
INTRODUCTION TO

NEURAL NETWORKS

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Artificial Intelligence



Outline

• Introduction to Artificial neural networks

• Perceptron and Learning

• Multi-layer neural networks 

2



Artificial neural network

3



What is a neural network?

• A reasoning model based on the human brain, including

billions of neurons and trillion connections between them

4



Biological neural network

• A system that is highly complex, nonlinear and parallel

information-processing

• Learning through experience is an essential characteristic.

• Plasticity: connections between neurons leading to the

“right answer” are strengthened while those leading to the

“wrong answer” are weakened.

5



Artificial neural networks (ANN)

• Resemble the human brain in terms of learning mechanisms

• Improve performance through experience and generalization

6



How does an ANN model the brain?

• An ANN includes many neurons, which are simple and highly

interconnected processors arranging in a hierarchy of layers.

• Each neuron is an elementary information-processing unit.

7



How does an ANN model the brain?

• Each neuron receives several input signals through its

connections and produces at most a single output signal.

• The neurons are connected by links, which pass signals

from one neuron to another.

• Each link associates with a numerical weight expressing the strength

of the neuron input.

• The set of weights is the basic mean of long-term memory in ANNs.

8

• ANNs “learn” through iterative adjustments of weights.



9

Biological neuron

Analogy between biological and artificial neural networks 

Artificial neuron



How to build an ANN?

• The network architecture must be decided first,

• How many neurons are to be used?

• How the neurons are to be connected to form a network?

• Then determine which learning algorithm to use,

• Supervised /semi-supervised / unsupervised / reinforcement learning

• And finally train the neural network

• How to initialize the weights of the network?

• How to update them from a set of training examples.

10



11



12
Source: http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/


Perceptron 

and 

Learning

13



Perceptron (Frank Rosenblatt, 1958)

• A perceptron has a single neuron with adjustable synaptic

weights and a hard limiter.

14

A single-layer two-input perceptron



How does a perceptron work?

15

• Divide the n-dimensional space into two decision regions by

a hyperplane defined by the linearly separable function

෍

𝒊=𝟏

𝒏

𝒙𝒊𝒘𝒊 − 𝜽



• Step 1 – Initialization: Initial weights 𝒘𝟏, 𝒘𝟐, … ,𝒘𝒏 and threshold 𝜽 are randomly

assigned to small numbers (usually in −0.5, 0.5 , but not restricted to).

• Step 2 – Activation: At iteration 𝒑 , apply the 𝒑𝑡ℎ example, which has inputs

𝒙𝟏(𝒑), 𝒙𝟐(𝒑), … , 𝒙𝒏(𝒑) and desired output 𝒀𝒅 𝒑 , and calculate the actual output

𝒀 𝒑 = 𝛔 ෍
𝒊=𝟏

𝒏

𝒙𝒊(𝒑)𝒘𝒊(𝒑) − 𝜽

where 𝑛 is the number of perceptron inputs and 𝑠𝑡𝑒𝑝 is the activation function

• Step 3 – Weight training

• Update the weights 𝒘𝒊: 𝒘𝒊 𝒑 + 𝟏 = 𝒘𝒊 𝒑 + ∆𝒘𝒊(𝒑)

where ∆𝒘𝒊(𝒑) is the weight correction at iteration 𝒑

• The delta rule determines how to adjust the weights: ∆𝒘𝒊 𝒑 = 𝜶 × 𝒙𝒊 𝒑 × 𝒆(𝒑)

where 𝜶 is the learning rate (0 < 𝛼 < 1) and 𝒆 𝒑 = 𝒀𝒅 𝒑 − 𝒀(𝒑)

• Step 4 – Iteration: Increase iteration 𝒑 by one, go back to Step 2 and repeat the process

until convergence.

16

𝜎 𝑥 = ቊ
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

Perceptron learning rule



Perceptron for the logical AND/OR

17

The learning of logical AND 
converged after several iterations

• A single-layer perceptron can learn the AND/OR operations.

Threshold  = 0.2, learning rate  = 0.1 



Perceptron for the logical XOR

• It cannot be trained to perform the Exclusive-OR.

18



Will a sigmoidal element do better? 

• Perceptron can classify only linearly separable patterns

regardless of the activation function used (Shynk, 1990;

Shynk and Bershad, 1992)

• Solution: advanced forms of neural networks (e.g., multi-

layer perceptrons trained with back-propagation algorithm)

19



An example of perceptron

20

Is the weather good?

go to the festival?

Does your partner want to accompany you?

Is the festival near public 

transit? (You don't own a car)



An example of perceptron

• 𝑤1 = 6,𝑤2 = 2,𝑤3 = 2 → the weather matters to you much more than

whether your partner joins you, or the nearness of public transit

• 𝜃 = 5→ decisions are made based on the weather only

• 𝜃 = 3 → you go to the festival whenever the weather is good or when

both the festival is near public transit and your partner wants to join you.

21

weather

partner wants to go

near public transit



Quiz 01: Perceptron

22

• Consider the following neural network which receives binary input

values, 𝑥1 and 𝑥2, and produces a single binary value.

• For every combination (𝑥1, 𝑥2), what are the output values at neurons, 𝐴,

𝐵 and 𝐶?



Multi-layer 

neural networks
23



Multi-layer neural network

• A feedforward network with one or more hidden layers.

• The input signals are propagated forwardly on a layer-by-

layer basis.

24



• (Bryson and Ho, 1969), most popular among over a hundred

different learning algorithms available

25

Back-propagation algorithm



Back-propagation learning rule

• Step 1 – Initialization: Initial weights and thresholds are assigned to random numbers.

• The numbers may be uniformly distributed in the range −
𝟐.𝟒

𝑭𝒊
, +

𝟐.𝟒

𝑭𝒊
(Haykin, 1999),

where 𝑭𝒊 is the total number of inputs of neuron

• The weight initialization is done on a neuron-by-neuron basis

• Step 2 – Activation: At iteration 𝒑 , apply the 𝒑𝑡ℎ example, which has inputs

𝒙𝟏(𝒑), 𝒙𝟐(𝒑), … , 𝒙𝒏(𝒑) and desired outputs 𝒚𝒅,𝟏 𝒑 , 𝒚𝒅,𝟐 𝒑 ,… , 𝒚𝒅,𝒍(𝒑).

• (a) Calculate the actual output, from 𝒏 inputs, of neuron 𝒋 in the hidden layer.

𝒚𝒋 𝒑 = 𝛔 ෍
𝒊=𝟏

𝒏

𝒙𝒊(𝒑)𝒘𝒊𝒋(𝒑) − 𝜽𝒋

• (b) Calculate the actual output, from 𝒌 inputs, of neuron 𝒎 in the hidden layer.

𝒚𝒌 𝒑 = 𝛔 ෍
𝒋=𝟏

𝒎

𝒚𝒋(𝒑)𝒘𝒋𝒌(𝒑) − 𝜽𝒌

26

𝜎 𝑥 =
1

1 + 𝑒−𝑥



𝒆𝒌 𝒑

• Step 3 – Weight training: Update the weights in the back-propagation network and

propagate backward the errors associated with output neurons.

• (a) Calculate the error gradient for neuron 𝒌 in the output layer

𝜹𝒌 𝒑 = 𝒚𝒌 𝒑 × 𝟏 − 𝒚𝒌 𝒑 × [𝒚𝒅,𝒌 𝒑 − 𝒚𝒌 𝒑 ]

Calculate the weight corrections: ∆𝒘𝒋𝒌 𝒑 = 𝜶 × 𝒚𝒋 𝒑 × 𝜹𝒌 𝒑

Update the weights at the output neurons: 𝒘𝒋𝒌 𝒑 + 𝟏 = 𝒘𝒋𝒌 𝒑 + ∆𝒘𝒋𝒌 𝒑

• (b) Calculate the error gradient for neuron 𝒋 in the hidden layer

𝜹𝒋 𝒑 = 𝒚𝒋 𝒑 × [𝟏 − 𝒚𝒋 𝒑 ] ×෍
𝒌=𝟏

𝒍

𝜹𝒌 𝒑 𝒘𝒋𝒌 𝒑

Calculate the weight corrections: ∆𝒘𝒊𝒋 𝒑 = 𝜶 × 𝒙𝒊 𝒑 × 𝜹𝒋 𝒑

Update the weights at the hidden neurons: 𝒘𝒊𝒋 𝒑 + 𝟏 = 𝒘𝒊𝒋 𝒑 + ∆𝒘𝒊𝒋 𝒑

• Step 4: Iteration: Increase iteration 𝒑 by one, go back to Step 2 and repeat the process

until the selected error criterion is satisfied.

• A mathematical explanation can be found here.

Back-propagation learning rule

27

https://dustinstansbury.github.io/theclevermachine/derivation-backpropagation


Back-propagation network for XOR

• The logical XOR problem took

224 epochs or 896 iterations

for network training.

28



Sum of the squared errors (SSE)

• When the SSE in an entire pass through all training sets is

sufficiently small, a network is deemed to have converged.

29

Learning curve for 

logical operation XOR 



Decision boundaries for XOR

30

Decision boundaries are demonstrated 

with McCulloch-Pitts neurons using a 

sign function.



31

Visualization of the XOR decision problem for different types of classifiers. Markers correspond to the
four data points to be classified. The colored/hatched background corresponds to the output of one
exemplary decision function. (A) The linear decision boundary of a single-layer Perceptron cannot solve
the problem. (B, C) This still holds for the generalization 𝜎 𝑓(𝑥) + 𝑔(𝑦) . (D) A multi-layer Perceptron
(MLP) of the form 𝜎 σ𝑖𝑤𝑖𝜎 𝑢𝑖𝑥 + 𝑣𝑖𝑦 + 𝑏𝑖 can be optimized using gradient descent to solve the
problem correctly. (E) An alternative solution using a non-monotonic nonlinearity 𝜎′ 𝜉 = 𝜎′ 𝜉2 − 1 .
(F) Multiplication of two real-valued variables x, y can be seen as a superset of the XOR problem.



Sigmoid neuron vs. Perceptron

• Sigmoid neuron better reflects the fact that small changes in

weights and bias cause only a small change in output.

32

A sigmoidal function is a smoothed-out 
version of a step function.



About back-propagation learning

• Are randomly initialized weights and thresholds leading to

different solutions?

• Starting with different initial conditions will obtain different weights

and threshold values. The problem will always be solved within

different numbers of iterations.

• Back-propagation learning cannot be viewed as emulation of

brain-like learning.

• Biological neurons do not work backward to adjust the strengths of

their interconnections, synapses.

• The training is slow due to extensive calculations.

• Improvements: Caudill, 1991; Jacobs, 1988; Stubbs, 1990

33



Gradient descent method

𝑤1

𝑤2

The colors represent the value of the function 𝑓.

Randomly pick a 
starting point 𝜃0

Compute the negative 
gradient at 𝜃0

→−∇𝑓(𝜃0)

𝜃0

−𝛻𝑓 𝜃0
Time the learning rate 𝜂
→−𝜂∇𝑓(𝜃0)

𝛻𝑓 𝜃0 =
𝜕𝑓 𝜃0 /𝜕𝑤1

𝜕𝑓 𝜃0 /𝜕𝑤2

−𝜂𝛻𝑓 𝜃0

Error Surface

𝜃∗

34

• Consider two parameters, 𝑤1 and 𝑤2, in a network.



Gradient descent method

𝑤1

𝑤2

𝜃0

𝜃1
−𝛻𝑓 𝜃1

−𝜂𝛻𝑓 𝜃1

−𝛻𝑓 𝜃2

−𝜂𝛻𝑓 𝜃2
𝜃2

Eventually, we would reach a minima …..

• Consider two parameters, 𝑤1 and 𝑤2, in a network.

35

Error Surface

Randomly pick a 
starting point 𝜃0

Compute the negative 
gradient at 𝜃0

→−∇𝑓(𝜃0)

Time the learning rate 𝜂
→−𝜂∇𝑓(𝜃0)



Gradient descent method

• Gradient descent never guarantees global minima.

36

𝐶

𝑤1 𝑤2

Different initial 

point 𝜃0

Reach different minima, 

so different results

𝑓



Gradient descent method

• It also has issues at plateau and saddle point.

cost

parameter space

Very slow at the plateau

Stuck at local minima

𝛻𝑓 𝜃
= 0

Stuck at saddle point

𝛻𝑓 𝜃
= 0

𝛻𝑓 𝜃
≈ 0

37



Accelerated learning in ANNs

• Use tanh instead of sigmoid: represent the sigmoidal function 

by a hyperbolic tangent

38

𝒀𝐭𝐚𝐧 𝒉 =
𝟐𝒂

𝟏 − 𝒆−𝒃𝑿
− 𝒂

where 𝑎 = 1.716 and 𝑏 = 0.667

(Guyon, 1991) 



Accelerated learning in ANNs

• Generalized delta rule: A momentum term is

included in the delta rule (Rumelhart et al., 1986)

∆𝒘𝒋𝒌 𝒑 = 𝜷 × ∆𝒘𝒋𝒌 𝒑 − 𝟏 + 𝜶 × 𝒚𝒋 𝒑 × 𝜹𝒌 𝒑

where 𝛽 = 0.95 is the momentum constant (0 ≤ 𝛽 ≤ 1)

39

How about put momentum of physical world in gradient descent?



Accelerated learning in ANNs

cost

Movement = Negative of Gradient + Momentum 

Gradient = 0

Still not guarantee reaching global minima, 

but give some hope ……

Negative of Gradient

Momentum

Real Movement

40



Accelerated learning in ANNs

• Adaptive learning rate: Adjust the learning rate parameter 

during training

• Small  → small weight changes through iterations → smooth

learning curve

• Large  → speed up the training process with larger weight changes

→ possible instability and oscillatory

• Heuristic-like approaches for adjusting 

1. The algebraic sign of the SSE change remains for several

consequent epochs → increase .

2. The algebraic sign of the SSE change alternates for several

consequent epochs → decrease 

• One of the most effective acceleration means
41



Learning with momentum only

42

Learning with momentum for 
the logical operation XOR.



Learning with adaptive  only

43

Learning with adaptive learning 
rate for the logical operation XOR.



Learning with adaptive  and momentum

44



Quiz 02: Multi-layer neural networks

45

• Consider the below feedforward network with one hidden layer of units.

• If the network is tested with an input vector 𝑥 = 1.0, 2.0, 3.0 then what

are the activation 𝐻1 of the first hidden neuron and the activation 𝐼3 of the

third output neuron?



Quiz 02: Multi-layer neural networks

46

• The input vector to the network is 𝑥 = 𝑥1, 𝑥2, 𝑥3
𝑇

• The vector of hidden layer outputs is 𝑦 = 𝑦1, 𝑦2
𝑇

• The vector of actual outputs is 𝑧 = 𝑧1, 𝑧2, 𝑧3
𝑇

• The vector of desired outputs is 𝑡 = 𝑡1, 𝑡2, 𝑡3
𝑇

• The network has the following weight vectors

• Assume that all units have sigmoid activation function given by

𝑓 𝑥 =
1

1 + exp(−𝑥)

and that each unit has 𝜃 = 0 (zero).

• (Hint: on some calculators, exp(𝑥) = 𝑒𝑥 where 𝑒 = 2.7182818)

𝑣1 =
−2.0
2.0
−2.0

𝑣2 =
1.0
1.0
−1.0

𝑤1 =
1.0
−3.5

𝑤2 =
0.5
−1.2

𝑤3 =
0.3
0.6



Quiz 03: Backpropagation

• The figure shows part of the 

network described in Slide 48. 

• Use the same weights, 

activation functions and bias 

values as described.

47

• A new input pattern is presented to the network and training proceeds as

follows. The actual outputs are given by 𝑧 = 0.15, 0.36, 0.57 𝑇 and the

corresponding target outputs are given by 𝑡 = 1.0, 1.0, 1.0 𝑇.

• The weights 𝑤12, 𝑤22 and 𝑤32 are also shown.

• What is the error for each of the output units?



48

THE END


