relations

among them.

• Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations
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<variables> <sentence>

x P is true in a model m iff P is true with x being each possible 
object in the model.

Quantifiers: Universal quantification

• Expressions of general rules

• E.g., “All kings are persons.”: 𝑥 𝐾𝑖𝑛𝑔(𝑥) ⇒ 𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• E.g., “Students of FIT are smart.”: 𝑥 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥, 𝐹𝐼𝑇) ⇒ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• It is equivalent to the conjunction of instantiations of 𝑃.

Student(Lan, FIT) ⇒ Smart(Lan)

 Student(Tuan, FIT) ⇒ Smart(Tuan)

 Student(Long, FIT) ⇒ Smart(Long)

 …



Variables

• A variable is a term all by itself and able to serve as the

argument of a function

• E.g., in predicates 𝐾𝑖𝑛𝑔(𝑥) or in function 𝐿𝑒𝑓𝑡𝐿𝑒𝑔(𝑥).

• Usually represented by lowercase letters

• A term with no variables is called a ground term.
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A common mistake to avoid

• Typically,  is the main connective with 

• The conclusion of the rule just for those objects for whom the

premise is true

• It says nothing at all about individuals for whom the premise is false.

• Common mistake: using  as the main connective with 

• 𝑥 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥, 𝐹𝐼𝑇) ∧ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• It means “Everyone is a student of FIT and Everyone is smart.”

• Too strong implication
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<variables> <sentence>

 x P is true in a model m iff P is true with x being some possible 
object in the model.

Quantifiers: Existential quantification

• Expressions of “some cases”

• E.g., “Some students of FIT are smart.”

∃𝑥 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥, 𝐹𝐼𝑇) ∧ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• It is equivalent to the disjunction of instantiations of 𝑃.

Student(Lan, FIT)   Smart(Lan)

 Student(Tuan, FIT)  Smart(Tuan)

 Student(Long, FIT)  Smart(Long)

 …



Another common mistake to avoid

• Typically,  is the main connective with 

• Common mistake: using  as the main connective with 

• 𝑥 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥, 𝐹𝐼𝑇) ⇒ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• It is true even with anyone who is not at FIT.

• Too weak implication
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Nested quantifiers

• Multiple quantifiers enable more complex sentences.

• Simplest cases: Quantifiers are of the same type

• ∀𝑥∀𝑦 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑥, 𝑦 ⇒ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦)

• ∀𝑥∀𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦) ⇔ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑦, 𝑥)

• Mixtures

• ∀𝑥∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) − “Everybody loves somebody.”

• ∃𝑥∀𝑦 𝐿𝑜𝑣𝑒𝑠 𝑦, 𝑥 − “There is someone loved by everyone.”

• The order of quantification is therefore very important.
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Nested quantifiers

• Two quantifiers used with the same variable name leads to

confusion.

∀𝑥 (𝐶𝑟𝑜𝑤𝑛 𝑥 ∨ ∃𝑥 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑥 )

• Rule: The variable belongs to the innermost quantifier that

mentions it.

• Workaround: Use different variable names with nested

quantifiers, e.g., ∃𝑧 𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝑧
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Quantifier duality

•  and  relate to each other through negation.

• For example,

• ∀𝑥 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚 ¬∃𝑥 ¬𝐿𝑖𝑘𝑒𝑠 𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚

• ∃𝑥 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝐵𝑟𝑜𝑐𝑜𝑙𝑖 ¬∀𝑥 ¬𝐿𝑖𝑘𝑒𝑠 𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚

• De Morgan’s rules
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Equality symbol =

• 𝑡𝑒𝑟𝑚1 = 𝑡𝑒𝑟𝑚2 is true under a given interpretation iff 𝑡𝑒𝑟𝑚1

and 𝑡𝑒𝑟𝑚2 refer to the same object

• E.g., 𝐹𝑎𝑡ℎ𝑒𝑟 𝐽𝑜ℎ𝑛 = 𝐻𝑒𝑛𝑟𝑦 means that 𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛) and 𝐻𝑒𝑛𝑟𝑦

refer to the same object.

• It states facts about a given function

• The negation insists that two terms are not the same.

∃𝑥, 𝑦 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ∧ 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑦, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)
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∧ ¬(𝑥 = 𝑦)
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• Assertions and Queries in First-Order Logic

• The Kinship Domain

• Numbers, Sets, and Lists

• The Wumpus World

Using First-Order Logic



The kinship 
domain
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• Unary predicates

• Male and Female 

• Binary predicates represent kinship relations.

• Parenthood, brotherhood, marriage, etc. 

• Parent, Sibling, Brother , Sister, Child, Daughter, Son, Spouse, Wife, 

Husband, Grandparent , Grandchild , Cousin, Aunt, and Uncle. 

• Functions

• Mother and Father, each person has exactly one of each of these.



The kinship domain: Axioms

• One’s mother is one’s female parent

∀𝑚, 𝑐 𝑀𝑜𝑡ℎ𝑒𝑟(𝑐) = 𝑚 ⇔ 𝐹𝑒𝑚𝑎𝑙𝑒(𝑚) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑚, 𝑐)

• One’s husband is one’s male spouse:

∀𝑤, ℎ 𝐻𝑢𝑠𝑏𝑎𝑛𝑑(ℎ, 𝑤) ⇔ 𝑀𝑎𝑙𝑒(ℎ) ∧ 𝑆𝑝𝑜𝑢𝑠𝑒(ℎ, 𝑤)

• Male and female are disjoint categories:

∀𝑥 𝑀𝑎𝑙𝑒(𝑥) ⇔ ¬𝐹𝑒𝑚𝑎𝑙𝑒(𝑥)

• Parent and child are inverse relations:

∀𝑝, 𝑐 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑐) ⇔ 𝐶ℎ𝑖𝑙𝑑(𝑐, 𝑝)

• A grandparent is a parent of one’s parent:

∀𝑔, 𝑐 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑐) ⇔ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑝) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑐)

• A sibling is another child of one’s parents:

∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦) ⇔ ¬(𝑥 = 𝑦) ∧ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑥) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑦)
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The kinship domain: Theorems

• Theorems: logical sentences that are entailed by the axioms

• E.g., ∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦) ⇔ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑦, 𝑥)

• Theorems reduce the cost of deriving new sentences.

• They do not increase the set of conclusions that follow from 𝐾𝐵 → no

value from a pure logical point of view

• They are essential from a practical point of view.
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The set domain

• Sets are the empty set and those made by adjoining something to a set.

• 𝑠 𝑆𝑒𝑡(𝑠) ⇔ (𝑠 = { } ) ∨ (∃𝑥, 𝑠2 𝑆𝑒𝑡(𝑠2)  𝑠 = {𝑥|𝑠2})

• The empty set has no elements adjoined into it.

• 𝑥, 𝑠 {𝑥|𝑠} = { }

• Adjoining an element already in the set has no effect:

• 𝑥, 𝑠 𝑥 ∈ 𝑠 ⇔ 𝑠 = {𝑥|𝑠}

• The only members of a set are the elements that were adjoined into it.

• 𝑥, 𝑠 𝑥 ∈ 𝑠 ⇔ ∃𝑦, 𝑠2 (𝑠 = {𝑦|𝑠2}  (𝑥 = 𝑦 ∨ 𝑥 ∈ 𝑠2))]
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The set domain

• Can you interpret the following sentences?

• 𝑠1, 𝑠2 𝑠1 ⊑ 𝑠2 ⇔ (𝑥 𝑥 ∈ 𝑠1 ⇒ 𝑥 ∈ 𝑠2)

• 𝑠1, 𝑠2 𝑠1 = 𝑠2 ⇔ (𝑠1 ⊑ 𝑠2 ∧ 𝑠2 ⊑ 𝑠2)

• 𝑥, 𝑠1, 𝑠2 𝑥 ∈ (𝑠1∩ 𝑠2) ⇔ (𝑥 ∈ 𝑠1 ∧ 𝑥 ∈ 𝑠2)

• 𝑥, 𝑠1, 𝑠2 𝑥 ∈ (𝑠1∪ 𝑠2) ⇔ (𝑥 ∈ 𝑠1 ∨ 𝑥 ∈ 𝑠2)
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The Wumpus world: Input – Output

• Typical percept sentence

• Percept([Stench, Breeze, Glitter, None, None]. 5)

• Actions

• Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb

• To determine the best action, construct a query

• 𝐴𝑆𝐾𝑉𝐴𝑅𝑆(∃𝑎 𝐵𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑎, 5))

• Returns a binding list such as {𝑎/𝐺𝑟𝑎𝑏}
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The Wumpus world: The KB

• Perception

•  𝑡, 𝑠, 𝑔,𝑚, 𝑐 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 ([𝑠, 𝐵𝑟𝑒𝑒𝑧𝑒, 𝑔,𝑚, 𝑐], 𝑡) ⇒ 𝐵𝑟𝑒𝑒𝑧𝑒(𝑡)

•  𝑡, 𝑠, 𝑏,𝑚, 𝑐 𝑃𝑒𝑟𝑐𝑒𝑝𝑡 ([𝑠, 𝑏, 𝐺𝑙𝑖𝑡𝑡𝑒𝑟,𝑚, 𝑐], 𝑡) ⇒ 𝐺𝑙𝑖𝑡𝑡𝑒𝑟 (𝑡) …

• Reflex

• 𝑡 𝐺𝑙𝑖𝑡𝑡𝑒𝑟(𝑡) ⇒ 𝐵𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝐺𝑟𝑎𝑏, 𝑡)

• Environment definition:

𝑥, 𝑦, 𝑎, 𝑏 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡([𝑥, 𝑦], [𝑎, 𝑏]) ⇔

𝑥 = 𝑎 ∧ 𝑦 = 𝑏 − 1 ∨ 𝑦 = 𝑏 + 1

∨ (𝑦 = 𝑏 ∧ (𝑥 = 𝑎 − 1 ∨ 𝑥 = 𝑎 + 1))
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The Wumpus world: Hidden properties

44

• Properties of squares

𝑠, 𝑡 𝐴𝑡(𝐴𝑔𝑒𝑛𝑡, 𝑠, 𝑡) ∧ 𝐵𝑟𝑒𝑒𝑧𝑒(𝑡) ⇒ 𝐵𝑟𝑒𝑒𝑧𝑦(𝑠)

• Squares are breezy near a pit

• Diagnostic rule --- infer cause from effect

𝑠 𝐵𝑟𝑒𝑒𝑧𝑦(𝑠) ⇔ ∃𝑟 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑟, 𝑠) ∧ 𝑃𝑖𝑡(𝑟)

• Causal rule --- infer effect from cause

𝑟 𝑃𝑖𝑡(𝑟) ⇔ [∀𝑠 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑟, 𝑠) ⇒ 𝐵𝑟𝑒𝑒𝑧𝑦(𝑠)]



Quiz 01: Writing FOL sentences

• Represent the following sentences with first-order logic using 

the given predicates

• 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑥) means 𝑥 is student.

• 𝑆𝑚𝑎𝑟𝑡(𝑥) means 𝑥 is smart.

• 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) means 𝑥 loves 𝑦.

1. All students are smart.

2. There exists a smart student.

3. Every student loves some student.

4. Every student loves some other student

5. There is a student who is loved by every other student.
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• Inference Rules for Quantifiers

• Reduction to Propositional Inference

∀𝑥. 𝐶𝑎𝑡(𝑥) ⇒ 𝐶𝑢𝑡𝑒(𝑥)

First-Order Inference



Universal Instantiation (UI)

• It is possible to infer any sentence obtained by substituting a

ground term for the variable.

• Let 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝛼) be the result of applying the substitution 𝜃 to

the sentence 𝛼.

• Then the rule of Universal Instantiation is written

• for any variable 𝑣 and ground term 𝑔.

47

𝒗 𝜶

𝑺𝑼𝑩𝑺𝑻({𝒗/𝒈}, 𝜶)



Universal Instantiation: An example

• Suppose our knowledge base contains

∀𝒙 𝑲𝒊𝒏𝒈 𝒙 ∧ 𝑮𝒓𝒆𝒆𝒅𝒚(𝒙) ⇒ 𝑬𝒗𝒊𝒍(𝒙)

• Then it is permissible to infer any of the following sentences

𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛 ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) ⇒ 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

𝐾𝑖𝑛𝑔 𝑅𝑖𝑐ℎ𝑎𝑟𝑑 ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ⇒ 𝐸𝑣𝑖𝑙(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

𝐾𝑖𝑛𝑔 𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦 𝐹𝑎𝑡ℎ𝑒𝑟 𝐽𝑜ℎ𝑛

⇒ 𝐸𝑣𝑖𝑙(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))

…

with substitutions {𝑥/𝐽𝑜ℎ𝑛}, {𝑥/𝑅𝑖𝑐ℎ𝑎𝑟𝑑}, and 

{𝑥/𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛)}, respectively
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Existential Instantiation (EI)

• It is possible to replace the variable by a single new

constant symbol.

• The rule of Existential Instantiation is written

• for any sentence 𝛼, variable 𝑣, and constant symbol 𝑘 that does not

appear elsewhere in 𝐾𝐵.

• For example, from ∃𝑥 𝐶𝑟𝑜𝑤𝑛 𝑥 ∧ 𝑂𝑛𝐻𝑒𝑎𝑑 𝑥, 𝐽𝑜ℎ𝑛

infer 𝐶𝑟𝑜𝑤𝑛(𝐶1) ∧ 𝑂𝑛𝐻𝑒𝑎𝑑(𝐶1, 𝐽𝑜ℎ𝑛)

• As long as 𝐶1 does not appear in 𝐾𝐵, called Skolem constant.
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∃𝒗 𝜶

𝑺𝑼𝑩𝑺𝑻({𝒗/𝒌}, 𝜶)



• The UI rule can be applied many times to produce different

consequences.

• The EI rule can be applied once, and then the existentially

quantified sentence is discarded.

• E.g., discard ∃𝑥 𝐾𝑖𝑙𝑙(𝑥, 𝑉𝑖𝑐𝑡𝑖𝑚) after adding 𝐾𝑖𝑙𝑙(𝑀𝑢𝑟𝑑𝑒𝑟𝑒𝑟, 𝑉𝑖𝑐𝑡𝑖𝑚)

• The new 𝐾𝐵 is not logically equivalent to the old but shown to be

inferentially equivalent.
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Universal / Existential Instantiation



Reduction to propositional inference

• Every first-order 𝐾𝐵 and query can be propositionalized in

such a way that entailment is preserved.

• A ground sentence is entailed by new 𝐾𝐵 iff entailed by original 𝐾𝐵.

• For example, suppose the 𝐾𝐵 contains just the sentences

∀𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥) ⇒ 𝐸𝑣𝑖𝑙(𝑥)

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)

𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)

𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛

• Apply UI with substitutions, {𝑥/𝐽𝑜ℎ𝑛} and {𝑥/𝑅𝑖𝑐ℎ𝑎𝑟𝑑}

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) ⇒ 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ⇒ 𝐸𝑣𝑖𝑙(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)
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Reduction to propositional inference

• Problem: When the 𝐾𝐵 includes a function symbol, the set

of possible ground-term substitutions is infinite.

• E.g., the 𝐹𝑎𝑡ℎ𝑒𝑟 symbol, infinitely many nested terms such as

𝐹𝑎𝑡ℎ𝑒𝑟(𝐹𝑎𝑡ℎ𝑒𝑟(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))) can be constructed.

• Herbrand’s Theorem (1930): If an original FOL 𝐾𝐵 ⊨ 𝛼, 𝛼 is

entailed by a finite subset of the propositionalized 𝐾𝐵.

• For 𝑛 = 0 𝑡𝑜 ∞ do

• Create a propositional 𝐾𝐵 by instantiating with depth-n terms

• See if 𝛼 is entailed by this 𝐾𝐵

• 𝑛 = 0: 𝑅𝑖𝑐ℎ𝑎𝑟𝑑 and 𝐽𝑜ℎ𝑛

• 𝑛 = 1: 𝐹𝑎𝑡ℎ𝑒𝑟(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) and 𝐹𝑎𝑡ℎ𝑒𝑟 𝐽𝑜ℎ𝑛 , etc.
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Reduction to propositional inference

• Problem: The inference works if sentence 𝛼 is entailed, but

it loops if 𝛼 is not entailed.

• Theorems of Turing (1936) and Church (1936): The

question of entailment for first-order logic is semidecidable.

• Algorithms exist that say yes to every entailed sentence, but no

algorithm exists that also says no to every non-entailed sentence.
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Unification and Lifting

54

• A First-Order Inference Rule

• Unification

• Storage and Retrieval



Problem with propositionalization

• A lots of generated sentences seems to be irrelevant.

• For example, with the following 𝐾𝐵

∀𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥) ⇒ 𝐸𝑣𝑖𝑙(𝑥)

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)

𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)

𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛

• It seems obvious that 𝐸𝑣𝑖𝑙 𝐽𝑜ℎ𝑛

• However, propositionalization produces lots of irrelevant sentences

𝐾𝑖𝑛𝑔 𝑅𝑖𝑐ℎ𝑎𝑟𝑑 ∧ 𝐺𝑟𝑒𝑒𝑑𝑦 𝑅𝑖𝑐ℎ𝑎𝑟𝑑 ⇒ 𝐸𝑣𝑖𝑙 𝑅𝑖𝑐ℎ𝑎𝑟𝑑

• With 𝑝 k-ary predicates and 𝑛 constants, there are 𝑝 ∙ 𝑛𝑘

instantiations.
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A first-order inference rule

• If there is some substitution 𝜃 making each of the conjuncts

of the premise identical to sentences already in the 𝐾𝐵.

• Then the conclusion can be asserted after applying 𝜃.

• For example,

∀𝑥 𝐾𝑖𝑛𝑔 𝑥 ∧ 𝐺𝑟𝑒𝑒𝑑𝑦 𝑥 ⇒ 𝐸𝑣𝑖𝑙 𝑥

∀𝑦 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)

𝐵𝑟𝑜𝑡ℎ𝑒𝑟 𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛

• Applying the substitution {𝑥/𝐽𝑜ℎ𝑛, 𝑦/𝐽𝑜ℎ𝑛} to 𝐾𝑖𝑛𝑔(𝑥) and 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥),

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) and 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)will make them identical in pairs.

• Thus, infer the conclusion of the implication
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Generalized Modus Ponens (GMP)

• For atomic sentences 𝑝𝑖, 𝑝𝑖
′ and 𝑞, where there exists 𝜃 such

that 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝𝑖
′) = 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝𝑖), for all 𝑖,

• For example,

• All variables assumed universally quantified

• A lifted version of Modus Ponens → sound inference rule

57

𝒑𝟏
′ , 𝒑𝟐

′ , … , 𝒑𝒏
′ , (𝒑𝟏, 𝒑𝟐, … , 𝒑𝒏 ⇒ 𝒒)

𝑺𝑼𝑩𝑺𝑻(𝜽, 𝒒)

𝑝1
′ is 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) 𝑝1 is 𝐾𝑖𝑛𝑔(𝑥)

𝑝2
′ is 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦) 𝑝2 is 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)

𝜃 is {𝑥/𝐽𝑜ℎ𝑛, 𝑦/𝐽𝑜ℎ𝑛} 𝑞 is 𝐸𝑣𝑖𝑙(𝑥)

𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑞) is 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)



Unification

• Find substitutions that make different logical expressions

look identical

𝑼𝑵𝑰𝑭𝒀(𝒑, 𝒒) = 𝜽 where 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝) = 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑞)

• For example,
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p q θ

Knows(John, x) Knows(John, Jane) {x/Jane}

Knows(John, x) Knows(y, Steve) {x/Steve, y/John}

Knows(John, x) Knows(y, Mother(y)) {x/Mother(John), y/John}

Knows(John, x) Knows(x, Steve) fail

Problem is due to use of same 

variable 𝒙 in both sentences

Standardizing apart eliminates 

overlap of variables

Knows(z, Steve)



Most General Unifier (MGU)

• 𝑈𝑁𝐼𝐹𝑌(𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥), 𝐾𝑛𝑜𝑤𝑠(𝑦, 𝑧)) = 𝜃

1. 𝜃 = {𝑦/𝐽𝑜ℎ𝑛, 𝑥/𝑧 }

2. 𝜃 = {𝑦/𝐽𝑜ℎ𝑛, 𝑥/𝐽𝑜ℎ𝑛, 𝑧/𝐽𝑜ℎ𝑛}

• The first unifier is more general than the second

• There is a single Most General Unifier (MGU) that is unique

up to renaming of variables.

𝑀𝐺𝑈 = {𝑦/𝐽𝑜ℎ𝑛, 𝑥/𝑧}
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MGU: Some examples
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𝝎𝟏 𝝎𝟐 𝑴𝑮𝑼

𝐴(𝐵, 𝐶) 𝐴(𝑥, 𝑦) {𝑥/𝐵, 𝑦/𝐶)

𝐴(𝑥, 𝑓(𝐷, 𝑥)) 𝐴(𝐸, 𝑓(𝐷, 𝑦)) {𝑥/𝐸, 𝑦/𝐸}

𝐴(𝑥, 𝑦) 𝐴(𝑓(𝐶, 𝑦), 𝑧) {𝑥/𝑓(𝐶, 𝑦), 𝑦/𝑧}

𝑃(𝐴, 𝑥, 𝑓(𝑔(𝑦))) 𝑃(𝑦, 𝑓(𝑧), 𝑓(𝑧)) {𝑦/𝐴, 𝑥/𝑓(𝑧), 𝑧/𝑔(𝑦)}

𝑃(𝑥, 𝑔(𝑓(𝐴)), 𝑓(𝑥)) 𝑃(𝑓(𝑦), 𝑧, 𝑦) No MGU

𝑃(𝑥, 𝑓(𝑦)) 𝑃(𝑧, 𝑔(𝑤)) No MGU



The unification algorithm
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function UNIFY(x , y, θ) returns a substitution to make x and y identical

inputs: x , a variable, constant, list, or compound expression

y, a variable, constant, list, or compound expression

θ, the substitution built up so far (optional, defaults to empty)

if θ = failure then return failure

else if x = y then return θ

else if VARIABLE?(x) then return UNIFY-VAR(x , y, θ)

else if VARIABLE?(y) then return UNIFY-VAR(y, x , θ)

else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP, θ))

else if LIST?(x) and LIST?(y) then

return UNIFY(x.REST, y.REST, UNIFY(x.FIRST, y.FIRST, θ))

else return failure



The unification algorithm
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function UNIFY-VAR(var, x , θ) returns a substitution

if {var /val} ∈ θ then return UNIFY(val, x , θ)

else if {x/val} ∈ θ then return UNIFY(var, val, θ)

else if OCCUR-CHECK?(var, x) then return failure

else return add {var/x} to θ
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a is a constant
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Quiz 02: Find the MGU

• Find the MGU when performing 𝑈𝑁𝐼𝐹𝑌(𝑝, 𝑞)
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𝝎𝟏 𝝎𝟐 𝑴𝑮𝑼

𝑃(𝑓 𝐴 , 𝑔(𝑥)) 𝑃(𝑦, 𝑦) ?

𝑃(𝐴, 𝑥, ℎ(𝑔 𝑧 )) 𝑃(𝑧, ℎ 𝑦 , ℎ 𝑦 ) ?

𝑃(𝑥, 𝑓(𝑥), 𝑧) 𝑃(𝑔(𝑦), 𝑓(𝑔(𝑏)), 𝑦) ?

𝑃(𝑥, 𝑓(𝑥)) 𝑃(𝑓(𝑦), 𝑦) ?

𝑃(𝑥, 𝑓(𝑧)) 𝑃(𝑓 𝑦 , 𝑦) ?
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• First-order Definite Clauses

• A Simple Forward Chaining Algorithm

• Efficient Forward Chaining

Forward Chaining



First-order definite clause

• A definite clause is a disjunction of literals of which exactly

one is positive.

• It is either atomic or an implication whose antecedent is a

conjunctions of positive literals and consequent is a positive literal.

• E.g., 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥) ⇒ 𝐸𝑣𝑖𝑙(𝑥), 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛), 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)

• First-order literals can include variables, which are assumed

to be universally quantified.

• Not every 𝐾𝐵 can be converted into a set of definite clauses

due to the single-positive-literal restriction.
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FOL definite clause: An example

• Consider the following problem

68

The law says that it is a crime for an American to sell weapons to hostile

nations. The country Nono, an enemy of America, has some missiles,

and all of its missiles were sold to it by Colonel West, who is American.

𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑥) ∧𝑊𝑒𝑎𝑝𝑜𝑛(𝑦) ∧ 𝑆𝑒𝑙𝑙𝑠(𝑥, 𝑦, 𝑧) ∧ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑧) ⇒ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)

𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ∧ 𝑂𝑤𝑛𝑠(𝑁𝑜𝑛𝑜, 𝑥) ⇒ 𝑆𝑒𝑙𝑙𝑠(𝑊𝑒𝑠𝑡, 𝑥, 𝑁𝑜𝑛𝑜)

𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ⇒ 𝑊𝑒𝑎𝑝𝑜𝑛(𝑥)

𝐸𝑛𝑒𝑚𝑦(𝑥, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎) ⇒ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑥)

𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑊𝑒𝑠𝑡)

𝑂𝑤𝑛𝑠 𝑁𝑜𝑛𝑜,𝑀1

∃ 𝑥 𝑂𝑤𝑛𝑠(𝑁𝑜𝑛𝑜, 𝑥) ∧ 𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥)
𝑀𝑖𝑠𝑠𝑖𝑙𝑒 𝑀1

𝐸𝑛𝑒𝑚𝑦 𝑁𝑜𝑛𝑜, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎
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function FOL-FC-ASK(KB,α) returns a substitution or false

inputs: KB, the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

local variables: new, the new sentences inferred on each iteration

repeat until new is empty

new ← { }

for each rule in KB do

(𝑝1 ∧ ⋯∧ 𝑝𝑛 ⇒ 𝑞)← STANDARDIZE-VARIABLES(rule)

for each θ such that SUBST(θ, 𝑝1 ∧ ⋯∧ 𝑝𝑛) = SUBST(θ,𝑝1
′ ∧ ⋯∧ 𝑝𝑛

′ )

for some 𝑝1
′ , … , 𝑝𝑛

′ in KB

𝑞′← SUBST(θ,q)

if 𝑞′does not unify with some sentence already in KB or new then

add 𝑞′ to new

φ← UNIFY(𝑞′,α)

if φ is not fail then return φ

add new to KB

return false



Forward chaining: An example
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Forward chaining: An example
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𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ∧ 𝑂𝑤𝑛𝑠(𝑁𝑜𝑛𝑜, 𝑥) ⇒ 𝑆𝑒𝑙𝑙𝑠(𝑊𝑒𝑠𝑡, 𝑥, 𝑁𝑜𝑛𝑜)

𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) ⇒ 𝑊𝑒𝑎𝑝𝑜𝑛(𝑥)

𝐸𝑛𝑒𝑚𝑦(𝑥, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎) ⇒ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑥)



Forward chaining: An example
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Fixed point

𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑥) ∧𝑊𝑒𝑎𝑝𝑜𝑛(𝑦) ∧ 𝑆𝑒𝑙𝑙𝑠(𝑥, 𝑦, 𝑧) ∧ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑧) ⇒ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)



Forward chaining

• Soundness?

• YES, every inference is just an application of GMP.

• Completeness?

• YES for definite clause knowledge bases.

• It answers every query whose answers are entailed by any 𝐾𝐵 of

definite clauses.

• Terminate for Datalog in finite number of iterations

• Datalog = first-order definite clauses + no functions 

• Entailment with definite clauses is semidecidable. 

• May not terminate in general if 𝛼 is not entailed, unavoidable.
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Renaming

• A fact is not “new” if it is just a renaming of a known fact.

• One sentence is a renaming of another if they are identical

except for the names of the variables.

• E.g., Likes(x, IceCream) vs. Likes(y, IceCream)
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Definite clauses with function symbols

• Inference can explode forward and may never terminate.
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𝐸𝑣𝑒𝑛(𝑥) ⇒ 𝐸𝑣𝑒𝑛(𝑝𝑙𝑢𝑠(𝑥, 2))

𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑥) ⇒ 𝐸𝑣𝑒𝑛(𝑡𝑖𝑚𝑒𝑠(2, 𝑥))

𝐸𝑣𝑒𝑛(𝑥) ⇒ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑥)

𝐸𝑣𝑒𝑛(2)



Efficient forward chaining

• Incremental forward chaining

• No need to match a rule on iteration 𝑘 if a premise was not added on

iteration 𝑘 − 1 → match each rule whose premise contains a newly

added positive literal

• Matching itself can be expensive

• Database indexing allows 𝑂(1) retrieval of known facts

• E.g., query 𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑥) retrieves 𝑀𝑖𝑠𝑠𝑖𝑙𝑒(𝑀1)

• Widely used in deductive databases
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Quiz 03: Forward chaining

• Given a KB containing the following sentence

1. 𝑃𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑦) ∧ 𝑀𝑎𝑙𝑒(𝑥) ⇒ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)

2. 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦) ∧ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑧) ⇒ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑦, 𝑧)

3. 𝑃𝑎𝑟𝑒𝑛𝑡(𝑇𝑜𝑚, 𝐽𝑜ℎ𝑛)

4. 𝑀𝑎𝑙𝑒(𝑇𝑜𝑚)

5. 𝑃𝑎𝑟𝑒𝑛𝑡(𝑇𝑜𝑚, 𝐹𝑟𝑒𝑑)

• Perform the forward chaining until a fixed point is reached.

77



78

Backward Chaining



A backward chaining algorithm
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function FOL-BC-ASK(KB,query) returns a generator of substitutions

return FOL-BC-OR(KB,query, { })

generator FOL-BC-OR(KB,goal, θ) yields a substitution

for each rule (lhs  rhs) in FETCH-RULES-FOR-GOAL(KB, goal) do

(lhs, rhs) ← STANDARDIZE-VARIABLES((lhs, rhs))

for each θ’ in FOL-BC-AND(KB,lhs, UNIFY(rhs, goal, θ)) do

yield θ’

generator FOL-BC-AND(KB,goals, θ) yields a substitution

if θ = failure then return

else if LENGTH(goals) = 0 then yield θ

else do

first,rest ← FIRST(goals), REST(goals)

for each θ’ in F'OL-BC-OR(KB, SUBST(θ, first), θ) do

for each θ’’ in FOL-BC-AND(KB,rest, θ’) do

yield θ’’



Backward chaining: An example
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Backward chaining: An example
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Properties of backward chaining

• Depth-first recursive proof search

• Space is linear in size of proof

• Incomplete due to infinite loops

• Fix by checking current goal against every goal on stack

• Inefficient due to repeated subgoals (success and failure)

• Fix using caching of previous results (extra space)

• Widely used for logic programming
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Quiz 04: Backward chaining

• Given a KB containing the following sentence

1. 𝑃𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑦) ∧ 𝑀𝑎𝑙𝑒(𝑥) ⇒ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦)

2. 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑦) ∧ 𝐹𝑎𝑡ℎ𝑒𝑟(𝑥, 𝑧) ⇒ 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑦, 𝑧)

3. 𝑃𝑎𝑟𝑒𝑛𝑡(𝑇𝑜𝑚, 𝐽𝑜ℎ𝑛)

4. 𝑀𝑎𝑙𝑒(𝑇𝑜𝑚)

5. 𝑃𝑎𝑟𝑒𝑛𝑡(𝑇𝑜𝑚, 𝐹𝑟𝑒𝑑)

• Find solution(s) to each of the following queries
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• Parent(Tom, x)

• Father(Tom, s)

• Father(f, s)

• Sibling(a, b)



Quiz 04: Backward chaining

• Query: Parent(Tom,x)

• Answers: ( {x/John}, {x/Fred})

• Query: Father(Tom,s)

• Subgoal: Parent(Tom,s) ∧ Male(Tom)

• {s/John}

• Subgoal: Male(Tom)

• Answer: {s/John}

• {s/Fred}

• Subgoal: Male(Tom)

• Answer: {s/Fred}

• Answers: ({s/John}, {s/Fred})
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Resolution



CNF for First-order logic

• First-order resolution requires that sentences be in CNF.

• For example, the sentence

becomes, in CNF,

• Every sentence of first-order logic can be converted into an

inferentially equivalent CNF sentence.

• The CNF sentence will be unsatisfiable just when the original

sentence is unsatisfiable → perform proofs by contraction.
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∀𝑥 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑥) ∧ 𝑊𝑒𝑎𝑝𝑜𝑛(𝑦) ∧ 𝑆𝑒𝑙𝑙𝑠(𝑥, 𝑦, 𝑧) ∧ 𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑧) ⇒ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)

¬𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛(𝑥) ∨ ¬𝑊𝑒𝑎𝑝𝑜𝑛(𝑦) ∨ ¬𝑆𝑒𝑙𝑙𝑠(𝑥, 𝑦, 𝑧) ∨ ¬𝐻𝑜𝑠𝑡𝑖𝑙𝑒(𝑧) ∨ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙(𝑥)



Conversion to CNF

Everyone who loves all animals is loved by someone.

∀𝑥 ∀𝑦 𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ⇒ 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) ⇒ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

1. Eliminate implications

∀𝑥 ¬∀𝑦 ¬𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ∨ 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) ∨ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

2. Move  inwards: ¬∀𝑥 𝑝 ≡ ∃𝑥¬𝑝, ¬∃𝑥 𝑝 ≡ ∀𝑥 ¬𝑝

∀𝑥 ∃𝑦 ¬ ¬𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ∨ 𝐿𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝐿𝑜𝑣𝑒𝑠 𝑦, 𝑥

∀𝑥 ∃𝑦 ¬¬𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

∀𝑥 ∃𝑦 𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)
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Conversion to CNF

Everyone who loves all animals is loved by someone.

∀𝑥 ∀𝑦 𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ⇒ 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) ⇒ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

3. Standardize variables: each quantifier uses a different one

∀𝑥 ∃𝑦 𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ∧ ¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝑦 ∨ ∃𝑧 𝐿𝑜𝑣𝑒𝑠(𝑧, 𝑥)

4. Skolemize: remove existential quantifiers by elimination

• Simple case: translate ∃𝑥 𝑃(𝑥) into 𝑃(𝐴), where 𝐴 is a new constant.

• However, ∀𝑥 𝐴𝑛𝑖𝑚𝑎𝑙 𝐴 ∧ ¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐴 ∨ 𝐿𝑜𝑣𝑒𝑠(𝐵, 𝑥) has an entirely

different meaning.

• The arguments of the Skolem function are all universally quantified

variables in whose scope the existential quantifier appears.

∀𝑥 𝐴𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∧ ¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠(𝐺(𝑥), 𝑥)
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Conversion to CNF

Everyone who loves all animals is loved by someone.

∀𝑥 ∀𝑦 𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ⇒ 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) ⇒ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

5. Drop universal quantifiers

𝐴𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∧ ¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠(𝐺(𝑥), 𝑥)

6. Distribute ∨ over ∧

𝐴𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠(𝐺(𝑥), 𝑥) ∧

¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠(𝐺(𝑥), 𝑥)
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The resolution inference rule

• Simply a lifted version of the propositional resolution rule

• Formulation

• where 𝑈𝑁𝐼𝐹𝑌 𝑙𝑖 , ¬𝑚𝑗 = 𝜃

• For example, 
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𝑙1 ∨ ⋯∨ 𝑙𝑘

𝑚1 ∨ ⋯∨ 𝑚𝑛

𝐒𝐔𝐁𝐒𝐓(𝜽, 𝑙1 ∨ ⋯∨ 𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ⋯∨ 𝑙𝑘 ∨ 𝑚1 ∨ ⋯∨𝑚𝑗−1 ∨ 𝑚𝑗+1 ∨ ⋯∨𝑚𝑛

𝐴𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠 𝐺 𝑥 , 𝑥

¬𝐿𝑜𝑣𝑒𝑠 𝑢, 𝑣 ∨ ¬𝐾𝑖𝑙𝑙𝑠 𝑢, 𝑣

𝐴𝑛𝑖𝑚𝑎𝑙 𝐹(𝑥) ∨ ¬𝐾𝑖𝑙𝑙𝑠 𝐺(𝑥), 𝑥
𝜃 = { Τ𝑢 𝐺 𝑥 , Τ𝑣 𝑥}



Resolution: An example
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Resolution: Another example
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Everyone who loves all animals is loved by someone.

Anyone who kills an animal is loved by no one.

Jack loves all animals.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

A. ∀𝑥 ∀𝑦 𝐴𝑛𝑖𝑚𝑎𝑙 𝑦 ⇒ 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦) ⇒ ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

B. ∀𝑥 ∃𝑧 𝐴𝑛𝑖𝑚𝑎𝑙 𝑧 ∧ 𝐾𝑖𝑙𝑙𝑠(𝑥, 𝑧) ⇒ ∀𝑦 ¬𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥)

C. ∀𝑥 𝐴𝑛𝑖𝑚𝑎𝑙 𝑥 ⇒ 𝐿𝑜𝑣𝑒𝑠(𝐽𝑎𝑐𝑘, 𝑥)

D. 𝐾𝑖𝑙𝑙𝑠 𝐽𝑎𝑐𝑘, 𝑇𝑢𝑛𝑎 ∨ 𝐾𝑖𝑙𝑙𝑠(𝐶𝑢𝑟𝑖𝑜𝑠𝑖𝑡𝑦, 𝑇𝑢𝑛𝑎)

E. 𝐶𝑎𝑡(𝑇𝑢𝑛𝑎)

F. ∀𝑥 𝐶𝑎𝑡(𝑥) ⇒ 𝐴𝑛𝑖𝑚𝑎𝑙 𝑥

G. ¬ 𝐾𝑖𝑙𝑙𝑠(𝐶𝑢𝑟𝑖𝑜𝑠𝑖𝑡𝑦, 𝑇𝑢𝑛𝑎)



Resolution: Another example
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Everyone who loves all animals is loved by someone.

Anyone who kills an animal is loved by no one.

Jack loves all animals.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

A. 𝐴𝑛𝑖𝑚𝑎𝑙(𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠(𝐺(𝑥), 𝑥)

¬𝐿𝑜𝑣𝑒𝑠 𝑥, 𝐹(𝑥) ∨ 𝐿𝑜𝑣𝑒𝑠(𝐺(𝑥), 𝑥)

B. ¬𝐿𝑜𝑣𝑒𝑠(𝑦, 𝑥) ∨ ¬𝐴𝑛𝑖𝑚𝑎𝑙 𝑧 ∨ ¬𝐾𝑖𝑙𝑙𝑠(𝑥, 𝑧)

C. ¬𝐴𝑛𝑖𝑚𝑎𝑙 𝑥 ∨ ¬𝐿𝑜𝑣𝑒𝑠(𝐽𝑎𝑐𝑘, 𝑥)

D. 𝐾𝑖𝑙𝑙𝑠 𝐽𝑎𝑐𝑘, 𝑇𝑢𝑛𝑎 ∨ 𝐾𝑖𝑙𝑙𝑠(𝐶𝑢𝑟𝑖𝑜𝑢𝑠𝑖𝑡𝑦, 𝑇𝑢𝑛𝑎)

E. 𝐶𝑎𝑡(𝑇𝑢𝑛𝑎)

F. ¬𝐶𝑎𝑡(𝑥) ∨ 𝐴𝑛𝑖𝑚𝑎𝑙 𝑥

G. ¬ 𝐾𝑖𝑙𝑙𝑠(𝐶𝑢𝑟𝑖𝑜𝑠𝑖𝑡𝑦, 𝑇𝑢𝑛𝑎)
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Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity

did; thus Jack must have. Now, Tuna is a cat and cats are animals, so

Tuna is an animal. Because anyone who kills an animal is loved by no

one, we know that no one loves Jack. On the other hand, Jack loves all

animals, so someone loves him; so we have a contradiction.

Therefore, Curiosity killed the cat.



Quiz 05: Resolution

• Given a KB of the following sentences

• Anyone whom Mary loves is a football star.

• Any student who does not pass does not play.

• John is a student.

• Any student who does not study does not pass.

• Anyone who does not play is not a football star.

• Prove that If John does not study, Mary does not love John.

• Write the FOL sentences using only the given predicates

Loves(x, y): “x loves y” Star(x): “x is a football star”

Student(x): “x is a student” Pass(x): “x passes”

Play(x): “x plays” Study(x): “x studies”
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THE END


