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Outline

• Representing knowledge in an uncertain domain

• Exact inference in Bayesian networks

• Constructing a Bayesian network
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Knowledge 
in 
uncertain
domain
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Full joint probability distribution

• The probabilities of all possible worlds can be described by

using full joint probability distribution (FJPD).

• The elements are indexed by values of random variables.

• We can calculate probabilities of values of any random variable.
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𝐏(𝑇𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) = 0.2, 0.8

𝑃 ¬𝑐𝑎𝑣𝑖𝑡𝑦 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

=
𝑃(¬𝑐𝑎𝑣𝑖𝑡𝑦 ∧ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064

𝑃 𝑐𝑎𝑣𝑖𝑡𝑦 ∨ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064



Full joint probability distribution

• FJPD answers any question about the domain.

• Plain FJPD becomes intractably large as the number of

variables grows.

• Defining probabilities for possible worlds is unnatural and tedious.

• (Conditional) independence relationships among variables

can greatly reduce the number of probabilities required.
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Bayesian networks

• Bayesian networks (BN) can represent essentially, and in

many cases very concisely, any FJPD.
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• Belief network, probabilistic network, causal network, knowledge map

• Each node 𝑋𝑖 presents a random variable.

• It associates with 𝐏 𝑋𝑖 | 𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖) , which quantifies the

effect of the parents on the node.

• A set of directed links connects pairs of nodes.

• If there is a link from node 𝑋 to node 𝑌, 𝑋 is a parent of 𝑌.

• The graph has no directed cycles → DAG.



Bayesian networks: Applications

Integrating plant chemical 

ecology, sensors and AI for 

accurate pest monitoring

8
A model of household factors influencing the risk of malaria



Bayesian network topology

• The network topology defines the conditional independence

relationships that hold in the domain.

• 𝑋 → 𝑌: 𝑋 has a direct influence on 𝑌, suggesting that causes should

be parents of effects.

• A domain expert decides what direct influences exist in the domain.

• A conditional probability distribution is specified for each

variable, given its parents.

Weather is independent of the other three variables. 
Toothache and Catch are conditionally independent, given Cavity
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Bayesian networks: An example
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The network topology shows that

• Burglary and earthquakes directly affect the probability of the alarm’s going off

• Whether John and Mary call depends only on the alarm.

The network thus expresses assumptions 

that John and Mary do not

• Perceive burglaries directly

• Notice minor earthquakes

• Confer before calling



Conditional probability table (CPT)

• Each row contains the conditional probability of each node

value for a conditioning case.

• Conditioning case = a possible combination of values for the parent

nodes, or a miniature possible world.

• Each row must sum to 1.

• The entries represent an exhaustive set of cases for the variable.

• A Boolean variable requires only the probability of true value 𝑝.

• The probabilities summarizes a potentially infinite set of

circumstances in which an event does (not) happen.

• E.g., the alarm might fail to go off (high humidity, power failure, dead

battery, a dead mouse stuck inside, etc.) or John or Mary might fail to

call and report it (on vacation, negligent, passing helicopter, etc.).
11



Quiz 01: Bayesian nets: Snuffles

• Assume there are two types of conditions: (S)inus congestion and (F)lu. Sinus

congestion is caused by (A)llergy or the flu.

• There are three observed symptoms for these conditions: (H)eadache, (R)unny

nose, and fe(V)er. Runny nose and headaches are directly caused by sinus

congestion (only), while fever comes from having the flu (only). For example,

allergies only cause runny noses indirectly.

• Assume each variable is Boolean. Consider the four Bayesian networks shown.

Choose the one which models the domain best. Explain why the others do not.
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Quiz 01: Bayesian nets: Snuffles

• Assume we wanted to remove the Sinus congestion (S) node. Draw the

minimal Bayes network over the remaining variables which can encode

the original model’s marginal distribution over the remaining variables.
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Note that there is an induced arrow between R and H.

Also, other options are possible, such as the reverse of

that arrow.



Inference 
in 
Bayesian
networks
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Full joint distribution with BN

• An entry in the joint distribution is the probability of a variable

assignment, such as 𝐏 𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑛 = 𝑥𝑛 .

𝐏 𝑥1, … , 𝑥𝑛 =ෑ

𝑖=1

𝑛

𝐏 𝑋𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋𝑖)

• where 𝑝𝑎𝑟𝑒𝑛𝑡(𝑋𝑖) denotes the values of 𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖) that appear in

𝑥1, … , 𝑥𝑛.

• Thus, it is the product of the appropriate elements of the

CPTs in the Bayesian network.

• A Bayesian network can be used to answer any query, by

summing all the relevant joint entries.
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Full joint distribution with BN

• For example, the probability

that the alarm has sounded,

but neither a burglary nor an

earthquake has occurred, and

both John and Mary call
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𝑃 𝑗,𝑚, 𝑎, ¬𝑏,¬𝑒 = 𝑃 𝑗 𝑎) 𝑃 𝑚 𝑎) 𝑃 𝑎 ¬𝑏 ∧ ¬𝑒) 𝑃(¬𝑏) 𝑃(¬𝑒)

= 0.90 × 0.70 × 0.001 × 0.999 × 0.998 = 0.000628



The wet grass example

17

𝐺 = 𝐺𝑟𝑎𝑠𝑠 𝑤𝑒𝑡 (𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒)

𝑆 = 𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 𝑡𝑢𝑟𝑛𝑒𝑑 𝑜𝑛 (𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒)

𝑅 = 𝑅𝑎𝑖𝑛𝑖𝑛𝑔 (𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒)



The wet grass example
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• What is the probability that it is raining, given the grass is wet?

𝑃 𝑅 = 𝑇 𝐺 = 𝑇 =
𝑃(𝐺 = 𝑇, 𝑅 = 𝑇)

𝑃(𝐺 = 𝑇)
=
σ𝑆∈{𝑇,𝐹}𝑃(𝐺 = 𝑇, 𝑆, 𝑅 = 𝑇)

σ𝑆,𝑅∈{𝑇,𝐹}𝑃(𝐺 = 𝑇, 𝑆, 𝑅)

• Using the expansion for the joint probability function 𝑃(𝐺, 𝑆, 𝑅) and the

conditional probabilities from the CPTs stated in the diagram

𝑃 𝐺 = 𝑇, 𝑆 = 𝑇, 𝑅 = 𝑇 = 𝑃 𝐺 = 𝑇 𝑆 = 𝑇, 𝑅 = 𝑇) 𝑃 𝑆 = 𝑇 𝑅 = 𝑇)𝑃(𝑅 = 𝑇)

• The numerical results (subscripted by the associated variable values) are

𝑃 𝑅 = 𝑇 𝐺 = 𝑇) =
0.00198𝑇𝑇𝑇 + 0.1584𝑇𝐹𝑇

0.00198𝑇𝑇𝑇 + 0.288𝑇𝑇𝐹 + 0.1584𝑇𝐹𝑇 + 0.0𝑇𝐹𝐹

= 0.99 × 0.01 × 0.2 = 0.00198

=
891

2491
≈ 35.77%



Inference in BN: Notations 

• 𝑋: query variable

• 𝐄: the set of evidence variables 𝐸1, … , 𝐸𝑚, 𝒆 is a particular

observed event

• 𝐘: nonevidence variables, 𝑌1, … , 𝑌𝑙, (hidden variables)

• Thus, the complete set of variables is 𝑿 = {𝑋} ∪ 𝐄 ∪ 𝐘

• A typical query asks for the posterior probability 𝐏(𝑋 | 𝒆)

• E.g., 𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 | 𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 = 𝑡𝑟𝑢𝑒,𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 = 𝑡𝑟𝑢𝑒)

= 0.284, 0.716
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Inference by enumeration

• A query can be answered by computing sums of products of

conditional probabilities from the Bayesian network.

𝐏(𝑋 | 𝒆) = 𝛼𝐏(𝑋, 𝒆) = 𝛼

𝑦

𝐏(𝑋, 𝒆, 𝒚)

• where 𝛼 stands for the constant denominator term, which is usually

simplified during calculation.
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Inference by enumeration

• Consider the following query

𝐏(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 | 𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 = 𝑡𝑟𝑢𝑒,𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 = 𝑡𝑟𝑢𝑒)

• The hidden variables are 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 and 𝐴𝑙𝑎𝑟𝑚. 

• Using initial letters for the variables, we have

𝐏 𝐵 𝑗,𝑚) = 𝛼 𝐏 𝐵, 𝑗,𝑚 = 𝛼

𝑒



𝑎

𝐏(𝐵, 𝑗,𝑚, 𝑒, 𝑎)

• For simplicity, we do this for 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 = 𝑡𝑟𝑢𝑒.

𝑃 𝑏 𝑗,𝑚) = 𝛼

𝑒



𝑎

𝑃 𝑏 𝑃 𝑒 𝑃 𝑎 𝑏, 𝑒 𝑃 𝑗 | 𝑎 𝑃 𝑚 𝑎)

• Complexity: 𝑶(𝒏𝟐𝒏) for a network of 𝑛 Boolean variables
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Inference by enumeration

• An improvement can be obtained as follows.

𝑃 𝑏 𝑗,𝑚) = 𝛼 𝑃 𝑏 

𝑒

𝑃 𝑒 

𝑎

𝑃 𝑎 𝑏, 𝑒 𝑃 𝑗 | 𝑎 𝑃 𝑚 𝑎)

22

The evaluation proceeds top down, 

multiplying values along each path 

and summing at the “+” nodes. 

Notice the repetition of 

the paths for 𝑗 and 𝑚.



Inference by enumeration: Pseudocode
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function ENUMERATION-ASK(X , e, bn) returns a distribution over X

inputs: X , the query variable

e, observed values for variables E

bn, a Bayes net with variables {X} ∪ E ∪ Y /* Y = hidden variables */

Q(X) ← a distribution over X , initially empty

for each value xi of X do

Q(xi) ← ENUMERATE-ALL(bn.VARS, exi)

where exi is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number

if EMPTY?(vars) then return 1.0

Y ← FIRST(vars)

if Y has value y in e

then return P(y | parents(Y)) × ENUMERATE-ALL(REST(vars), e)

else return  y P(y | parents(Y)) × ENUMERATE-ALL(REST(vars), ey)

where ey is e extended with Y = y



Inference by enumeration: Complexity

• The space complexity of ENUMERATION-ASK is only linear

in the number of variables.

• The algorithm sums over the full JPD without constructing it explicitly.

• The time complexity for a network with 𝑛 Boolean variables

is always 𝑂 2𝑛

• Better than the 𝑂 𝑛2𝑛 for the simple approach, but still rather grim.

• There are still repeated subexpressions to be evaluated.

• E.g., 𝑃(𝑗 | 𝑎)𝑃(𝑚 | 𝑎) 𝑎𝑛𝑑 𝑃(𝑗 | ¬𝑎)𝑃(𝑚 |¬𝑎) are computed twice,

once for each value of 𝑒.
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Variable elimination algorithm

• Dynamic programming: do the calculation once and save the

results for later use

• Evaluate expressions in right-to-left order (i.e., bottom up in the tree)

• Store intermediate results and do summations over each variable

only for portions of the expression that depend on the variable.

25

function ELIMINATION-ASK(X , e, bn) returns a distribution over X

inputs: X, the query variable e, observed values for variables E

bn, a Bayesian network specifying joint distribution P(X1, . . . , Xn)

factors ← [ ]

for each var in ORDER(bn.VARS) do

factors ← [MAKE-FACTOR(var, e) | factors]

if var is a hidden variable then factors ← SUM-OUT(var, factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))



Variable elimination: Factorization

• Consider the burglary network. We evaluate the following

𝑷 𝐵 𝑗,𝑚) = 𝛼 𝑃 𝐵 

𝑒

𝑃 𝑒 

𝑎

𝑃 𝑎 𝐵, 𝑒 𝑃 𝑗 | 𝑎 𝑃 𝑚 𝑎)

where 

• 𝐟𝟒 𝐴 =
𝑃 𝑗 𝑎)

𝑃 𝑗 ¬𝑎)
=

0.90
0.05

, 𝐟𝟓 𝐴 =
𝑃 𝑚 𝑎)

𝑃 𝑚 ¬𝑎)
=

0.70
0.01

• 𝐟𝟑(𝐴, 𝐵, 𝐸) is a 222 matrix

• In terms of factors, the query expression is written as

𝑷 𝐵 𝑗,𝑚) = 𝛼 𝐟𝟏 𝐵 ×

𝑒

𝐟𝟐 𝐸 ×

𝑎

𝐟𝟑 𝐴, 𝐵, 𝐸 × 𝐟𝟒 𝐴 × 𝐟𝟓(𝐴)

• where  is the pointwise product operation.

26

𝐟𝟏(𝐵) 𝐟𝟐(𝐸) 𝐟𝟒(𝐴) 𝐟𝟓(𝐴)𝐟𝟑(𝐴, 𝐵, 𝐸)𝐟𝐚𝐜𝐭𝐨𝐫



Variable elimination: Factorization

• First, we sum out 𝐴 from the product of 𝐟𝟑, 𝐟𝟒, and 𝐟𝟓.

𝐟𝟔 𝐵, 𝐸 =

𝑎

𝐟𝟑 𝐴, 𝐵, 𝐸 × 𝐟𝟒 𝐴 × 𝐟𝟓(𝐴)

Now we are left with

• Next, we sum out 𝐸 from the product of 𝐟𝟐 and 𝐟𝟔

𝐟𝟕 𝐵 =

𝑒

𝐟𝟐 𝐸 × 𝐟𝟔 𝐵, 𝐸 = 𝐟𝟐 𝑒 × 𝐟𝟔 𝐵, 𝑒 + 𝐟𝟐 ¬𝑒 × 𝐟𝟔 𝐵,¬𝑒

• The following expression can be evaluated by taking pointwise product

and normalizing the result.

𝑷 𝐵 𝑗,𝑚) = 𝛼 𝐟𝟏 𝐵 × 𝐟𝟕 𝐵

27

= 𝐟𝟑 𝑎, 𝐵, 𝐸 × 𝐟𝟒 𝑎 × 𝐟𝟓 𝑎 + 𝐟𝟑 ¬𝑎, 𝐵, 𝐸 × 𝐟𝟒 ¬𝑎 × 𝐟𝟓(¬𝑎)

𝑷 𝐵 𝑗,𝑚) = 𝛼 𝐟𝟏 𝐵 ×

𝑒

𝐟𝟐 𝐸 × 𝐟𝟔 𝐵, 𝐸



Variable elimination: Operators

• The pointwise product of two factors 𝐟𝟏 and 𝐟𝟐 gives a new factor 𝐟 whose

28

• Variables are the union of the variables in 𝐟𝟏 and 𝐟𝟐

• Elements are given by the product of the corresponding elements in

the two factors.

• Suppose the two factors have variables 𝑌1, … , 𝑌𝑘 in common.

• Then,

if all the variables are binary, 𝐟𝟏 and 𝐟𝟐
have 2𝑗+𝑘 and 2𝑘+𝑙 entries, respectively,
and their product has 2𝑗+𝑘+𝑙.

𝐟𝟑 𝑋1…𝑋𝑗 , 𝑌1…𝑌𝑘 , 𝑍1…𝑍𝑙 = 𝐟𝟏 𝑋1…𝑋𝑗 , 𝑌1…𝑌𝑘 × 𝐟𝟐 𝑌1…𝑌𝑘, 𝑍1…𝑍𝑙



Variable elimination: Operators

• Summing out a variable from a product of factors is done by adding up

the submatrices formed by fixing the variable to each of its values in turn.

𝐟 𝐴, 𝐵 =

𝑎

𝐟𝟑 𝐴, 𝐵, 𝐶 = 𝐟𝟑 𝑎, 𝐵, 𝐶 + 𝐟𝟑(¬𝑎, 𝐵, 𝐶)

• Notice that any factor that does not depend on the variable to be

summed out can be moved outside the summation.



𝑒

𝐟𝟐 𝐸 × 𝐟𝟑 𝐴, 𝐵, 𝐸 × 𝐟𝟒 𝐴 × 𝐟𝟓 𝐴 = 𝐟𝟒 𝐴 × 𝐟𝟓 𝐴 ×

𝑒

𝐟𝟐 𝐸 × 𝐟𝟑 𝐴, 𝐵, 𝐸

29



Variable elimination: Ordering

• Every choice of ordering yields a valid algorithm

• Different orderings cause different intermediate factors to be

generated during the calculation.

• A heuristic for variable elimination

30

= 𝛼 𝐟𝟏 𝐵 ×

𝑒

𝐟𝟐 𝐸 ×

𝑎

𝐟𝟑 𝐴, 𝐵, 𝐸 × 𝐟𝟒 𝐴 × 𝐟𝟓(𝐴)𝑷 𝐵 𝑗,𝑚)

= 𝛼 𝐟𝟏 𝐵 ×

𝑎

𝐟𝟒 𝐴 × 𝐟𝟓(𝐴) ×

𝑒

𝐟𝟐 𝐸 × 𝐟𝟑 𝐴, 𝐵, 𝐸

𝐟𝟔

Every variable that is not an ancestor of a query variable or

evidence variable is irrelevant to the query.



Variable elimination: An example

• Consider the following network. Calculate 𝑃 𝐵 ¬𝑐).

• 𝑷 𝐵 ¬𝑐) = 𝛼 𝑃 ¬𝑐 𝐵) × σ𝑎𝑃 𝐵 | 𝑎 × 𝑃(𝑎)

• Irrelevant variable: 𝐷. Observed variable: 𝐶 = ¬𝑐.

• Sum out 𝐴 to have 𝒇𝟒 𝐵 = σ𝑎𝑃 𝐵 | 𝑎 × 𝑃(𝑎)

• Join 𝒇𝟏 and 𝒇𝟒:  𝒇𝟓 𝐵,¬𝑐 = 𝒇𝟏 𝐵 × 𝒇𝟒 𝐵

• Finally, we have 𝑷 𝐵 ¬𝑐) = 𝛼 𝒇𝟓 𝐵,¬𝑐

• Assume that 𝐵 = 𝑏. Normalize for 𝐵:

𝑷 𝑏 ¬𝑐) =
𝒇𝟓 𝑏, ¬𝑐

𝒇𝟓 𝑏, 𝑐 + 𝒇𝟓 ¬𝑏,¬𝑐

31

A

B

DC

𝑃(𝐴)

0.5

𝐴 𝑃(𝐵)

𝑡 0.5

𝑓 0

𝐵 𝑃(𝐶)

𝑡 0.5

𝑓 0

𝐵 𝑃(𝐷)

𝑡 0.5

𝑓 0

𝐟𝟏(𝐵) 𝐟𝟐(𝐴, 𝐵) 𝐟𝟑(𝐴)𝐟𝐚𝐜𝐭𝐨𝐫



The complexity of exact inference

• The complexity of exact inference depends strongly on the

structure of the network.

• Singly connected networks or polytrees: Linear time and

space complexity to the network size.

• The size is defined as the number of CPT entries.

• If the number of parents of each node is bounded by a constant, the

complexity will also be linear in the number of nodes.

• Multiply connected networks: Exponential time and space

complexity in the worst case, even when the number of

parents per node is bounded

• Inference in Bayesian networks is NP-hard.

32



The complexity of exact inference

33

Singly connected networks or polytrees:

there is at most one undirected path

between any two nodes in the network

Multiply connected networks



Quiz 02: Inference in BN

• A smell of sulfur (S) can be caused either by rotten eggs (E) or as a sign

of the doom brought by the Mayan Apocalypse (M). The Mayan

Apocalypse also causes the oceans to boil (B).

• The Bayesian network and corresponding CPTs are shown below.

34



Quiz 02: Inference in BN

• Write down the joint probability distribution from the given network

P(E, S, M, B) =

• Compute the following entry from the joint distribution

P(+e, +s, –m, +b) =

• What is the probability that the oceans boil?

P(+b) =

• What is the probability that the Mayan Apocalypse is occurring, given that the oceans are

boiling?

P(+m | +b) =

• What is the probability that rotten eggs are present, given that the Mayan Apocalypse is

occurring?

P(+e | +m) =

• What is the probability that the Mayan Apocalypse is occurring, given that there is a smell

of sulfur, the oceans are boiling, and there are rotten eggs?

P(+m | +s, +b, +e) =
35
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Constructing a Bayesian network 

• Scenario 1: Network structure known and all variables observable

• Compute only the CPT entries

• Scenario 2: Network structure known while some variables hidden

• Gradient descent (greedy hill-climbing) method, i.e., search for a

solution along the steepest descent of a criterion function

• Scenario 3: Network structure unknown, all variables observable

• Search through the model space to reconstruct network topology

• Scenario 4: Network structure unknown and all variables hidden

• No good algorithms known for this purpose

• D. Heckerman. A Tutorial on Learning with Bayesian Networks.

In Learning in Graphical Models, M. Jordan, ed.. MIT Press, 1999.
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Constructing a Bayesian network 

• Certain conditional independence relationships can guide

the knowledge engineer to build the topology of the network.

• The Chain Rule holds for any set of random variables.

• We generally assert that, for every variable 𝑋𝑖 in the network

𝐏 𝑋𝑖 |𝑋𝑖−1, … , 𝑋1 = 𝐏 𝑋𝑖 | 𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖)

provided that 𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖) ⊆ 𝑋𝑖−1, … , 𝑋1 .

38

= 𝑃 𝑥𝑛 |𝑥𝑛−1, … , 𝑥1 𝑃 𝑥2 |𝑥𝑛−2, … , 𝑥1 …𝑃 𝑥2 | 𝑥1 𝑃 𝑥1

𝐏 𝑥1, … , 𝑥𝑛 =ෑ

𝑖=1

𝑛

𝐏 𝑥𝑖 |𝑥𝑖−1, … , 𝑥1

= 𝑃 𝑥𝑛 |𝑥𝑛−1, … , 𝑥1 𝑃 𝑥𝑛−1, … , 𝑥1



Construct a Bayesian network

• Each node must be conditionally independent of its other

predecessors in the node ordering, given its parents.

• Nodes: Identify the set of variables required to model the

domain and order them, 𝑋1, … , 𝑋𝑛 .

• Any order will work, but the resulting network will be more compact if

the variables are ordered such that causes precede effects.

• Links: For 𝑖 = 1 to 𝑛 do:

• Choose, from 𝑋1, … , 𝑋𝑖−1 , a minimal set of parents for 𝑋𝑖 such that

Equation is satisfied.

• For each parent insert a link from the parent to 𝑋𝑖.

• CPTs: Write down the conditional probability table, 𝑃 𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑖) .
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Construct a Bayesian network

• Intuitively, the parents of node 𝑋𝑖 should contain all those

nodes in 𝑋1, … , 𝑋𝑖−1 that directly influence 𝑋𝑖.

40

• 𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 is indirectly influenced by 

whether there is a 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 or an 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒.

• These events influence Mary’s calling behavior 

only through their effect on the 𝐴𝑙𝑎𝑟𝑚

• Given the state of the 𝐴𝑙𝑎𝑟𝑚, whether John 

calls has no influence on Mary’s calling

𝑃(𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 | 𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠, 𝐴𝑙𝑎𝑟𝑚, 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒, 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦) = 𝑃(𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠 | 𝐴𝑙𝑎𝑟𝑚)

• Thus, 𝐴𝑙𝑎𝑟𝑚 will be the only parent node for 𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠.

• That is,



Construct a Bayesian network

• The network is guaranteed to be acyclic.

• Each node is connected only to earlier nodes.

• Bayesian networks contain no redundant probability values.

• If there is no redundancy, then there is no chance for inconsistency.

• It is impossible for the domain expert to create a Bayesian

network that violates the axioms of probability.
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Example: Fire diagnosis

• You want to diagnose whether there is a fire in a building

• You can receive reports (possibly noisy) about whether everyone is

leaving the building

• If everyone is leaving, this may have been caused by a fire alarm.

• If there is a fire alarm, it may have been caused by a fire or by tampering.

• If there is a fire, there may be smoke.
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Fire diagnosis: Define variables

• Start by choosing the random Boolean variables for this domain

• 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 𝑇 : the alarm has been tampered with

• 𝐹𝑖𝑟𝑒 (𝐹): there is a fire

• 𝐴𝑙𝑎𝑟𝑚 (𝐴): there is an alarm

• 𝑆𝑚𝑜𝑘𝑒 (𝑆): there is smoke

• 𝐿𝑒𝑎𝑣𝑖𝑛𝑔 (𝐿): there are lots of people leaving the building

• 𝑅𝑒𝑝𝑜𝑟𝑡 (𝑅): the sensor reports that everyone are leaving the building
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Fire diagnosis: Chain rule

• Define a total ordering of variables

• Choose an order that follows the causal sequence of events

• Fire (F) Tampering (T) Alarm (A) Smoke (S) Leaving (L) Report (R)

• Consider the following chain rule and use given clues to simplify it

𝐏 𝐹, 𝑇, 𝐴, 𝑆, 𝐿, 𝑅 = 𝐏 𝐹 𝐏(𝑇 | 𝐹) 𝐏(𝐴 𝐹, 𝑇 𝐏(𝑆 | 𝐹, 𝑇, 𝐴)

𝐏(𝐿 | 𝐹, 𝑇, 𝐴, 𝑆) 𝐏(𝑅 | 𝐹, 𝑇, 𝐴, 𝑆, 𝐿)
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Fire diagnosis: Build a topology

• 𝐹𝑖𝑟𝑒 (𝐹) is the first variable in the ordering, 𝑋1, which has no parent.
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𝐏 𝑭 𝐏(𝑇 | 𝐹) 𝐏(𝐴 | 𝐹, 𝑇) 𝐏(𝑆 | 𝐹, 𝑇, 𝐴) 𝐏(𝐿 | 𝐹, 𝑇, 𝐴, 𝑆) 𝐏(𝑅 | 𝐹, 𝑇, 𝐴, 𝑆, 𝐿)

Fire



• 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 (𝑇) is independent of fire

• Learning that one is true/false would not change your beliefs about

the probability of the other.
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𝐏 𝐹 𝐏(𝑻) 𝐏(𝐴 | 𝐹, 𝑇) 𝐏(𝑆 | 𝐹, 𝑇, 𝐴) 𝐏(𝐿 | 𝐹, 𝑇, 𝐴, 𝑆) 𝐏(𝑅 | 𝐹, 𝑇, 𝐴, 𝑆, 𝐿)

FireTampering

Fire diagnosis: Build a topology



Fire diagnosis: Build a topology

• 𝐴𝑙𝑎𝑟𝑚 (𝐴) depends on both 𝐹𝑖𝑟𝑒 and 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔: it could be caused by

either or both.
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𝐏 𝐹 𝐏(𝑇) 𝐏(𝑨 | 𝑭, 𝑻) 𝐏(𝑆 | 𝐹, 𝑇, 𝐴) 𝐏(𝐿 | 𝐹, 𝑇, 𝐴, 𝑆) 𝐏(𝑅 | 𝐹, 𝑇, 𝐴, 𝑆, 𝐿)

FireTampering

Alarm



Fire diagnosis: Build a topology

• 𝑆𝑚𝑜𝑘𝑒 (𝑆) is caused by 𝐹𝑖𝑟𝑒, and so is independent of 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 and

𝐴𝑙𝑎𝑟𝑚, given whether there is a 𝐹𝑖𝑟𝑒.
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𝐏 𝐹 𝐏(𝑇) 𝐏(𝐴 | 𝐹, 𝑇) 𝐏(𝑺 | 𝑭) 𝐏(𝐿 | 𝐹, 𝑇, 𝐴, 𝑆) 𝐏(𝑅 | 𝐹, 𝑇, 𝐴, 𝑆, 𝐿)

FireTampering

Alarm Smoke



Fire diagnosis: Build a topology

• 𝐿𝑒𝑎𝑣𝑖𝑛𝑔 (𝐿) is caused by 𝐴𝑙𝑎𝑟𝑚, and thus is independent of the other

variables, given 𝐴𝑙𝑎𝑟𝑚.
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𝐏 𝐹 𝐏(𝑇) 𝐏(𝐴 | 𝐹, 𝑇) 𝐏(𝑆 | 𝐹) 𝐏(𝑳 | 𝑨) 𝐏(𝑅 | 𝐹, 𝑇, 𝐴, 𝑆, 𝐿)

FireTampering

Alarm Smoke

Leaving



Fire diagnosis: Build a topology

• 𝑅𝑒𝑝𝑜𝑟𝑡 (𝑅) is caused by 𝐿𝑒𝑎𝑣𝑖𝑛𝑔, and thus is independent of the other

variables given 𝐿𝑒𝑎𝑣𝑖𝑛𝑔
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𝐏 𝐹 𝐏(𝑇) 𝐏(𝐴 | 𝐹, 𝑇) 𝐏(𝑆 | 𝐹) 𝐏(𝐿 | 𝐴) 𝐏(𝑹 | 𝑳)

FireTampering

Alarm Smoke

Leaving

Report



Fire diagnosis: Build a topology

• The resulting Bayesian network,

and

• The corresponding compact factorization of the original FJPD

𝐏 𝐹, 𝑇, 𝐴, 𝑆, 𝐿, 𝑅 = 𝐏 𝐹 𝐏(𝑇) 𝐏(𝐴 | 𝐹, 𝑇) 𝐏(𝑆 | 𝐹) 𝐏(𝐿 | 𝐴) 𝐏(𝑅 | 𝐿)
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FireTampering

Alarm Smoke

Leaving

Report



Fire diagnosis: Specify CPTs

• How many probabilities do we need to specify for this

Bayesian network?

• How many probabilities do we explicitly specify for 𝐹𝑖𝑟𝑒?

A.  1 B.  2 C.  4 D.  8

• We only specify 𝑃(𝐹 = 𝑡), since 𝑃 𝐹 = 𝑓 = 1 − 𝑃(𝐹 = 𝑡)

• How many probabilities do we explicitly specify for 𝐴𝑙𝑎𝑟𝑚?

• 𝑃 𝐴 = 𝑡 𝑇, 𝐹): 4 probabilities, 1 probability for each of the 4

instantiations of the parents
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Fire diagnosis: Specify CPTs
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FireTampering

Alarm

Smoke

Leaving

𝑃(𝑇)

0.02

𝑃(𝐹)

0.01

𝐹 𝑃(𝑆)

𝑡 0.9

𝑓 0.01

𝑇 𝐹 𝑃(𝐴)

𝑡 𝑡 0.5

𝑡 𝑓 0.85

𝑓 𝑡 0.99

𝑓 𝑓 0.0001

Report

𝐴 𝑃(𝐿)

𝑡 0.88

𝑓 0.001

𝐿 𝑃(𝑅)

𝑡 0.75

𝑓 0.01



Fire diagnosis: Calculations

• 𝑷 𝑇 = 𝑡, 𝐹 = 𝑓, 𝐴 = 𝑡, 𝑆 = 𝑓, 𝐿 = 𝑡, 𝑅 = 𝑡 = ?

• 𝑃 𝑇 = 𝑡 × 𝑃 𝐹 = 𝑓 × 𝑃 𝐴 = 𝑡 𝑇 = 𝑡, 𝐹 = 𝑓) × 𝑃(𝑆 = 𝑓| 𝐹 = 𝑓)

× 𝑃(𝐿 = 𝑡 𝐴 = 𝑡 × 𝑃 𝑅 = 𝑡 𝐿 = 𝑡)
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= 0.02  (1 - 0.01)  0.85  (1 - 0.01)  0.88  0.75 

= 0.126 



Fire diagnosis: Specify CPTs

• How many probabilities do we need to specify for this

Bayesian network?

• 𝑃(𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔): 1 probability 𝑃(𝑇 = 𝑡)

• 𝑃 𝐴𝑙𝑎𝑟𝑚 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔, 𝐹𝑖𝑟𝑒): 4 (independent)

• 1 probability for each of the 4 instantiations of the parents

• For all other variables with only one parent: 2 probabilities:

one for the parent being true and one for otherwise

• In total: 1+1+4+2+2+2 = 12 (compared to 26-1=63 for FJPD)
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Bayesian networks vs. FJPD

• A CPT for a Boolean variable 𝑋𝑖 with 𝑘 Boolean parents has

2𝑘 rows for the combinations of parent values.

• If each variable has no more than 𝑘 parents, the complete

network requires to specify 𝑛2𝑘 numbers.

• For 𝑘 ≪ 𝑛, this is a substantial improvement.

• The numbers required grow linearly with 𝑛, vs. 𝑂(2𝑛) for the FJPD.

• For example, a Bayesian network with 30 Boolean variables,

each with 5 parents, needs 3025 probabilities.

• Meanwhile, a JPD requires 230 probabilities.
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Bayesian networks vs. JPD
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~60 nodes, max 4 parents per node

Need ~60  24 = 15  26 probabilities instead of 260 probabilities for the FJPD

Source: Onisko et al., 1999



Bayesian networks vs. JPD

• What happens if the network is fully connected, or 𝑘 ≈ 𝑛?

• Not much saving compared to the numbers needed for FJPD.

• Bayesian networks are useful in sparse domains (or locally

structured domains).

• A domain in which each component interacts with (is related to) a

small fraction of other components

• What if this is not the case in a domain we reason about?

• We may need to make simplifying assumptions to reduce the

dependencies in a domain.
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Where do the CPTs come from?

• From experts: tedious, costly, not always reliable

• From data: Machine Learning

• There are algorithms to learn both structures and numbers.

• It can be hard to get enough data.

• Still, usually better than specifying the FJPD.
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THE END


