Artificial Intelligence

Nguy&n Ngoc Thao — Nguyén Hai Minh _
. , {nnthao, nhminh}@fit.hcmus.edu.vn

Outline

Representation revisited

Syntax and semantics of first-order logic (FOL)

Using first-order logic

Propositional vs. First-order inference

Unification and lifting

Forward chaining

Backward chaining

Resolution

Representation
revisited

Programming languages

By far the largest class of formal languages in common use
« E.g., C++, Java or Lisp, etc.
* Programs represent computational processes while their
data structures represent facts.

 E.g., the Wumpus world can be represented by a 4 x 4 array,
“World|[2,2] « Pit” states that “There is a pit in square [2,2].”

Programming languages

 Lack of general mechanisms to derive facts from other facts

« Update to a data structure is done by a domain-specific procedure.

 Lack of expressiveness to handle partial information

 E.g., to say “There is a pitin [2,2] or [3,1]", a program stores a single
value for each variable and allows the value to be “unknown”, while
the propositional logic sentence, P, , V P31, IS more intuitive.

Propositional logic

* Propositional logic is a declarative language.

« Semantics is based on the truth relation between sentences and
possible worlds.

* It handles partial information using disjunction and negation.

* Propositional logic is compositional, which is desirable in
representation languages

« The meaning of a sentence is a function of the meaning of its parts

- E.g., The meaning of $; 4, A S; , relates the meanings of S; , and S ,.

Propositional logic

« Meaning in propositional logic is context-independent.
« The natural language, on the other hand, are dependent on context.

* Propositional logic has very limited expressive power.

« E.g., cannot say “Pits cause breezes in adjacent squares”, except by
writing one sentence for each square

Bi1© (PiyVP;y1), By & (PLa VP VP,V Ps,), etc.

First-order logic

* Objects are referred by nouns and noun phrases.
« E.g., people, houses, numbers, colors, Bill Gates, games, wars, etc.
* Relations can be unary relations (properties) or n-ary
relations, representing by verbs and verb phrases
* Properties: red, round, prime, etc.
« n-ary relations: brother of, bigger than, part of, comes between, etc.
* Functions are relations in which there is only one “value” for
a given “input.”

- E.g., father of, best friend, one more than, etc.

First-order logic: Some examples

* “One plus two equals three.”
« Object: one, two, three, one plus two

 Relation: equal * Function: plus

» “Squares neighboring the Wumpus are smelly.”
* Object: squares, Wumpus

* Property: smelly * Relation: neighboring

* “The intelligent AlphaGo beat the world champion in 2016.”
* Object: AlphaGo, world champion, 2016

* Property: intelligent * Relation: beat

Types of logics

Language

Ontological Commitment
(What exists in the world)

Epistemological
Commitment

(What an agent believes
about facts)

Propositional logic Facts True/false/unknown
First-order logic Facts, objects, relations True/false/unknown
Temporal logic Facts, objects, relations, time True/false/unknown

Probability logic

Facts

Degree of belief € [0,1]

Fuzzy logic

Facts with degree of truth €
[0,1]

Known interval value

10

Syntax and Semantics of FOL

« Models for First-Order Logic

vV —
« Symbols and Interpretations - + 3 PA)
* Terms A v
* Alomic Sentences Propositional New Predicate
- Complex Sentences Symbols Symbols

* Quantifiers

« Equality

11

Models for a logic language

 Formal structures that constitute the possible worlds under
consideration

« Each model links the vocabulary of sentences to elements of the
possible world — determine the truth of any sentence

 Models for propositional logic link proposition symbols to
predefined truth values.

* Models for first-order logic are more interesting with objects.

Models for First-order logic

« The domain of a model is the set of objects (or domain
elements) it contains.

* Nonempty — Every possible world must contain at least one
object

It doesn’'t matter what these objects are but how many there are in
each model.

Models for FOL: A concrete example

person

erson
ing

* 5 objects
« 2 binary relations
e 3 unary relations
e 1 unary function

Models for FOL: A concrete example

* 5 objects

M RN

\

\

2

Richard the Lionheart
(King of England
1189-1199)

King John
(King of England
1199-1215)

The left
leg of
Richard

The left
leg of
John

A crown

15

Models for FOL: A concrete example

 Binary relations

* The brotherhood relation
{ (Richard the Lionheart, King John), (King John, Richard the Lionheart) }

 The “on head” relation
{ (The crown, King John) }

7 13 LN 1

* Unary relations: “person”, “king”, “crown”

* Functions: “left leg”
* (Richard the Lionheart) — Richard’s left leg
* (King John) — John’s left leg

Symbols

Constant symbols represents objects.
« E.g., Richard, John, etc.

Predicate symbols stand for relations.

- E.g., Brother , OnHead, Person, King, and Crown, etc.

Function symbols stand for functions.
 E.g., LeftLeg

Each predicate or function symbol comes with an arity that
fixes the number of arguments.
« E.g., Brother(x,y) — binary, LeftLeg(x) — unary, etc.

* These symbols begins with uppercase letters by convention.

17

Intended Interpretation

* Interpretation specifies exactly which objects, relations and
functions are referred to by the symbol.

« Each model includes an (intended) interpretation.

* For example,
« Richard the Lionheart and King John refers two Kings in England.

* Brother refers to the brotherhood relation, OnHead refers to the “on
head” relation that holds between the crown and King John

« Person, King, and Crown refer to the sets of objects that are
persons, kings, and crowns, respectively.

 LeftLeg refers to the “left leg” function

The syntax of First-order logic

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — Predicate | Predicate(Term,...) | Term = Term

ComplexSentence — (Sentence)| [Sentence]
- Sentence

Sentence N\ Sentence
Sentence \V Sentence
Sentence = Sentence

Sentence < Sentence

Quantifier Variable, ... Sentence

Term — Function(Term,...)

| Constant
| Variable

The syntax of

First-order logic

Quantifier
Constant

Variable
Predicate

Function

A

OPERATOR PRECEDENCE

V| 3
Al X1 | John | ---

True | False | After | Loves | Raining | ---
Mother | LeftLeg | ---

_I7 :7 /\7 \/7 é')<:’\>

* The precedence of quantifiers
the right of it.

IS such that a quantifier holds over everything to

20

Possible models in First-order logic

« Similar to propositional logic, entailment, validity, and so on
are defined in terms of all possible models.

R J R J R J R J R J

O
(=
Q<

137,506,194,466 models with six or fewer objects

 The number of possible models is unbounded.

— checking entailment by the enumeration is infeasible

21

Terms

« Aterm is a logical expression that refers to an object
« Constant symbols: John

* Function symbols: LeftLeg(John)

« A complex term is formed by a function symbol followed by a
parenthesized list of terms as arguments.

[Term = Efunction(term p---;tel‘mn)}or constant or variable]

Complex term

22

The semantics of terms

* Consider aterm, f(t4,..,t;), that refers to some function F

* The arguments refer to objects in the domain, d4, .., d,,.

 The whole term refers to the object that is the value of
applying Fto d.,..,d,,.

* For example,

« The LeftLeg function symbol refers to the mapping between a
person and his left leg, and John refers to King John.

» LeftLeg(John) refers to King John's left leg.
* |In this way, the interpretation fixes the referent of every term.

Atomic sentence

* An atomic sentence state facts by using a predicate symbol
followed by a parenthesized list of terms.

[Atomic sentence = predicate(term,...term,)]

* For example,
« Brother(Richard, John), Married(Father(Richard), Mother(John))

* It is true If the relation referred to by the predicate symbol
holds among the objects referred to by the arguments

24

Complex sentences

« A complex sentences are made from atomic sentences
using connectives.

* For example,
 — Brother (LeftLeg(Richard),John)
Brother (Richard ,John) A Brother (John, Richard)
King(Richard) V King(John)
— King(Richard) = King(John)

« Syntax and semantics are the same as in propositional logic.

Truth In First-order logic

 Sentences are true with respect to a model and an
Interpretation.

 Model contains objects (domain elements) and relations
among them.

* Interpretation specifies referents for
constant symbols —> objects
predicate symbols — relations

function symbols — functional relations

26

Quantifiers: Universal guantification

* Expressions of general rules Y <variables> <sentence>

* E.g., “All Kings are persons.”. Vx King(x) = Person(x)

* E.g., “Students of FIT are smart.”. Vx Student(x, FIT) = Smart(x)

Vx P is true in a model m iff P is true with x being each possible
object in the model.

* |t Is equivalent to the conjunction of instantiations of P.
Student(Lan, FIT) = Smart(Lan)
A Student(Tuan, FIT) = Smart(Tuan)
A Student(Long, FIT) = Smart(Long)

VAN
27

Variables

« A variable is a term all by itself and able to serve as the
argument of a function

* E.g., in predicates King(x) or in function LeftLeg(x).
« Usually represented by lowercase letters

« Aterm with no variables is called a ground term.

A common mistake to avoid

« Typically, = is the main connective with V

 The conclusion of the rule just for those objects for whom the
premise is true

* It says nothing at all about individuals for whom the premise is false.

« Common mistake: using A as the main connective with V
 Vx Student(x,FIT) A Smart(x)

It means “Everyone is a student of FIT and Everyone is smatrt.”

* Too strong implication

Quantifiers: Existential quantification

 Expressions of "'some cases” | =y St e e

* E.g., “Some students of FIT are smart.”
dx Student(x, FIT) A Smart(x)

4 x Pis true in a model m iff P is true with x being some possible
object in the model.

* [t Is equivalent to the disjunction of instantiations of P.
Student(Lan, FIT) A Smart(Lan)
v Student(Tuan, FIT) A Smart(Tuan)
v Student(Long, FIT) A Smart(Long)

Vo...

30

Another common mistake to avoid

 Typically, A is the main connective with 3

« Common mistake: using = as the main connective with 3
* dx Student(x, FIT) = Smart(x)

* Itis true even with anyone who is not at FIT.

* Too weak implication

Nested quantifiers

« Multiple quantifiers enable more complex sentences.

« Simplest cases: Quantifiers are of the same type
* VxVy Brother(x,y) = Sibling(x,y)
* VxVy Sibling(x,y) © Sibling(y, x)

* Mixtures
* Vx3y Loves(x,y) — “Everybody loves somebody.”

« AxVy Loves(y,x) — “There is someone loved by everyone.”

* The order of quantification is therefore very important.

Nested quantifiers

« Two quantifiers used with the same variable name leads to
confusion.
Vx (Crown(x)V (Elx Brother(Richard, x)))

« Rule: The variable belongs to the innermost quantifier that
mentions |t.

e Workaround: Use different variable names with nested
quantifiers, e.g., 3z Brother(Richard, z)

Quantifier duality

« ¥ and 3 relate to each other through negation.

* For example,
 Vx Likes(x,IceCream) —3x —Likes(x,IceCream)

 Jx Likes(x, Brocoli) —Vx —Likes(x,IceCream)

« De Morgan’s rules

Ve =P = —-dx P -~(PVQ) = -PAN-Q
Vo P = dz —-P ~(PAQ) = -PV-Q
Ve P = —-dx —-P PAQ = _I(_l_P\/_lQ)
dx P = —Vaz -P PVvQ = =(-P A Q)

34

Equality symbol =

* term, = term, IS true under a given interpretation iff term,
and term, refer to the same object

 E.g., Father(John) = Henry means that Father(John) and Henry
refer to the same object.

« |t states facts about a given function

* The negation insists that two terms are not the same.

3x,y Brother(x,Richard) A Brother(y, Richard) A —(x = y)

Using First-Order Logic

» Assertions and Queries in First-Order Logic
* The Kinship Domain

* Numbers, Sets, and Lists

 The Wumpus World

36

The kinship i
domain MA | MAs

& I !
 Unary predicates ' s ”m =
 Male and Female - P

 Binary predicates represent kinship relations.
« Parenthood, brotherhood, marriage, etc.

« Parent, Sibling, Brother , Sister, Child, Daughter, Son, Spouse, Wife,
Husband, Grandparent , Grandchild , Cousin, Aunt, and Uncle.

* Functions

* Mother and Father, each person has exactly one of each of these.
37

The kinship domain: Axioms

One’s mother is one’s female parent
VYm,c Mother(c) = m & Female(m) A Parent(m, c)

One’s husband is one’s male spouse:
VYw, h Husband(h,w) & Male(h) A Spouse(h,w)

Male and female are disjoint categories:
Vx Male(x) & —Female(x)

Parent and child are inverse relations:
Vp,c Parent(p,c) & Child(c,p)

A grandparent is a parent of one’s parent:
Vg,c Grandparent(g,c) & Ip Parent(g,p) A Parent(p, ¢)

A sibling is another child of one’s parents:
Vx,y Sibling(x,y) © —(x = y) Adp Parent(p,x) A Parent(p,y)

The kinship domain: Theorems

* Theorems: logical sentences that are entailed by the axioms
« E.g.,Vx,y Sibling(x,y) & Sibling(y, x)
* Theorems reduce the cost of deriving new sentences.

« They do not increase the set of conclusions that follow from KB — no
value from a pure logical point of view

* They are essential from a practical point of view.

The set domalin

Sets are the empty set and those made by adjoining something to a set.
¢ Vs Set(s) © (s ={})V (Ax,s, Set(s,) rs ={x]|s,})

The empty set has no elements adjoined into it.
* —dx,s {x|s} ={}

Adjoining an element already in the set has no effect:

* Vx,s x €Es & s = {x|s}

The only members of a set are the elements that were adjoined into it.

e Vx,s x€se 3y,s, (s={y|s,;r(x =y V x €s,))]

The set domalin

« Can you interpret the following sentences?
¢ V51,5, S1Esy, © (Vx XESs; X ESy)
* VS1,S S =S5, © (s1E sy, As, Esy)
* VX,51,5p X €E(s1Nsy;) © (xESs{AXESy)

* VXx,51,5p X €E(s1Usy) © (xE€Esy VxESs,)

41

The Wumpus world: Input — Output

 Typical percept sentence

« Percept([Stench, Breeze, Glitter, None, None]. 5)
» Actions

* Turn(Right), Turn(Left), Forward, Shoot, Grab, Release, Climb
« To determine the best action, construct a query

» ASKVARS(3a BestAction(a,5))

* Returns a binding list such as {a/Grab}

The Wumpus world: The KB

* Perception
* Vt,s,gm,cPercept (|s,Breeze,g,m,c|,t) = Breeze(t)
* Vt,s,b,m,c Percept ([s, b, Glitter,m,c],t) = Glitter (t)
* Reflex
* Vt Glitter(t) = BestAction(Grab,t)

» Environment definition:
Vx,y,a,b Adjacent(|x,y],|a,b]) &
(x=aA(y=b—-1Vvy=b+ 1))
Viy=bA(x=a—1Vx=a+ 1))

The Wumpus world: Hidden properties

* Properties of squares
Vs, t At(Agent,s,t) N Breeze(t) = Breezy(s)
« Squares are breezy near a pit

« Diagnostic rule --- infer cause from effect
Vs Breezy(s) & 3r Adjacent(r,s) A Pit(r)

e Causal rule --- infer effect from cause
Vr Pit(r) & [Vs Adjacent(r,s) = Breezy(s)]

Quiz 01: Writing FOL sentences

» Represent the following sentences with first-order logic using
the given predicates

» Student(x) means x Is student.
* Smart(x) means x is smairt.

* Loves(x,y) means x loves y.

All students are smart.
There exists a smart student.
Every student loves some student.

Every student loves some other student

a k~ WD PE

There is a student who is loved by every other student.

First-Order Inference

» Inference Rules for Quantifiers

« Reduction to Propositional Inference

Vx.Cat(x) = Cute(x)

46

Universal Instantiation (Ul)

* It Is possible to infer any sentence obtained by substituting a
ground term for the variable.

 Let SUBST (0, a) be the result of applying the substitution 6 to
the sentence a.

* Then the rule of Universal Instantiation Is written
YV a

SUBST({v/g},)

« for any variable v and ground term g.

47

Universal Instantiation: An example

« Suppose our knowledge base contains
Vx King(x) A Greedy(x) = Evil(x)

* Then it is permissible to infer any of the following sentences
King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)
King(Father(John)) A Greedy(Father(J ohn))

= Evil(Father(John))

with substitutions {x/John}, {x/Richard}, and
{x/Father(John)}, respectively

Existential Instantiation (El)

* [t Is possible to replace the variable by a single new
constant symbol.
* The rule of Existential Instantiation is written
v «a

SUBST({v/k},)

 for any sentence «a, variable v, and constant symbol k that does not

appear elsewhere in KB.

* For example, from 3x Crown(x) A OnHead(x,]ohn)
iInfer Crown(C;) A OnHead(Cy,]John)

« As long as C; does not appear in KB, called Skolem constant.

49

Universal / Existential Instantiation

* The Ul rule can be applied many times to produce different
conseguences.

 The EI rule can be applied once, and then the existentially
guantified sentence is discarded.
* E.g., discard 3x Kill(x,Victim) after adding Kill(Murderer,Victim)

« The new KB is not logically equivalent to the old but shown to be
inferentially equivalent.

Reduction to propositional inference

* Every first-order KB and query can be propositionalized in
such a way that entailment is preserved.

« A ground sentence is entailed by new KB iff entailed by original KB.

* For example, suppose the KB contains just the sentences
Vx King(x) A Greedy(x) = Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)
* Apply Ul with substitutions, {x/John} and {x/Richard}

King(John) A Greedy(John) = Evil(John)
King(Richard) A Greedy(Richard) = Evil(Richard)

Reduction to propositional inference

* Problem: When the KB includes a function symbol, the set
of possible ground-term substitutions is infinite.

 E.g., the Father symbol, infinitely many nested terms such as
Father(Father(Father(John))) can be constructed.

* Herbrand’s Theorem (1930): If an original FOL KB E a, «a is
entailed by a finite subset of the propositionalized KB.
* Forn=0toodo
« Create a propositional KB by instantiating with depth-n terms
« See if a is entailed by this KB
* n = 0: Richard and John
 n = 1: Father(Richard) and Father(John), etc.

52

Reduction to propositional inference

* Problem: The inference works iIf sentence « I1s entailed, but
It loops If a IS not entalled.

* Theorems of Turing (1936) and Church (1936): The
guestion of entailment for first-order logic iIs semidecidable.

« Algorithms exist that say yes to every entailed sentence, but no
algorithm exists that also says no to every non-entailed sentence.

53

Unification and Lifting

e
A First-Order Inference Rule
* Unification g 2

54

Problem with propositionalization

A lots of generated sentences seems to be irrelevant.
* For example, with the following KB

Vx King(x) A Greedy(x) = Evil(x)

King(John)

Greedy(John)

Brother(Richard, John)

* |t seems obvious that Evil(John)

« However, propositionalization produces lots of irrelevant sentences
King(Richard) A Greedy(Richard) = Evil(Richard)

» With p k-ary predicates and n constants, there are p - n”
Instantiations.

A first-order inference rule

* |f there is some substitution & making each of the conjuncts
of the premise identical to sentences already in the KB.

* Then the conclusion can be asserted after applying 6.

* For example,
Vx King(x) A Greedy(x) = Evil(x)
Vy Greedy(y)
King(John)
Brother(Richard, John)

* Applying the substitution {x/John,y/John} to King(x) and Greedy(x),
King(John) and Greedy(y) will make them identical in pairs.

« Thus, infer the conclusion of the implication

Generalized Modus Ponens (GMP)

« For atomic sentences p;, p; and q, where there exists 6 such
that SUBST (0,p;) = SUBST(6,p;), for all i,

P1, P2 P P1.P2, . Pn = q)

SUBST(6, q)
* For example, p1is King(John) p11s King(x)
p, IS Greedy(y) p, IS Greedy(x)
0 is {x/John,y/John} q is Evil(x)

SUBST (0, q) Is Evil(John)

« All variables assumed universally quantified
 Alifted version of Modus Ponens — sound inference rule

Unification

* Find substitutions that make different logical expressions
look identical

UNIFY (p,q) = 6 where SUBST(0,p) = SUBST(6,q)

* For example,

p q 6
Knows(John, Xx) Knows(John, Jane) |{x/Jane}
Knows(John, X) Knows(y, Steve) {x/Steve, y/John}
Knows(John, X) Knows(y, Mother(y)) | {x/Mother(John), y/John}
Knows(John, x) Knows(x, Steve) fail

Standardizing apart eliminates
overlap of variables
Knows(z, Steve)

Problem is due to use of same
variable x in both sentences

58

Most General Unifier (MGU)

 UNIFY(Knows(John, x), Knows(y,z)) = 60
1. 8 ={y/John,x/z}
2. 8 ={y/John,x/John,z/John}
* The first unifier is more general than the second

* There is a single Most General Unifier (MGU) that is unique

up to renaming of variables.
MGU = {y/John,x/z}

MGU: Some examples

W, w, MGU
A(B, C) A(x,y) x/B,y/C)
A(x, £ (D, x)) A(E, f(D,y)) x/E,y/E}
Ax,y) A(f(C,), 2) x/f(Cy),y/z}
PA,x fg) PW.f(2).f(2) W/Ax/f(2),z/9()}
P, g(f(A).f(x)) PUW).zY) No MGU

P(x,f(¥)) P(z,g(w)) No MGU

The unification algorithm

Anction UNIFY(x, y, 8) returns a substitution to make x and y identich
inputs: x, a variable, constant, list, or compound expression
y, a variable, constant, list, or compound expression
6, the substitution built up so far (optional, defaults to empty)
if 0 = failure then return failure
else if x = y then return 6
else if VARIABLE?(x) then return UNIFY-VAR(x, y, 0)
else if VARIABLE?(y) then return UNIFY-VAR(y, x, 0)
else if COMPOUND?(x) and COMPOUND?(y) then
return UNIFY(x.ARGS, y.ARGS, UNIFY(x.0P, y.OP, 8))
else if LIST?(x) and LIST?(y) then
return UNIFY(x.REST, y.REST, UNIFY(x.FIRST, y.FIRST, 6))

\else return failure /

61

The unification algorithm

function UNIFY-VAR(var, x, 6) returns a substitution
if {var /val} € 6 then return UNIFY(val, x, 0)
else if {x/val} € 6 then return UNIFY(var, val, 6)
else if OCCUR-CHECK?(var, x) then return failure

\else return add {var/x} to 6 /

62

Atom_mgu(P(a,x,f(g(y))). P(z.f(z),f(w))) ais aconstant

v

Term_list_mgu((a, x, f(g(y))), (z, f(z), f(w))), @)

Term_list_ mgu_aux((X, Lf(g(y))), (f(z), f(w))), Term_mgqu(a, z, @), J)

Variable_mgu(z, a, @)

v
Term_list_mgu((x, f(g(y))), (f(a), f(w))), {a/z} {a%’z}
v
Term_list_ mgu_aux({f(g(y))), (f(w))), Term_mgu(x, f(a), &), {a/z})
'
Variable _mgu(x, f(a), @)
}
{f(a)/x}

Term_list_mgu((), (), Term_mgu(f(g(y)), f(w), {a/z, f(a)/x}))

v

Term_list_ mgu((g(y)), (w), {a/z, f(a)/x})) I

'

Term_list_ mgu_aux((),), Term_mgu(g(y), w, &) {a/z, f(a)/x}))

v

v

Variable _mgu(w, g(y), @)

.

{ a(y)/w}

Term_list_mgu((), (), {a/z, f(a)/x, g(y)/w}))

v

{alz, f(a)/x, g(y)/w}

64

Quiz 02: Find the MGU

* Find the MGU when performing UNIFY (p, q)

W, w, MGU

)

P(f(A),g(x)) P(y,y)
P(A,x,h(g(2))) Pz h(y) h(y))
P(x,f(x),2) P(g), f(g()),y)
P(x, f(x)) P(f(»),y)
P(x,f(2)) P(f(y),y)

N NI NI N

Forward Chaining

* First-order Definite Clauses

* A Simple Forward Chaining Algorithm
 Efficient Forward Chaining g

66

First-order definite clause

« A definite clause is a disjunction of literals of which exactly
one Is positive.

« It is either atomic or an implication whose antecedent is a
conjunctions of positive literals and consequent is a positive literal.

 E.g., King(x) A Greedy(x) = Evil(x),King(John), Greedy(y)
* First-order literals can include variables, which are assumed
to be universally quantified.

* Not every KB can be converted into a set of definite clauses
due to the single-positive-literal restriction.

67

FOL definite clause: An example

» Consider the following problem

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles,
and all of its missiles were sold to it by Colonel West, who is American.]

American(x) AN Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)

[OW‘nS (Nono, Ml)]
[Missile(Ml)]

3 x Owns(Nono, x) A Missile(x)

Missile(x) A Owns(Nono, x) = Sells(West, x, Nono)

Missile(x) = Weapon(x) [Americ an(Wes t)]

Enemy(x, America) = Hostile(x) [Enemy(Nono, America)]

A simple forward chaining algorithm

6nction FOL-FC-ASK(KB,a) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

local variables: new, the new sentences inferred on each iteration
repeat until new is empty

new «{ }

for each rule in KB do

(p1 A Apy, = q)< STANDARDIZE-VARIABLES(rule)

for some py, ..., p;, in KB
q' < SUBST(6,q)

add g’ to new

@< UNIFY(q',a)

if @ is not fail then return ¢
add new to KB

\return false

for each 0 such that SUBST(6, p; A -+ Ap,,) =SUBST(6,p1 A+ Apj),)

if ¢’ does not unify with some sentence already in KB or new then

~

Y

Forward chaining: An example

Americani West)

MissilefM 1)

Chirrsf NWarneo, M1)

Enemw Nono Ameriaa)

70

Forward chaining: An example

Missile(x) A Owns(Nono, x) = Sells(West, x, Nono)

Missile(x) = Weapon(x) |

LE nemy(x, America) = H ostile(xﬂ

WeaporfM1) Sellsi West, M I Nono) Hostilel Narno)
Americani West) MissilefM 1) Owenisi Norno, M1 Enemw Nono, America)

71

Forward chaining: An example

American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)

Criminal(West)| Fixed point

Weapon(M,)

Sells(West,M|,Nono)

American(West)

\

Missile(M,) Owns(Nono,M,)

Hostile(Nono)

Enemy(Nono,America)

12

Forward chaining

e Soundness?

* YES, every inference is just an application of GMP.

« Completeness?
* YES for definite clause knowledge bases.

It answers every query whose answers are entailed by any KB of
definite clauses.

« Terminate for Datalog in finite number of iterations
- Datalog = first-order definite clauses + no functions

 Entailment with definite clauses is semidecidable.

« May not terminate in general if @ is not entailed, unavoidable.

Renaming

« Afactis not “new” if it is just a renaming of a known fact.

* One sentence Is a renaming of another if they are identical
except for the names of the variables.

« E.g., Likes(x, IceCream) vs. Likes(y, IceCream)

Definite clauses with function symbols

* Inference can explode forward and may never terminate.

1

‘a\/f

14-»28>
2{2 26 2 -
/\:48 —
22}
Ol

0>2

\2464 L

Even(x) = Even(plus(x,2))
Integer(x) = Even(times(2,x))
Even(x) = Integer(x)

Even(2)

Efficient forward chaining

Incremental forward chaining

* No need to match a rule on iteration k if a premise was not added on
iteration k — 1 — match each rule whose premise contains a newly
added positive literal

Matching itself can be expensive

Database indexing allows O (1) retrieval of known facts
* E.g., query Missile(x) retrieves Missile(M,)

Widely used in deductive databases

76

Quiz 03: Forward chaining

« Given a KB containing the following sentence

1
2.
3.
4.
5.

Parent(x,y) A Male(x) = Father(x,y)
Father(x,y) A Father(x,z) = Sibling(y, z)
Parent(Tom, John)

Male(Tom)

Parent(Tom, Fred)

* Perform the forward chaining until a fixed point is reached.

Backward Chaining

=
i__

A backward chaining algorithm

ﬁunction FOL-BC-ASK(KB,query) returns a generator of substitutiorﬁ
return FOL-BC-OR(KB,query,{})

generator FOL-BC-OR(KB,goal,) yields a substitution
for each rule (lhs = rhs) in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs, rhs) < STANDARDIZE-VARIABLES((/hs, rhs))
for each 6’in FOL-BC-AND(KB,lhs, UNIFY(rhs, goal, 6)) do
yield 6’

generator FOL-BC-AND(KB,goals, 0) yields a substitution
if 0 = failure then return
else if LENGTH(goals) = 0 then yield 6
else do
first,rest < FIRST(goals), REST(goals)
for each 6’in F'OL-BC-OR(KB, SUBST(6, first), 8) do

for each 6”in FOL-BC-AND(KB,rest, 8') do
yield 6” 79

Backward chaining: An example

Criminall West)

80

Backward chaining: An example

Criminalf West) (x/West]

R

Americanix) Weapon v) Sells(x,v.z) Hostile{ z)

Backward chaining: An example

Criminalf West)

(xWest]

R

American Wesrt)

Weapon y)

L]

Sellsix,y.z)

Hostilei z)

82

Backward chaining: An example

Criminalf Wesr)

American West)

Weaponi v)

|

Missile(y)

Sellsix,y.z)

(x/West [

Hostilel z)

83

Backward chaining: An example

Criminalf West)

American West) Weapon vi
L
Missile(v)
| wM]

Sells(x,y.z)

(x/West, WMl]

Hosrtilei z)

84

Backward chaining: An example

Criminalf West)

American Wesr) Weapory v) Sells{ West M1,z)
|} | @Nono |
Missile(y) MissileiM i) Ohensi Norna, M1)
| wM 1|

(xWesr, wMI, z/"Nono |

Hostilei z)

85

Backward chaining: An example

Criminalf West) (xWesr, wMI, z/"Nono |
American Wesrt) Weapon v) Sells{ West M1,z) Hostilei Nomo)
|} | @Nono |

Missile(y) MissileiM i) Ovns{Nono, M1) | | Eremy Nono, America)

| wMl} |] | |}

86

Properties of backward chaining

Depth-first recursive proof search

« Space is linear in size of proof

Incomplete due to infinite loops

* Fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (success and failure)

« Fix using caching of previous results (extra space)

Widely used for logic programming

87

Quiz 04: Backward chaining

« Given a KB containing the following sentence
1. Parent(x,y) AN Male(x) = Father(x,y)
2. Father(x,y) A Father(x,z) = Sibling(y, z)
3. Parent(Tom,John)
4. Male(Tom)
5. Parent(Tom, Fred)

 Find solution(s) to each of the following queries
« Parent(Tom, x) « Father(f, s)
* Father(Tom, s) « Sibling(a, b)

Quiz 04: Backward chaining

* Query: Parent(Tom,Xx)
« Answers: ({x/John}, {x/Fred})

* Query: Father(Tom,s)
« Subgoal: Parent(Tom,s) A Male(Tom)

» {s/John}
« Subgoal: Male(Tom)

. Answer: {s/John}

» {s/Fred}
» Subgoal: Male(Tom)

» Answer: {s/Fred}

- Answers: ({s/John}, {s/Fred})

Resolution

90

CNF for First-order logic

* First-order resolution requires that sentences be in CNF.
* For example, the sentence
Vx American(x) A Weapon(y) A Sells(x,y,z) A Hostile(z) = Criminal(x)

becomes, in CNF,

—American(x) V =-Weapon(y) V =Sells(x,y,z) V =Hostile(z) V Criminal(x)

* Every sentence of first-order logic can be converted into an
Inferentially equivalent CNF sentence.

« The CNF sentence will be unsatisfiable just when the original
sentence is unsatisfiable — perform proofs by contraction.

91

Conversion to CNF

Everyone who loves all animals is loved by someone.

Vx [Vy Animal(y) = Loves(x,y)] = [3y Loves(y,x)]

1. Eliminate implications

Vx [=Vy —Animal(y) V Loves(x,y)] V [3y Loves(y,x)]

2. Move — inwards: =Vxp = Ix—p, 7Ax p = Vx —p

Vx

Vx

Vx

:Ely —|(—|Animal(y) V Loves(x, y))] \Y;

3y ——Animal(y) A =Loves(x,y)] V

3y Animal(y) A =Loves(x,y)] \Y;

Jy Loves(y,x)]

3y Loves(y,x)]

3y Loves(y,x)]

92

Conversion to CNF

Everyone who loves all animals is loved by someone.

Vx [Vy Animal(y) = Loves(x,y)] = [3y Loves(y,x)]

3. Standardize variables: each quantifier uses a different one
Vx [y Animal(y) A =Loves(x,y)] Vv |3z Loves(z, x)]

4. Skolemize: remove existential quantifiers by elimination

« Simple case: translate 3x P(x) into P(A), where A is a new constant.

« However, Vx[Animal(A) A ~Loves(x,A)] vV [Loves(B,x)] has an entirely
different meaning.

« The arguments of the Skolem function are all universally quantified
variables in whose scope the existential quantifier appears.

Vx [Animal(F(x)) A =Loves(x,F(x))] V [Loves(G(x), x)]

Conversion to CNF

Everyone who loves all animals is loved by someone.

Vx [Vy Animal(y) = Loves(x,y)] = [3y Loves(y,x)]

5. Drop universal quantifiers
|[Animal (F (x)) A =Loves(x, F(x))] V [Loves(G(x), x)]

6. Distribute v over A

|[Animal(F (x)) V Loves(G(x),x)] A
|~Loves(x, F(x)) V Loves(G(x), x)]

94

The resolution inference rule

« Simply a lifted version of the propositional resolution rule

* Formulation LV VI

mq van

SUBST(B, ll VeV li—l VvV li+1 VeV lk le VvV ‘“ij_l ij+1 VvV an

» where UNIFY(l;, ~m;) = 6

* For example,
Animal(F (x)) V Loves(G(x), x)
—Loves(u,v) V =Kills(u, v)

Animal(F (x)) V =Kills(G(x), x)

0 ={u/G(x),v/x}

Resolution: An example

- American{x) v 1 Weapon(y) v - Sells(x,yv.z}) v — Hostile{z) v Criminal{x) | - Criminal{ West) |
\\\/
American’ West) -1 American{ Wesr) v 0 Weapon{y) v 1 Sells{Westy,z) v 1 Hostile(z) .
___________________________-_-_-_-_-_-_
- Missile{x) v Weapon(x) - Weaponiy) v 1 SellsfWest,v,z) v — Hostilelz)
___________________-_-___-_-_-_-_-_-_-_
Missile(M1) | |~ Missile(y) v~ Sells(West.yz) v = Hostile(z)
\‘'_._____
- Missileix) v — OwnsiNono.x) v Sells{West,x Norno) | - Sellsi West, M 1.z) v — Hosrilel 2) |
_\\—\-/
Missile/M 1) - MissifeiMi) v 1 OwnsiNono M) v - Hostile(Nono)
Owns{ Nono M 1) - Owns{Norno M) v — Hostile(Nono)
\\-_\\/
-1 Enemw x,America) v Hostile(x) | =1 Hostilel Nono) |
-
= Enemw Nono, America) Enemw Nono. America) |

Resolution: Another example

Everyone who loves all animals is loved by someone.
Anyone who Kkills an animal is loved by no one.

Jack loves all animals.

Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

Vx [Vy Animal(y) = Loves(x,y)| = [3y Loves(y, x)]
Vx [3z Animal(z) A Kills(x,z)] = [Vy —Loves(y,x)]
Vx Animal(x) = Loves(Jack, x)

Kills(Jack, Tuna) V Kills(Curiosity, Tuna)

Cat(Tuna)

Vx Cat(x) = Animal(x)

— Kills(Curiosity, Tuna)

S S B I

Resolution: Another example

Everyone who loves all animals is loved by someone.
Anyone who Kkills an animal is loved by no one.

Jack loves all animals.

Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

A. Animal(F(x) V Loves(G(x), x)

—Loves(x,F(x)) V Loves(G(x), x)
—Loves(y,x) V ~Animal(z) V =Kills(x, z)

—Animal(x) V =~Loves(Jack, x)

Kills(Jack, Tuna) V Kills(Curiousity, Tuna)

Cat(Tuna)

—Cat(x) Vv Animal(x)

— Kills(Curiosity, Tuna)

Q=R DT Ok

Resolution: Another example

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity
did; thus Jack must have. Now, Tuna is a cat and cats are animals, so
Tuna is an animal. Because anyone who kills an animal is loved by no
one, we know that no one loves Jack. On the other hand, Jack loves all
animals, so someone loves him; so we have a contradiction.

Therefore, Curiosity killed the cat.

Cat(Tuna)

=Cat(x) VAnimal(x) | |Kills(Jack, Tuna) V Kills(Curiosity, Tuna)| | ~Kills(Curiosity, Tuna)

\—

\/

Animal(Tuna)

=Loves(v, x)V =~Animal(z) V-Kills(x, z)

Kills(Jack, Tuna) | | =Loves(x,F(x)) V Loves(G(x), x) =Animal(x) V Loves(Jack, x)

—

=Loves(y, x) V-Kills(x, Tuna)

=Loves(y, Jack)

=

“Animal(F(Jack)) V Loves(G(Jack), Jack)

Animal(F(x)) V Loves(G(x), x)

N——

Loves(G(Jack), Jack)

= =

99

Quiz 05: Resolution

* Given a KB of the following sentences
« Anyone whom Mary loves is a football star.
« Any student who does not pass does not play.
« John is a student.
* Any student who does not study does not pass.

« Anyone who does not play is not a football star.

* Prove that If John does not study, Mary does not love John.

* Write the FOL sentences using only the given predicates
Loves(X, y): “x loves y” Star(x): “x is a football star”

Student(x): “x is a student” Pass(x): “x passes”

Play(x): “x plays” Study(x): “x studies”

l
nanks:

THE END

