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Machine Learning



What is machine learning?

• Machine learning involves adaptive mechanisms that

enable computers to learn from experience, learn by

example and learn by analogy.
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Types of machine learning

Source: https://ldi.upenn.edu/sites/default/files/Introduction-to-Machine-Learning.pdf

https://ldi.upenn.edu/sites/default/files/Introduction-to-Machine-Learning.pdf
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Types of machine learning

Source: https://www.ceralytics.com/3-types-of-machine-learning/



Machine learning algorithms
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Source: https://ldi.upenn.edu/sites/default/files/Introduction-to-Machine-Learning.pdf

https://ldi.upenn.edu/sites/default/files/Introduction-to-Machine-Learning.pdf


• Learn a function that maps an input to an output based on

examples, which are pairs of input-output values.
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Supervised learning



Supervised learning: Examples

• Spam detection
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Reasonable RULES

• Predict SPAM if unknown AND (money OR pills)

• Predict SPAM if 2money + 3pills – 5 known > 0
Linearly separable



Supervised learning: Examples

• Object detection
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Handwritten digit recognition

Scene text 

recognition

Indoor scene recognition



Supervised learning: More examples

• Weather prediction: Predict the

weather type or the temperature at

any given location…
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• Medicine: diagnose a disease (or response to chemo drug X, or whether a

patient is re-admitted soon?)

• Input: from symptoms, lab measurements, test results, DNA tests, …

• Output: one of set of possible diseases, or “none of the above”

• E.g., audiology, thyroid cancer, diabetes, etc.

• Computational economics:

• Predict if a user will click on an ad so as to decide which ad to show

• Predict if a stock will rise or fall (with specific amounts)



Classification vs. Regression

• Train a model to predict a categorical dependent variable

• Case studies: predicting disease, classifying images,

predicting customer churn, buy or won’t buy, etc.
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Binary classification
vs.

Multiclass classification
vs.

Multilabel classification



Classification vs. Regression

• Train a model to predict a continuous dependent variable

• Case studies: predicting height of children, predicting sales,

forecasting stock prices, etc.
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Unsupervised learning

• Infer a function to describe hidden structure from "unlabeled"

data

• A classification (or categorization) is not included in the observations.
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Unsupervised learning: Examples

• Social network analysis: cluster users of social networks by

interest (community detection)
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Ref: Shevtsov, Alexander, et al. "Analysis of Twitter and YouTube during US elections 2020."
arXiv e-prints (2020): arXiv-2010.



Semi-supervised learning

• The model is initially trained

with a small amount of labeled

data and a large amount of

unlabeled data.
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Reinforcement learning

• The agent learns from the environment by interacting with it

and receives rewards for performing actions.
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Reinforcement learning: Example
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Reinforcement learning: Examples

20

https://openai.com/blog/emergent-tool-use/ https://arxiv.org/pdf/1909.07528.pdf

https://openai.com/blog/emergent-tool-use/
https://arxiv.org/pdf/1909.07528.pdf


Machine learning and related concepts
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Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-

deep-learning-ai/



Machine learning and related concepts
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ID3 
Decision Tree
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Learning agents – Why learning?
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• Unknown environments

• A robot designed to navigate mazes must learn the layout of each

new maze it encounters.

• Environment changes over time

• An agent designed to predict tomorrow’s stock market prices must

learn to adapt when conditions change from boom to bust.

• No idea how to program a solution

• The task to recognizing the faces of family members



Learning element
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• Design of a learning element is affected by

• Which components is to be improved

• What prior knowledge the agent already has

• What representation is used for the components

• What feedback is available to learn these components

• Type of feedback

• Supervised learning: correct answers for each example

• Unsupervised learning: correct answers not given

• Reinforcement learning: occasional rewards



Supervised learning
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• Simplest form: learn a function from examples

• Given a training set of 𝑁 example input-output pairs

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)

• where each 𝑦𝑗 was generated by an unknown function 𝑦 = 𝑓(𝑥)

• Find a hypothesis 𝒉 such that 𝒉 ≈ 𝒇

• To measure the accuracy of a hypothesis, give it a test set

of examples that are different with those in the training set.



Supervised learning

• Construct ℎ so that it agrees with 𝑓.

• The hypothesis ℎ is consistent if it agrees with 𝑓 on all

observations.

• Ockham’s razor: Select the simplest consistent hypothesis.
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Consistent linear fit

Consistent 7th order 

polynomial fit

Inconsistent linear fit.

Consistent 6th order

polynomial fit. Consistent sinusoidal fit



Supervised learning problems
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• 𝒉(𝒙) = 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝒙

Discrete valued function Continuous valued function



Regression vs. Classification

29

• Estimating the price 

of a house

• Will you pass or fail the exam?

• 2 classes: Fail/Pass

• Is this an apple, an orange or a tomato?

• 3 classes: Apple / Orange / Tomato



The wait@restaurant problem
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Predicting whether a certain person will wait 

to have a seat in a restaurant.



The wait@restaurant problem

• The decision is based on the following attributes

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)
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The wait@restaurant decision tree

32

This is our true function.

Can we learn this tree from examples?



Learning decision trees

• Divide and conquer: Split data into

smaller and smaller subsets

• Splits are usually on a single variable

33

x1 > a ?

yes no

x2 > b ? x2 > g ?

yes yesno no

• After splitting up, each outcome is a new decision tree

learning problem with fewer examples and one less attribute.



Learning decision trees
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Splitting the examples by testing on attributes



ID3 Decision tree algorithm

1. The remaining examples are all positive (or all negative),

→ DONE, it is possible to answer Yes or No.

• E.g., in Figure (b), None and Some branches

2. There are some positive and some negative examples →

choose the best attribute to split them

• E.g., in Figure (b), Hungry is used to split the remaining examples
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ID3 Decision tree algorithm

3. No examples left at a branch → return a default value.

• No example has been observed for a combination of attribute values

• The default value is calculated from the plurality classification of all

the examples that were used in constructing the node’s parent.

• These are passed along in the variable parent examples

4. No attributes left but both positive and negative examples

→ return the plurality classification of remaining ones.

• Examples of the same description, but different classifications

• Usually an error or noise in the data, nondeterministic domain, or no

observation of an attribute that would distinguish the examples.
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ID3 Decision tree: Pseudo-code

function DECISION-TREE-LEARNING(𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠) 

returns a tree

if 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 is empty 

then return PLURALITY-VALUE(𝑝𝑎𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

else if all 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 have the same classification 

then return the classification

else if 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 is empty 

then return PLURALITY-VALUE(𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

else

…

37

No examples left

remaining examples 

are all pos/all neg

No attributes left but 

examples are still pos & neg



ID3 Decision tree: Pseudo-code

function DECISION-TREE-LEARNING(𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠) 

returns a tree

…

else

𝐴 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠IMPORTANCE(𝑎, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

𝑡𝑟𝑒𝑒 ← a new decision tree with root test A

for each value 𝑣𝑘 of A do

𝑒𝑥𝑠 ← 𝑒 ∶ 𝑒 ∈ 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 and 𝑒. 𝐴 = 𝑣𝑘

𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ← DECISION-TREE-LEARNING(𝑒𝑥𝑠, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 − 𝐴, 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠)

add a branch to 𝑡𝑟𝑒𝑒 with label (𝐴 = 𝑣𝑘) and subtree 𝑠𝑢𝑏𝑡𝑟𝑒𝑒

return 𝑡𝑟𝑒𝑒
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Decision tree: Inductive learning

• Simplest: Construct a decision tree

with one leaf for every example

→ memory based learning

→ worse generalization.

39

• Advanced: Split on each variable so that the purity of each

split increases (i.e. either only yes or only no)

• E.g., using Entropy to measure the purity of data



A purity measure with entropy

• Entropy is a measure of the uncertainty of a random

variable 𝑉 with values 𝑣𝑘.

𝑯 𝑽 =෍

𝒌

𝑷 𝒗𝒌 𝒍𝒐𝒈𝟐
𝟏

𝑷 𝒗𝒌
= −෍

𝒌

𝑷 𝒗𝒌 𝒍𝒐𝒈𝟐 𝑷 𝒗𝒌

• 𝑣𝑘 is a class in 𝑉 (e.g., yes/no in binary classification)

• 𝑃 𝑣𝑘 is the proportion of the number of elements in class 𝑣𝑘 to the

number of elements in 𝑉

40

An indicator of how 

messy your data is



A purity measure with entropy

• Decision tree aims to decrease the entropy in each node.

41

• Entropy is maximal when

all possibilities are

equally likely.

• Entropy is zero in a pure

”yes” (or pure ”no”) node.



The wait@restaurant training data

42

T = True, F = False

6 True,

6 FalseH(S) = − ൗ6 12 log2 ൗ6 12 − ൗ6 12 log2 ൗ6 12 = 1



ID3 Decision tree: An example
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Alternate?

3 T, 3 F 3 T, 3 F

True False

• Calculate Average Entropy of attribute Alternate

𝐴𝐸𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 = 𝑃(𝐴𝑙𝑡 = 𝑇) × 𝐻(𝐴𝑙𝑡 = 𝑇) + 𝑃(𝐴𝑙𝑡 = 𝐹) × 𝐻(𝐴𝑙𝑡 = 𝐹)

𝐴𝐸𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 =
6

12
−

3

6
log2

3

6
−

3

6
log2

3

6
+

6

12
−

3

6
log2

3

6
−

3

6
log2

3

6
= 1



ID3 Decision tree: An example
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Alternate?

3 T, 3 F 3 T, 3 F

True False

• Information Gain is the difference in entropy from before

to after the set 𝑆 is split on the selected attribute.

𝐼𝐺 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 = 1 − 1 = 0



ID3 Decision tree: An example
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Bar?

3 T, 3 F 3 T, 3 F

True False

𝐴𝐸𝐵𝑎𝑟 =
6

12
−

3

6
log2

3

6
−

3

6
log2

3

6
+

6

12
−

3

6
log2

3

6
−

3

6
log2

3

6
= 1

𝐼𝐺 𝐵𝑎𝑟, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝐵𝑎𝑟 = 1 − 1 = 0



ID3 Decision tree: An example
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Sat/Fri?

2 T, 3 F 4 T, 3 F

True False

𝐴𝐸 Τ𝑆𝑎𝑡 𝐹𝑟𝑖? =
5

12
−

2

5
log2

2

5
−

3

5
log2

3

5
+

7

12
−

4

7
log2

4

7
−

3

7
log2

3

7

= 0.979

𝐼𝐺 Τ𝑆𝑎𝑡 𝐹𝑟𝑖? , 𝑆 = 𝐻 𝑆 − 𝐴𝐸 Τ𝑆𝑎𝑡 𝐹𝑟𝑖? = 1 − 0.979 = 0.021



ID3 Decision tree: An example
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Hungry?

5 T, 2 F 1 T, 4 F

True False

𝐴𝐸𝐻𝑢𝑛𝑔𝑟𝑦 =
7

12
−

5

7
log2

5

7
−

2

7
log2

2

7
+

5

12
−

1

5
log2

1

5
−

4

5
log2

4

5

= 0.804

𝐼𝐺 𝐻𝑢𝑛𝑔𝑟𝑦, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝐻𝑢𝑛𝑔𝑟𝑦 = 1 − 0.804 = 0.196



ID3 Decision tree: An example
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Raining?

2 T, 2 F 4 T, 4 F

True False

𝐴𝐸𝑅𝑎𝑖𝑛𝑖𝑛𝑔 =
4

12
−

2

4
log2

2

4
−

2

4
log2

2

4
+

8

12
−

4

8
log2

4

8
−

4

8
log2

4

8
= 1

𝐼𝐺 𝑅𝑎𝑖𝑛𝑖𝑛𝑔, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝐻𝑢𝑛𝑔𝑟𝑦 = 1 − 1 = 0



ID3 Decision tree: An example
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Reservation?

3 T, 2 F 3 T, 4 F

True False

𝐴𝐸𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 =
5

12
−

3

5
log2

3

5
−

2

5
log2

2

5
+

7

12
−

3

7
log2

3

7
−

4

7
log2

4

7

= 0.979

𝐼𝐺 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 1 − 0.979 = 0.021



ID3 Decision tree: An example
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Patrons?

2 F

4 T

None Full

2 T, 4 F
Some

𝐴𝐸𝑃𝑎𝑡𝑟𝑜𝑛

=
2

12
−

0

2
log2

0

2
−

2

2
log2

2

2
+

4

12
−

4

4
log2

4

4
−

0

4
log2

0

4

+
6

12
−

2

6
log2

2

6
−

4

6
log2

4

6
= 0.541

𝐼𝐺 𝑃𝑎𝑡𝑟𝑜𝑛, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝑃𝑎𝑡𝑟𝑜𝑛 = 1 − 0.541 = 0.459



ID3 Decision tree: An example
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Price

3 T, 3 F

2 T

$ $$$

1 T, 3 F
$$

𝐴𝐸𝑃𝑟𝑖𝑐𝑒

=
6

12
−

3

6
log2

3

6
−

3

6
log2

3

6
+

2

12
−

2

2
log2

2

2
−

0

2
log2

0

2

+
4

12
−

1

4
log2

1

4
−

3

4
log2

3

4
= 0.770

𝐼𝐺 𝑃𝑟𝑖𝑐𝑒, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝑃𝑟𝑖𝑐𝑒 = 1 − 0.770 = 0.23



ID3 Decision tree: An example
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Type

1 T, 1 F

1 T, 1 F

French Burger

2 T, 2 FItalian

2 T, 2 F

Thai

𝐴𝐸𝑇𝑦𝑝𝑒

=
2

12
−

1

2
log2

1

2
−

1

2
log2

1

2
+

2

12
−

1

2
log2

1

2
−

1

2
log2

1

2

+
4

12
−

2

4
log2

2

4
−

2

4
log2

2

4
+

4

12
−

2

4
log2

2

4
−

2

4
log2

2

4
= 1

𝐼𝐺 𝑇𝑦𝑝𝑒, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝑇𝑦𝑝𝑒 = 1 − 1 = 0



ID3 Decision tree: An example
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Est. waiting

time

4 T, 2 F

1 T, 1 F

0-10 > 60

2 F10-30

1 T, 1 F

30-60

𝐴𝐸𝐸𝑠𝑡.𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

=
6

12
−

4

6
log2

4

6
−

2

6
log2

2

6
+

2

12
−

1

2
log2

1

2
−

1

2
log2

1

2

+
2

12
−

1

2
log2

1

2
−

1

2
log2

1

2
+

2

12
−

0

2
log2

0

2
−

2

2
log2

2

2
= 0.792

𝐼𝐺 𝐸𝑠𝑡. 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑆 = 𝐻 𝑆 − 𝐴𝐸𝐸𝑠𝑡.𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 1 − 0.792

= 0.208



ID3 Decision tree: An example

• Largest Information Gain (0.459) / Smallest Entropy (0.541)

achieved by splitting on Patrons.

• Continue making new splits, always purifying nodes

54

Patrons?

2 F

4 T

None Full

2 T, 4 F
Some

X?



ID3 Decision tree algorithm

55

True tree

Induced tree (from examples)

Cannot make it more complex

than what the data supports.



Performance measurement

• How do we know that ℎ ≈ 𝑓?

1. Use theorems of computational or statistical learning theory

2. Try ℎ on a new test set of examples

• Use the same distribution over example space as training set

56

Learning curve = % correct on

test set as a function of training

set size



Quiz 01: ID3 decision tree
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No. Writable Updated Size Class

1 Yes No Small Infected

2 Yes Yes Large Infected

3 No Yes Med Infected

4 No No Med Clean

5 Yes No Large Clean

6 No No Large Clean

• The data represent files on a computer system. Possible

values of the class variable are “infected”, which implies the

file has a virus infection, or “clean” if it doesn't.

• Derive decision tree for virus identification.



Naïve Bayesian 
classification

58



• A statistical classifier performs probabilistic prediction, i.e.,

predicts class membership probabilities

• Foundation: Based on Bayes’ Theorem

Bayesian classification

59



• Performance

• A simple Bayesian classifier (e.g., naïve Bayesian), has comparable

performance with decision tree and selected neural networks.

• Incremental

• Each training example can incrementally increase/decrease the

probability that a hypothesis is correct

• That is, prior knowledge can be combined with observed data.

• Standard

• Even when Bayesian methods are computationally intractable, they

can provide a standard of optimal decision making against which

other methods can be measured

Bayesian classification

60



age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

The buying computer dataset
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• Total Probability Theorem: 𝑃 𝐵 = σ𝑖=1
𝑀 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

• Let 𝐗 be a data sample (“evidence”) with unknown class

label and 𝐻 be a hypothesis that 𝐗 belongs to class 𝐶

• Bayes’ Theorem: 𝑷 𝑯 𝐗) =
𝑷 𝐗 𝑯)𝑷(𝑯)

𝑷(𝐗)

• Classification is to determine 𝑃 𝐻 𝐗), the probability that

the hypothesis 𝐻 holds given the observed data sample 𝐗.

Bayes’ Theorem
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Bayes’ Theorem
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• 𝑷(𝑯) (prior probability): the initial probability

• E.g., 𝐗 will buy computer, regardless of age, income, …

• 𝑃(𝐗) : the probability that sample data is observed

• E.g., 𝐗 is 31..40 and has a medium income, regardless of the buying

• 𝑃 𝐗 𝐻) (likelihood): the probability of observing the sample

𝐗, given that the hypothesis holds

• E.g., given that 𝐗 will buy computer, the probability that 𝐗 is 31..40

and has a medium income

• 𝑷 𝑯 𝐗) =
𝑷 𝐗 𝑯)𝑷(𝑯)

𝑷(𝐗)
(posterior probability)

• E.g., given that 𝐗 is 31..40 and has a medium income, the probability

that 𝐗 will buy computer



• Informally, 𝑃 𝐻 𝐗) =
𝑃 𝐗 𝐻)𝑃(𝐻)

𝑃(𝐗)
can be viewed as

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟 / 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

• 𝐗 belongs to 𝐶𝑖 iff the probability 𝑃 𝐶𝑖 𝐗) is the highest

among all the 𝑃 𝐶𝑘 𝐗) for all the 𝑘 classes

• Practical difficulty

• Require initial knowledge of many probabilities

• Significant computational cost involved

Bayes’ Theorem

64



• Let 𝐷 be a training set of tuples and associated class labels

• Each tuple is represented by a 𝑛-attribute 𝐗 = (𝑥1, 𝑥2, … , 𝑥𝑛)

• Suppose there are 𝑚 classes 𝐶1, 𝐶2, … , 𝐶𝑚

• Classification is to derive the maximum posteriori 𝑃 𝐶𝑖 𝐗)

from Bayes’ theorem

𝑃 𝐶𝑖 𝐗) =
𝑃 𝐗 𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝐗)

• 𝑃(𝑋) is constant for all classes, only 𝑃 𝐗 𝐶𝑖)𝑃(𝐶𝑖) needs to

be maximized.

65

Classification with Bayes’ Theorem



• Class-conditional independence: There are no dependence

relationships among the attributes

• The naïve Bayesian classification formula is written as

• 𝐴𝑘 is categorical: 𝑃 𝑥𝑘 𝐶𝑖) is the number of tuples in 𝐶𝑖 having value

𝑥𝑘 for 𝐴𝑘 divided by |𝐶𝑖,𝐷| (# of tuples of 𝐶𝑖 in 𝐷)

• 𝐴𝑘 is continuous: 𝑃 𝑥𝑘 𝐶𝑖) = 𝑔 𝑥𝑘 , 𝜇𝐶𝑖 , 𝜎𝐶𝑖 with the Gaussian

distribution 𝑔 𝑥, 𝜇, 𝜎 =
1

𝜎 2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2

• Count class distributions only → computation cost reduced

Naïve Bayesian classification 

66

𝑃 𝐗 𝐶𝑖) =ෑ

𝑘=1

𝑛

𝑃 𝑥𝑘 𝐶𝑖) = 𝑃 𝑥1 𝐶𝑖) × 𝑃 𝑥2 𝐶𝑖) × ⋯× 𝑃 𝑥𝑛 𝐶𝑖)



Naïve Bayesian classification: An example
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P(buys_computer = “yes”) 9/14

P(buys_computer = “no”) 5/14

buys_computer = “yes” buys_computer = “no”

age = “<=30” 2/9 3/5

age = “31…40” 4/9 0/5

age = “>40” 3/9 2/5

income = “low” 3/9 1/5

income = “medium” 4/9 2/5

income = “high” 2/9 2/5

student = “yes” 6/9 1/5

student = “no” 3/9 4/5

credit_rating = “fair” 6/9 2/5

credit_rating = “excellent” 3/9 3/5



• 𝑃 𝐗 𝐶𝑖)

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”) = 2/9 ∗ 4/9 ∗ 6/9 ∗ 6/9 = 0.044

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) = 3/5 ∗ 2/5 ∗ 1/5 ∗ 2/5 = 0.019

• 𝑃 𝐗 𝐶𝑖) ∗ 𝑃(𝐶𝑖)

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”) ∗ 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”) = 0.028

• 𝑃(𝐗| 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) ∗ 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) = 0.007

• 𝑃 𝐶𝑖 𝐗)

• 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠” | 𝐗) = 0.8

• 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜” | 𝐗) = 0.2

Therefore, 𝐗 belongs to class (“buys_computer = yes”)

Naïve Bayesian classification: An example
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age income student credit_rating buys_computer

<=30 medium yes fair ?



• The naïve Bayesian prediction requires each conditional

probability be non-zero.

𝑃 𝐗 𝐶𝑖) =ෑ

𝑘=1

𝑛

𝑃 𝑥𝑘 𝐶𝑖)

• Otherwise, the predicted probability will be zero

• For example,

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) = 0 ∗ 2/5 ∗ 1/5 ∗ 2/5 = 0

• Therefore, the conclusion is always yes regardless the value of

𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”)

Avoiding the zero-probability issue
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age income student credit_rating buys_computer

31…40 medium yes fair ?



• Laplacian correction (or Laplacian estimator)

𝑷 𝑪𝒊 =
𝑪𝒊 + 𝟏

𝑫 +𝒎
𝑷 𝒙𝒌 𝑪𝒊) =

𝒙𝒌 ∪ 𝑪𝒊 + 𝟏

𝑪𝒊 + 𝒓

• where 𝑚 is the number of classes, 𝑥𝑘 ∪ 𝐶𝑖 denotes the number of

tuples contains both 𝐴𝑘 = 𝑥𝑘 and 𝐶𝑖, and 𝑟 is the number of values of

attribute 𝐴𝑘

• The “corrected” probability estimates are close to their

“uncorrected” counterparts

Avoiding the zero-probability issue

70



Naïve Bayesian classification: An example

71

P(buys_computer = “yes”) 10/16

P(buys_computer = “no”) 6/16

buys_computer = “yes” buys_computer = “no”

age = “<=30” 3/12 4/8

age = “31…40” 5/12 1/8

age = “>40” 4/12 3/8

income = “low” 4/12 2/8

income = “medium” 5/12 3/8

income = “high” 3/12 3/8

student = “yes” 7/11 2/7

student = “no” 4/11 5/7

credit_rating = “fair” 7/11 3/7

credit_rating = “excellent” 4/11 4/7



• 𝑃 𝐗 𝐶𝑖)

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”) = 5/12 ∗ 5/12 ∗ 7/11 ∗ 7/11 = 0.070

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) = 1/8 ∗ 3/8 ∗ 2/7 ∗ 3/7 = 0.006

• 𝑃 𝐗 𝐶𝑖) ∗ 𝑃(𝐶𝑖)

• 𝑃(𝐗 | 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”) ∗ 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠”) = 0.044

• 𝑃(𝐗| 𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) ∗ 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜”) = 0.002

• 𝑃 𝐶𝑖 𝐗)

• 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑦𝑒𝑠” | 𝐗) = 0.953

• 𝑃(𝑏𝑢𝑦𝑠_𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 = “𝑛𝑜” | 𝐗) = 0.047

Therefore, 𝐗 belongs to class (“buys_computer = yes”)

Naïve Bayesian classification: An example
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age income student credit_rating buys_computer

31..40 medium yes fair ?



• If the values of some attributes are missing, these attributes

are omitted from the product of probabilities

• As a result, the estimation is less accurate

• For example,

Handling missing values
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age income student credit_rating buys_computer

? medium yes fair ?



• Advantages

• Easy to implement

• Good results obtained in most of the cases

• Disadvantages

• Class conditional independence → loss of accuracy

• Practically, dependencies exist among variables, which cannot be

modeled by Naïve Bayes

• E.g., in medical records, patients’ profile (age, family history, etc.),

symptoms (fever, cough etc.), disease (lung cancer, diabetes, etc.)

• How to deal with these dependencies?

• Bayesian Belief Networks

Naïve Bayesian classification: Evaluation
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Quiz 02: Naïve Bayesian classification
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No. Writable Updated Size Class

1 Yes No Small Infected

2 Yes Yes Large Infected

3 No Yes Med Infected

4 No No Med Clean

5 Yes No Large Clean

6 No No Large Clean

• The data represent files on a computer system. Possible

values of the class variable are “infected”, which implies the

file has a virus infection, or “clean” if it doesn't.

• Derive naïve Bayesian probabilities for virus identification in

either cases, with or without Laplacian correction.
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THE END


