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Outline

* Representing knowledge in an uncertain domain
« Exact inference in Bayesian networks

« Constructing a Bayesian network
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Full joint probability distribution

* The probabillities of all possible worlds can be described by
using full joint probability distribution (FJPD).

« The elements are indexed by values of random variables.

« We can calculate probabilities of values of any random variable.

toothache =1 toothache
catch| — catch) catch| — catch
cavity | .108| .012 .072| .008
=1 cavity | .016 | .064 144 | .576

P(Toothache) = (0.2,0.8)

P(—cavity | toothache)
P(—cavity A toothache)
P(toothache)
0.016 + 0.064
0.108 + 0.012 + 0.016 + 0.064

P(cavity Vv toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064



Full joint probability distribution

« FJPD answers any question about the domain.

* Plain FJPD becomes intractably large as the number of
variables grows.

« Defining probabilities for possible worlds is unnatural and tedious.

« (Conditional) independence relationships among variables
can greatly reduce the number of probabilities required.



Bayesian networks

« Bayesian networks (BN) can represent essentially, and in
many cases very concisely, any FJPD.

« Belief network, probabilistic network, causal network, knowledge map

« Each node X; presents a random variable.

\ * It associates with P(X; | Parent(X;)), which quantifies the
effect of the parents on the node.

» A set of directed links connects pairs of nodes.
@  |If there is a link from node X to node Y, X is a parent of Y.
« The graph has no directed cycles — DAG.



Bayesian networks: Applications
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Bayesian network topology

 The network topology defines the conditional independence
relationships that hold in the domain.

« X - Y: X has a direct influence on Y, suggesting that causes should
be parents of effects.

« A domain expert decides what direct influences exist in the domain.
« A conditional probability distribution is specified for each
variable, given its parents.
Weather is independent of the other three variables.
Toothache and Catch are conditionally independent, given Cavity




Bayesian networks: An example

The network topology shows that

« Burglary and earthquakes directly affect the probability of the alarm’s going off

* Whether John and Mary call depends only on the alarm.

Burglary

P(E)
002

Earthquake

The network thus expresses assumptions E | PQA)
that John and Mary do not t 95
« Perceive burglaries directly J; 'gg
« Notice minor earthquakes S| oo

« Confer before calling

A |P(M)
/|- f 101




Conditional probability table (CPT)

« Each row contains the conditional probability of each node
value for a conditioning case.

« Conditioning case = a possible combination of values for the parent
nodes, or a miniature possible world.

« Each row must sum to 1.
* The entries represent an exhaustive set of cases for the variable.

« A Boolean variable requires only the probability of true value p.

 The probabilities summarizes a potentially infinite set of
circumstances in which an event does (not) happen.

« E.g., the alarm might fail to go off (high humidity, power failure, dead
battery, a dead mouse stuck inside, etc.) or John or Mary might fail to
call and report it (on vacation, negligent, passing helicopter, etc.).



Quiz 01: Bayesian nets: Snuffles

« Assume there are two types of conditions: (S)inus congestion and (F)lu. Sinus
congestion is caused by (A)llergy or the flu.

* There are three observed symptoms for these conditions: (H)eadache, (R)unny
nose, and fe(V)er. Runny nose and headaches are directly caused by sinus
congestion (only), while fever comes from having the flu (only). For example,
allergies only cause runny noses indirectly.

« Assume each variable is Boolean. Consider the four Bayesian networks shown.
Choose the one which models the domain best. Explain why the others do not.



Quiz 01: Bayesian nets: Snuffles

« Assume we wanted to remove the Sinus congestion (S) node. Draw the
minimal Bayes network over the remaining variables which can encode
the original model’'s marginal distribution over the remaining variables.
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Full joint distribution with BN

« An entry in the joint distribution is the probability of a variable
assignment, such as P(X; = x; A - A X, = xp,).

n
P(xq, .., x,) = 1_[ P(X; | parent(X;))
i=1

* where parent(X;) denotes the values of Parent(X;) that appear Iin
X1y ooy X
* Thus, it is the product of the appropriate elements of the
CPTs in the Bayesian network.

« A Bayesian network can be used to answer any query, by
summing all the relevant joint entries.



Full joint distribution with BN

Burglary Earthquake

P(A)
95
94

29
001

P(E)
002

« For example, the probability
that the alarm has sounded,
but neither a burglary nor an
earthquake has occurred, and
both John and Mary call

~ o~ o~ W

A | P() A |P(M)
f |05 f 101

P(j,m,a,~b,—=e) = P(|a) P(m|a) P(a| =b A —e) P(—=b) P(—e)
= 0.90 X 0.70 x 0.001 X 0.999 x 0.998 = 0.000628
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The wet grass example

SPRINKLER
RAIN| T F @
F 0.4 0.6

T 0.01 0.99

GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

G = Grass wet (True/False)
S = Sprinkler turned on (True/False)

R = Raining (True/False)

RAIN

0.2

0.8

17



The wet grass example

« What is the probability that it is raining, given the grass is wet?

PR=T|G=T) = P(G=T,R=T) XsermyP(G=T,S,R=T)
) - PG=T) - ZS,RE{T,F}P(G =T,S5,R)

» Using the expansion for the joint probability function P(G,S,R) and the
conditional probabilities from the CPTs stated in the diagram

PG=T,S=T,R=T)=P(G=T|S=T,R=T)P(S=T|R=T)P(R=T)
= 0.99 x 0.01 X 0.2 = 0.00198

« The numerical results (subscripted by the associated variable values) are

0.00198 777 + 0.1584 757
0.00198,77 + 0.288775 + 0.1584 777 + 0.0755

PR=T|G=T)=

_ 91 s 77%
2491 TP



Inference in BN: Notations

* X: query variable

* E: the set of evidence variables FEj, ..., E,,, e IS a particular
observed event

* Y: nonevidence variables, Y3, ..., Y}, (hidden variables)

* Thus, the complete set of variablesis X ={X}UEUY

« Atypical query asks for the posterior probability P(X | e)

 E.g., P(Burglary | JohnCalls = true, MaryCalls = true)
= (0.284,0.716)



Inference by enumeration

* A query can be answered by computing sums of products of
conditional probabilities from the Bayesian network.

P(X | €)= aP(X, e) = az P(X,e,y)
y

« where a stands for the constant denominator term, which is usually
simplified during calculation.



Inference by enumeration

Consider the following query
P(Burglary | JohnCalls = true, MaryCalls = true)

The hidden variables are Earthquake and Alarm.

Using initial letters for the variables, we have

P(B|j,m)=aP(B,j,m) = aZZP(B,j,m,e,a)
a

e

For simplicity, we do this for Burglary = true.

P(b1j,m)=a) > P(b)P(e) P(alb,e)P(j| @) Pm | a)

Complexity: O(n2™) for a network of n Boolean variables



Inference by enumeration

« An improvement can be obtained as follows.

P(b1j,m) = aP(b) ) P(e) ) P(alb,e)P(|a) P(m|a)

The evaluation proceeds top down,
multiplying values along each path
and summing at the “+” nodes.

P(b)

P(e)

P(—e)
002

Notice the repetition of

the paths for j and m. P(alb,e)
95

P(—alb,e)
05

P(alb,—e)
94

P(jla) P( jl-a) P( jla) P( jl-a)
90 05 90 05
O O
P(mla) P(ml—-a) P(mla) P(ml-a)
70 O 01 70 01 O 2



Inference by enumeration: Pseudocode

@ction ENUMERATION-ASK(X, e, bn) returns a distribution over X \

inputs: X, the query variable

e, observed values for variables E

bn, a Bayes net with variables {X} UEUY /*Y = hidden variables */
Q(X) « a distribution over X, initially empty
for each value x; of Xdo

Q(x;) « ENUMERATE-ALL(bn.VARS, e )
where e, is e extended with X = x;

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
Y « FIRST(vars)
if Y hasvalueyine
then return P(y | parents(Y)) x ENUMERATE-ALL(REST (vars), e)
\ else return %, P(y | parents(Y)) x ENUMERATE-ALL(REST (vars), e,) /
23

where e, is e extended with Y=y




Inference by enumeration: Complexity

* The space complexity of ENUMERATION-ASK is only linear
In the number of variables.
« The algorithm sums over the full JPD without constructing it explicitly.
* The time complexity for a network with n Boolean variables
Is always 0(2")
 Better than the 0(n2") for the simple approach, but still rather grim.
* There are still repeated subexpressions to be evaluated.

« Eg.,, PG|a)P(m|a) and P(j | ma)P(m |—a) are computed twice,
once for each value of e.



Variable elimination algorithm

« Dynamic programming: do the calculation once and save the
results for later use
« Evaluate expressions in right-to-left order (i.e., bottom up in the tree)

« Store intermediate results and do summations over each variable
only for portions of the expression that depend on the variable.

~

/function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X;, ..., X))
factors « [ ]
for each var in ORDER(bn.VARS) do
factors « [MAKE-FACTOR(var, e) | factors]
if var is a hidden variable then factors < SUM-OUT (var, factors)
\ return NORMALIZE(POINTWISE-PRODUCT (factors)) Js




Variable elimination: Factorization

« Consider the burglary network. We evaluate the following

P(B1j,m)=aP(B) ) P(e) ) PalB,e)P(j|a) P(m|a)

factor  F1(B) © H,(E) ¢ GABE) fi(4) fs(A)

where
_( PGla) \ _ (090 _( P(ml|a) \ _ (0.70
fa(4) = <P(j | ﬁa)> N (0.05)’ fs(4) = <P(m | —a)) (0.01)
f3(A,B,E) is a 2x2x2 matrix
 In terms of factors, the query expression is written as

P(B|j,m) = af(B) x Z £,(E) X Z £2(4, B, E) X £,(A) X fs(A)

* where x Is the pointwise product operation.



Variable elimination: Factorization

« First, we sum out A from the product of f5, f,, and fs.
f(B,E) = z £2(4, B, E) X f4(A) X f5(A)
a
= fg(a,B,E) X f4(a) X fs(a) + fg(—la, B, E) X f4_(ﬁa) X fs(ﬁa)

Now we are left with P(B | j,m) = a f,(B) X Z £,(E) x fs(B, E)
e

* Next, we sum out E from the product of f, and fq

£,(B) = z £,(E) X fs(B,E) = fo( ) X f(B, €) + (=€) X f4(B, —e)

« The following expression can be evaluated by taking pointwise product
and normalizing the result.
P(B|j,m) = af;(B) X f7(B)



Variable elimination: Operators

» The pointwise product of two factors f; and f, gives a new factor f whose
« Variables are the union of the variables in f; and f,

« Elements are given by the product of the corresponding elements in
the two factors.

« Suppose the two factors have variables Y;, ..., Y, in common.
* Then, f3(X; .. X;, Y1 . Yy, Zy o Zy) = £1(Xq . X, Yy o V) X (Y o Yy, Z4 o Z))

Al Bl tAB | Bl ¢] B.O) [ A] B| ¢ £(4,B,.0)
T T 3 T T 2 T T T 3 X .2=.06
T F J T F 8 T T F B X .8=.24
F T 9 F T .6 T F T T X .6=.42
F F N F F 4 T F F % 4=.28
. . . F T T 9 x .2=.18
if all the variables are binary, f; and f, F T F 0% 8= 79
have 2/7% and 2%*! entries, respectively, E Fl T!| 1x.6=.06
and their product has 2/t**¢, Fl | F| 1x4=.04




Variable elimination: Operators

« Summing out a variable from a product of factors is done by adding up
the submatrices formed by fixing the variable to each of its values in turn.

£(A, B) = z £2(A4,B,C) = f3(a, B, C) + f2(=a, B, C)
a

« Notice that any factor that does not depend on the variable to be
summed out can be moved outside the summation.

z £,(E) X f3(A, B, E) X £4(A) X f5(A) = £, (A) X f5(4) x Z £,(E) % f3(A, B, E)



Variable elimination: Ordering

» Every choice of ordering yields a valid algorithm

 Different orderings cause different intermediate factors to be
generated during the calculation.
P(B|j,m) =afy(B)x Z £,(E) X z £2(4, B, E) X f4(4) X f5(A)
e a f6
— a f,(B) x z £,(4) X fs(A) X Z £,(E) X f5(A, B, E)

* A heuristic for variable elimination

Every variable that is not an ancestor of a query variable or
evidence variable is irrelevant to the query.

30




Variable elimination: An example

 Consider the following network. Calculate P(B | =c).
e PB|—-c)=aP(—~c|B)x),P(B|a)xP(a)

factor f1(B) f,(A,B) f3(4)

* |rrelevant variable: D. Observed variable: C = —c.
« Sumout Ato have f4(B) =),P(B|a) X P(a)

 Join fyand f4: fs(B,—c) = f1(B) X f4(B)
 Finally, we have P(B | =¢) = a f5(B, —¢)

P(B)

B | P(C) P(D)
« Assume that B = b. Normalize for B; t | 0.5 0.5
fs(b, —=c) fl1 O 0

P(b | —|C) -

fs(b,c) + fs(=b,—c)

31




The complexity of exact inference

 The complexity of exact inference depends strongly on the
structure of the network.

« Singly connected networks or polytrees: Linear time and
space complexity to the network size.
« The size is defined as the number of CPT entries.

* If the number of parents of each node is bounded by a constant, the
complexity will also be linear in the number of nodes.

« Multiply connected networks: Exponential time and space
complexity in the worst case, even when the number of
parents per node is bounded

* Inference in Bayesian networks is NP-hard.



The complexity of exact inference

Burglary

Earthquake

P(E)

002

P(A)

95
94
29
001

Multiply connected networks

A |P(M)

t .70

f o1

Singly connected networks or polytrees:

there is at most one undirected path

between any two nodes in the network

C | P(S)

P(C)=5

C | P(R)
t | .80
f1 20

S R|PW
t t | 99
t f | 90
f t| 90
f f1 00
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Quiz 02: Inference In BN

« A smell of sulfur (S) can be caused either by rotten eggs (E) or as a sign
of the doom brought by the Mayan Apocalypse (M). The Mayan
Apocalypse also causes the oceans to boil (B).

« The Bayesian network and corresponding CPTs are shown below.

P(FE)
+e | 0.4
—e | 0.6 P(M)
+m | 0.1
P(S‘E,M) —m 0.9
+e | +m | +s | 1.0
+e | +m | —s | 0.0 P(B|M)

+e | —m | +s | 0.8 +m | +b | 1.0

+e | —m | —s | 0.2 +m | —=b | 0.0

—e | +m | +s | 0.3 —m | +b | 0.1

—e | +m | —s | 0.7 —m | =b | 0.9

—e | —m | +s | 0.1

—e | —m | —s | 0.9




Quiz 02: Inference In BN

Write down the joint probability distribution from the given network
P(E, S, M, B) =
« Compute the following entry from the joint distribution
P(+e, +s, —m, +b) =
« What is the probability that the oceans boil?
P(+b) =
« What is the probability that the Mayan Apocalypse is occurring, given that the oceans are
boiling?
P(+m | +b) =

« What is the probability that rotten eggs are present, given that the Mayan Apocalypse is
occurring?

P(+e | +m) =

« What is the probability that the Mayan Apocalypse is occurring, given that there is a smell
of sulfur, the oceans are boiling, and there are rotten eggs?

P(+m | +s, +b, +e) =
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Constructing a Bayesian network

Scenario 1: Network structure known and all variables observable

« Compute only the CPT entries
Scenario 2: Network structure known while some variables hidden

 Gradient descent (greedy hill-climbing) method, i.e., search for a
solution along the steepest descent of a criterion function

Scenario 3: Network structure unknown, all variables observable

« Search through the model space to reconstruct network topology

Scenario 4: Network structure unknown and all variables hidden

* No good algorithms known for this purpose

D. Heckerman. A Tutorial on Learning with Bayesian Networks.
In Learning in Graphical Models, M. Jordan, ed.. MIT Press, 1999.
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Constructing a Bayesian network

« Certain conditional independence relationships can guide
the knowledge engineer to build the topology of the network.

« The Chain Rule holds for any set of random variables.

n
P(xq,..,x,) = HP(xi |1, vr) X1)
i=1

= P(xp [Xp—1, o, X)) P (Xpp—1, o, X1)

= P(xp, |%p—1, o) X1)P (X5 |Xp—2) ey X1) . P(25 | x1)P(x1)

* We generally assert that, for every variable X; in the network
P(X; |Xi—1, ..., X1) = P(X; | Parent(X;)) %

provided that Parent(X;) € {X;_4, ..., X1 }.



Construct a Bayesian network

 Each node must be conditionally independent of its other
predecessors in the node ordering, given its parents.

* Nodes: Identify the set of variables required to model the
domain and order them, {X4, ..., X,;}.

« Any order will work, but the resulting network will be more compact if
the variables are ordered such that causes precede effects.

e Links: Fori =1 ton do:

* Choose, from {X,,...,X;_1}, @a minimal set of parents for X; such that
Equation % is satisfied.

« For each parent insert a link from the parent to X;.
« CPTs: Write down the conditional probability table, P(X;|Parent(X;)).



Construct a Bayesian network

* Intuitively, the parents of node X; should contain all those

nodes in {X4, ..., X;_1} that directly influence X;.

 MaryCalls is indirectly influenced by
P(A)

whether there is a Burglary or an Earthquake.
95

94
29
001

P(E)
002

* These events influence Mary’s calling behavior
only through their effect on the Alarm

~ s~ o~ |

 Given the state of the Alarm, whether John

calls has no influence on Mary’s calling

A | P(J) A [P(M)
S 105 flol
e Thatis,

P(MaryCalls | JohnCalls, Alarm, Earthquake, Burglary) = P(MaryCalls | Alarm)

* Thus, Alarm will be the only parent node for MaryCalls.

40



Construct a Bayesian network

* The network is guaranteed to be acyclic.

« Each node is connected only to earlier nodes.

« Bayesian networks contain no redundant probability values.

« If there is no redundancy, then there is no chance for inconsistency.

* [t Is Impossible for the domain expert to create a Bayesian
network that violates the axioms of probability.



Example: Fire diagnhosis

You want to diagnose whether there is a fire in a building

You can receive reports (possibly noisy) about whether everyone is
leaving the building

If everyone is leaving, this may have been caused by a fire alarm.

If there is a fire alarm, it may have been caused by a fire or by tampering.

If there is a fire, there may be smoke.




Fire diagnosis: Define variables

« Start by choosing the random Boolean variables for this domain
* Tampering (T): the alarm has been tampered with

* Fire (F): there is a fire

* Alarm (A): there is an alarm

* Smoke (S): there is smoke

* Leaving (L): there are lots of people leaving the building

* Report (R): the sensor reports that everyone are leaving the building



Fire diagnhosis: Chain rule

« Define a total ordering of variables
« Choose an order that follows the causal sequence of events
« Fire (F) Tampering (T) Alarm (A) Smoke (S) Leaving (L) Report (R)

« Consider the following chain rule and use given clues to simplify it

P(F,T,A S L R)=P(F)P(T|F)P(A|F,T)P(S|F,T,A)
P(L|F,T,AS)PR|FTASL)



Fire diagnhosis: Build a topology

« Fire (F) is the first variable in the ordering, X;, which has no parent.

P(F)P(T |F)P(A|F,T)P(S|F,T,A)P(L|F,T,AS)PR|FT,AS,L)

45



Fire diagnhosis: Build a topology

* Tampering (T) is independent of fire

« Learning that one is true/false would not change your beliefs about
the probability of the other.

P(F) P(T)P(A|F,T)P(S|F,T,A)P(L|F,T,AS)PQR|F,T AS,L)

T

Tampering Fire



Fire diagnhosis: Build a topology

* Alarm (A) depends on both Fire and Tampering: it could be caused by
either or both.

P(F)P(T)P(A|F,T)P(S|F,T,A)P(L|F,T,AS)PR|F,TAS,L)

N

Tampering Fire

N

Alarm



Fire diagnhosis: Build a topology

* Smoke (S) Is caused by Fire, and so is independent of Tampering and
Alarm, given whether there is a Fire.

P(F)P(T)P(A|F,T)P(S|F)P(L|F,T,AS)P(R|F,T,AS,L)

Tampering Fire

~.

Alarm Smoke



Fire diagnhosis: Build a topology

* Leaving (L) iIs caused by Alarm, and thus is independent of the other
variables, given Alarm.

P(F)P(T)P(A|F,T)P(S|F)P(L|A)P(R|F,T,AS,L)

Tampering Fire

Alarm Smoke

\

Leaving



Fire diagnhosis: Build a topology

* Report (R) is caused by Leaving, and thus is independent of the other
variables given Leaving

P(F)P(TPA|F,T)P(S|F)P(L|A)P(R|L)
Tampering Fire
Alarm Smoke
\

Leaving
}

Report



Fire diagnhosis: Build a topology

* The resulting Bayesian network,

and

Report

* The corresponding compact factorization of the original FIJPD

P(F,T,A,S, L R)=P(F)P(T)P(A|F,T)P(S|F)P(L|A)P(R|L)

51



Fire diagnhosis: Specify CPTs

« How many probabilities do we need to specify for this
Bayesian network?

 How many probabilities do we explicitly specify for Fire?
A 1l B. 2 C. 4 D. 8

« How many probabilities do we explicitly specify for Alarm?



Fire diagnhosis: Specify CPTs

P(T) | | P(F)
0.02 @ @ 0.01

T | F
t t 0.5
F | P

t | f 0.85 T o9
flt 0.99 :
f | £ | 0.0001 A | PA) f | o0t

t | 0.88

f | 0.001

L | PR

f | 0.01




Fire diagnosis: Calculations

e P(T=t,F=f,A=1tS=/fL=t, ) =7

e P(T=t)XP(F=f)xPA=t|T=tF=f) xP(S=f|F=f)
XP(L=t|A=t)X

P(Tampering=t) P(Fire=t)
0.02 0.01
Tampering T | Fire F | P(Alarm=t|T,F) @ @ ~ | Fire F | P(Smoke=t |F)
t t 0.5 t 0.9
t f 0.85 f 0.01
J t 0.99 Alarm | P(Leaving=t|A)
f f 0.0001

f 0.001

Leaving | P(Report=t|L)

=0.02x(1-0.01) x0.85x(1-0.01) x0.88 x 0.75
f 0.01 =0.126
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Fire diagnhosis: Specify CPTs

« How many probabilities do we need to specify for this
Bayesian network?
 P(Tampering): 1 probability P(T =t)
* P(Alarm | Tampering, Fire): 4 (independent)
1 probability for each of the 4 instantiations of the parents

 For all other variables with only one parent: 2 probabillities:
one for the parent being true and one for otherwise

* In total: 1+1+4+2+2+2 = 12 (compared to 2°-1=63 for FIPD)



Bayesian networks vs. FIPD

« A CPT for a Boolean variable X; with k Boolean parents has
2% rows for the combinations of parent values.

* |If each variable has no more than k parents, the complete
network requires to specify n2* numbers.
* For k < n, this is a substantial improvement.
« The numbers required grow linearly with n, vs. 0(2") for the FJPD.
« For example, a Bayesian network with 30 Boolean variables,
each with 5 parents, needs 30x2° probabilities.

. Meanwhile, a JPD requires 230 probabilities.



Source: Onisko et al., 1999
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~60 nodes, max 4 parents per node

Need ~60 x 24 = 15 x 26 probabilities instead of 2%0 probabilities for the FIPD 57



Bayesian networks vs. JPD

« What happens if the network is fully connected, or k = n?
« Not much saving compared to the numbers needed for FIJPD.
« Bayesian networks are useful in sparse domains (or locally

structured domains).

« A domain in which each component interacts with (is related to) a
small fraction of other components

 What If this Is not the case in a domain we reason about?

« We may need to make simplifying assumptions to reduce the
dependencies in a domain.



Where do the CPTs come from?

* From experts: tedious, costly, not always reliable
* From data: Machine Learning

« There are algorithms to learn both structures and numbers.

« It can be hard to get enough data.

« Still, usually better than specifying the FIPD.
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