
INTRODUCTION TO

NEURAL NETWORKS

Nguyễn Ngọc Thảo – Nguyễn Hải Minh

{nnthao, nhminh}@fit.hcmus.edu.vn

Artificial Intelligence



Outline

• Introduction to Artificial neural networks

• Perceptron and Learning

• Multi-layer neural networks 

2



Artificial neural network
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What is a neural network?

• A reasoning model based on the human brain, including

billions of neurons and trillion connections between them
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Biological neural network

• A system that is highly complex, nonlinear and parallel

information-processing

• Learning through experience is an essential characteristic.

• Plasticity: connections between neurons leading to the

“right answer” are strengthened while those leading to the

“wrong answer” are weakened.
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Artificial neural networks (ANN)

• Resemble the human brain in terms of learning mechanisms

• Improve performance through experience and generalization

6



How does an ANN model the brain?

• An ANN includes many neurons, which are simple and highly

interconnected processors arranging in a hierarchy of layers.

• Each neuron is an elementary information-processing unit.
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How does an ANN model the brain?

• Each neuron receives several input signals through its

connections and produces at most a single output signal.

• The neurons are connected by links, which pass signals

from one neuron to another.

• Each link associates with a numerical weight expressing the strength

of the neuron input.

• The set of weights is the basic mean of long-term memory in ANNs.
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• ANNs “learn” through iterative adjustments of weights.
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Biological neuron

Analogy between biological and artificial neural networks 

Artificial neuron



How to build an ANN?

• The network architecture must be decided first,

• How many neurons are to be used?

• How the neurons are to be connected to form a network?

• Then determine which learning algorithm to use,

• Supervised /semi-supervised / unsupervised / reinforcement learning

• And finally train the neural network

• How to initialize the weights of the network?

• How to update them from a set of training examples.
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Source: http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/


Perceptron 

and 

Learning
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Perceptron (Frank Rosenblatt, 1958)

• A perceptron has a single neuron with adjustable synaptic

weights and a hard limiter.
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A single-layer two-input perceptron



How does a perceptron work?
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• Divide the n-dimensional space into two decision regions by

a hyperplane defined by the linearly separable function

෍

𝒊=𝟏

𝒏

𝒙𝒊𝒘𝒊 − 𝜽



• Step 1 – Initialization: Initial weights 𝒘𝟏, 𝒘𝟐, … ,𝒘𝒏 and threshold 𝜽 are randomly

assigned to small numbers (usually in −0.5, 0.5 , but not restricted to).

• Step 2 – Activation: At iteration 𝒑 , apply the 𝒑𝑡ℎ example, which has inputs

𝒙𝟏(𝒑), 𝒙𝟐(𝒑), … , 𝒙𝒏(𝒑) and desired output 𝒀𝒅 𝒑 , and calculate the actual output

𝒀 𝒑 = 𝛔 ෍
𝒊=𝟏

𝒏

𝒙𝒊(𝒑)𝒘𝒊(𝒑) − 𝜽

where 𝑛 is the number of perceptron inputs and 𝑠𝑡𝑒𝑝 is the activation function

• Step 3 – Weight training

• Update the weights 𝒘𝒊: 𝒘𝒊 𝒑 + 𝟏 = 𝒘𝒊 𝒑 + ∆𝒘𝒊(𝒑)

where ∆𝒘𝒊(𝒑) is the weight correction at iteration 𝒑

• The delta rule determines how to adjust the weights: ∆𝒘𝒊 𝒑 = 𝜶 × 𝒙𝒊 𝒑 × 𝒆(𝒑)

where 𝜶 is the learning rate (0 < 𝛼 < 1) and 𝒆 𝒑 = 𝒀𝒅 𝒑 − 𝒀(𝒑)

• Step 4 – Iteration: Increase iteration 𝒑 by one, go back to Step 2 and repeat the process

until convergence.
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𝜎 𝑥 = ቊ
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

Perceptron learning rule



Perceptron for the logical AND/OR
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The learning of logical AND 
converged after several iterations

• A single-layer perceptron can learn the AND/OR operations.

Threshold  = 0.2, learning rate  = 0.1 



Perceptron for the logical XOR

• It cannot be trained to perform the Exclusive-OR.
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Will a sigmoidal element do better? 

• Perceptron can classify only linearly separable patterns

regardless of the activation function used (Shynk, 1990;

Shynk and Bershad, 1992)

• Solution: advanced forms of neural networks (e.g., multi-

layer perceptrons trained with back-propagation algorithm)
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An example of perceptron
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Is the weather good?

go to the festival?

Does your partner want to accompany you?

Is the festival near public 

transit? (You don't own a car)



An example of perceptron

• 𝑤1 = 6,𝑤2 = 2,𝑤3 = 2 → the weather matters to you much more than

whether your partner joins you, or the nearness of public transit

• 𝜃 = 5→ decisions are made based on the weather only

• 𝜃 = 3 → you go to the festival whenever the weather is good or when

both the festival is near public transit and your partner wants to join you.
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weather

partner wants to go

near public transit



Quiz 01: Perceptron
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• Consider the following neural network which receives binary input

values, 𝑥1 and 𝑥2, and produces a single binary value.

• For every combination (𝑥1, 𝑥2), what are the output values at neurons, 𝐴,

𝐵 and 𝐶?



Multi-layer 

neural networks
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Multi-layer neural network

• A feedforward network with one or more hidden layers.

• The input signals are propagated forwardly on a layer-by-

layer basis.
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• (Bryson and Ho, 1969), most popular among over a hundred

different learning algorithms available
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Back-propagation algorithm



Back-propagation learning rule

• Step 1 – Initialization: Initial weights and thresholds are assigned to random numbers.

• The numbers may be uniformly distributed in the range −
𝟐.𝟒

𝑭𝒊
, +

𝟐.𝟒

𝑭𝒊
(Haykin, 1999),

where 𝑭𝒊 is the total number of inputs of neuron

• The weight initialization is done on a neuron-by-neuron basis

• Step 2 – Activation: At iteration 𝒑 , apply the 𝒑𝑡ℎ example, which has inputs

𝒙𝟏(𝒑), 𝒙𝟐(𝒑), … , 𝒙𝒏(𝒑) and desired outputs 𝒚𝒅,𝟏 𝒑 , 𝒚𝒅,𝟐 𝒑 ,… , 𝒚𝒅,𝒍(𝒑).

• (a) Calculate the actual output, from 𝒏 inputs, of neuron 𝒋 in the hidden layer.

𝒚𝒋 𝒑 = 𝛔 ෍
𝒊=𝟏

𝒏

𝒙𝒊(𝒑)𝒘𝒊𝒋(𝒑) − 𝜽𝒋

• (b) Calculate the actual output, from 𝒌 inputs, of neuron 𝒎 in the hidden layer.

𝒚𝒌 𝒑 = 𝛔 ෍
𝒋=𝟏

𝒎

𝒚𝒋(𝒑)𝒘𝒋𝒌(𝒑) − 𝜽𝒌
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𝜎 𝑥 =
1

1 + 𝑒−𝑥



𝒆𝒌 𝒑

• Step 3 – Weight training: Update the weights in the back-propagation network and

propagate backward the errors associated with output neurons.

• (a) Calculate the error gradient for neuron 𝒌 in the output layer

𝜹𝒌 𝒑 = 𝒚𝒌 𝒑 × 𝟏 − 𝒚𝒌 𝒑 × [𝒚𝒅,𝒌 𝒑 − 𝒚𝒌 𝒑 ]

Calculate the weight corrections: ∆𝒘𝒋𝒌 𝒑 = 𝜶 × 𝒚𝒋 𝒑 × 𝜹𝒌 𝒑

Update the weights at the output neurons: 𝒘𝒋𝒌 𝒑 + 𝟏 = 𝒘𝒋𝒌 𝒑 + ∆𝒘𝒋𝒌 𝒑

• (b) Calculate the error gradient for neuron 𝒋 in the hidden layer

𝜹𝒋 𝒑 = 𝒚𝒋 𝒑 × [𝟏 − 𝒚𝒋 𝒑 ] ×෍
𝒌=𝟏

𝒍

𝜹𝒌 𝒑 𝒘𝒋𝒌 𝒑

Calculate the weight corrections: ∆𝒘𝒊𝒋 𝒑 = 𝜶 × 𝒙𝒊 𝒑 × 𝜹𝒋 𝒑

Update the weights at the hidden neurons: 𝒘𝒊𝒋 𝒑 + 𝟏 = 𝒘𝒊𝒋 𝒑 + ∆𝒘𝒊𝒋 𝒑

• Step 4: Iteration: Increase iteration 𝒑 by one, go back to Step 2 and repeat the process

until the selected error criterion is satisfied.

• A mathematical explanation can be found here.

Back-propagation learning rule
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https://dustinstansbury.github.io/theclevermachine/derivation-backpropagation


Back-propagation network for XOR

• The logical XOR problem took

224 epochs or 896 iterations

for network training.
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Sum of the squared errors (SSE)

• When the SSE in an entire pass through all training sets is

sufficiently small, a network is deemed to have converged.
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Learning curve for 

logical operation XOR 



Decision boundaries for XOR
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Decision boundaries are demonstrated 

with McCulloch-Pitts neurons using a 

sign function.
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Visualization of the XOR decision problem for different types of classifiers. Markers correspond to the
four data points to be classified. The colored/hatched background corresponds to the output of one
exemplary decision function. (A) The linear decision boundary of a single-layer Perceptron cannot solve
the problem. (B, C) This still holds for the generalization 𝜎 𝑓(𝑥) + 𝑔(𝑦) . (D) A multi-layer Perceptron
(MLP) of the form 𝜎 σ𝑖𝑤𝑖𝜎 𝑢𝑖𝑥 + 𝑣𝑖𝑦 + 𝑏𝑖 can be optimized using gradient descent to solve the
problem correctly. (E) An alternative solution using a non-monotonic nonlinearity 𝜎′ 𝜉 = 𝜎′ 𝜉2 − 1 .
(F) Multiplication of two real-valued variables x, y can be seen as a superset of the XOR problem.



Sigmoid neuron vs. Perceptron

• Sigmoid neuron better reflects the fact that small changes in

weights and bias cause only a small change in output.
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A sigmoidal function is a smoothed-out 
version of a step function.



About back-propagation learning

• Are randomly initialized weights and thresholds leading to

different solutions?

• Starting with different initial conditions will obtain different weights

and threshold values. The problem will always be solved within

different numbers of iterations.

• Back-propagation learning cannot be viewed as emulation of

brain-like learning.

• Biological neurons do not work backward to adjust the strengths of

their interconnections, synapses.

• The training is slow due to extensive calculations.

• Improvements: Caudill, 1991; Jacobs, 1988; Stubbs, 1990
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Gradient descent method

𝑤1

𝑤2

The colors represent the value of the function 𝑓.

Randomly pick a 
starting point 𝜃0

Compute the negative 
gradient at 𝜃0

→−∇𝑓(𝜃0)

𝜃0

−𝛻𝑓 𝜃0
Time the learning rate 𝜂
→−𝜂∇𝑓(𝜃0)

𝛻𝑓 𝜃0 =
𝜕𝑓 𝜃0 /𝜕𝑤1

𝜕𝑓 𝜃0 /𝜕𝑤2

−𝜂𝛻𝑓 𝜃0

Error Surface

𝜃∗
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• Consider two parameters, 𝑤1 and 𝑤2, in a network.



Gradient descent method

𝑤1

𝑤2

𝜃0

𝜃1
−𝛻𝑓 𝜃1

−𝜂𝛻𝑓 𝜃1

−𝛻𝑓 𝜃2

−𝜂𝛻𝑓 𝜃2
𝜃2

Eventually, we would reach a minima …..

• Consider two parameters, 𝑤1 and 𝑤2, in a network.
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Error Surface

Randomly pick a 
starting point 𝜃0

Compute the negative 
gradient at 𝜃0

→−∇𝑓(𝜃0)

Time the learning rate 𝜂
→−𝜂∇𝑓(𝜃0)



Gradient descent method

• Gradient descent never guarantees global minima.
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𝐶

𝑤1 𝑤2

Different initial 

point 𝜃0

Reach different minima, 

so different results

𝑓



Gradient descent method

• It also has issues at plateau and saddle point.

cost

parameter space

Very slow at the plateau

Stuck at local minima

𝛻𝑓 𝜃
= 0

Stuck at saddle point

𝛻𝑓 𝜃
= 0

𝛻𝑓 𝜃
≈ 0
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Accelerated learning in ANNs

• Use tanh instead of sigmoid: represent the sigmoidal function 

by a hyperbolic tangent
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𝒀𝐭𝐚𝐧 𝒉 =
𝟐𝒂

𝟏 − 𝒆−𝒃𝑿
− 𝒂

where 𝑎 = 1.716 and 𝑏 = 0.667

(Guyon, 1991) 



Accelerated learning in ANNs

• Generalized delta rule: A momentum term is

included in the delta rule (Rumelhart et al., 1986)

∆𝒘𝒋𝒌 𝒑 = 𝜷 × ∆𝒘𝒋𝒌 𝒑 − 𝟏 + 𝜶 × 𝒚𝒋 𝒑 × 𝜹𝒌 𝒑

where 𝛽 = 0.95 is the momentum constant (0 ≤ 𝛽 ≤ 1)
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How about put momentum of physical world in gradient descent?



Accelerated learning in ANNs

cost

Movement = Negative of Gradient + Momentum 

Gradient = 0

Still not guarantee reaching global minima, 

but give some hope ……

Negative of Gradient

Momentum

Real Movement
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Accelerated learning in ANNs

• Adaptive learning rate: Adjust the learning rate parameter 

during training

• Small  → small weight changes through iterations → smooth

learning curve

• Large  → speed up the training process with larger weight changes

→ possible instability and oscillatory

• Heuristic-like approaches for adjusting 

1. The algebraic sign of the SSE change remains for several

consequent epochs → increase .

2. The algebraic sign of the SSE change alternates for several

consequent epochs → decrease 

• One of the most effective acceleration means
41



Learning with momentum only
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Learning with momentum for 
the logical operation XOR.



Learning with adaptive  only
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Learning with adaptive learning 
rate for the logical operation XOR.



Learning with adaptive  and momentum
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Quiz 02: Multi-layer neural networks
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• Consider the below feedforward network with one hidden layer of units.

• If the network is tested with an input vector 𝑥 = 1.0, 2.0, 3.0 then what

are the activation 𝐻1 of the first hidden neuron and the activation 𝐼3 of the

third output neuron?



Quiz 02: Multi-layer neural networks
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• The input vector to the network is 𝑥 = 𝑥1, 𝑥2, 𝑥3
𝑇

• The vector of hidden layer outputs is 𝑦 = 𝑦1, 𝑦2
𝑇

• The vector of actual outputs is 𝑧 = 𝑧1, 𝑧2, 𝑧3
𝑇

• The vector of desired outputs is 𝑡 = 𝑡1, 𝑡2, 𝑡3
𝑇

• The network has the following weight vectors

• Assume that all units have sigmoid activation function given by

𝑓 𝑥 =
1

1 + exp(−𝑥)

and that each unit has 𝜃 = 0 (zero).

• (Hint: on some calculators, exp(𝑥) = 𝑒𝑥 where 𝑒 = 2.7182818)

𝑣1 =
−2.0
2.0
−2.0

𝑣2 =
1.0
1.0
−1.0

𝑤1 =
1.0
−3.5

𝑤2 =
0.5
−1.2

𝑤3 =
0.3
0.6



Quiz 03: Backpropagation

• The figure shows part of the 

network described in Slide 48. 

• Use the same weights, 

activation functions and bias 

values as described.
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• A new input pattern is presented to the network and training proceeds as

follows. The actual outputs are given by 𝑧 = 0.15, 0.36, 0.57 𝑇 and the

corresponding target outputs are given by 𝑡 = 1.0, 1.0, 1.0 𝑇.

• The weights 𝑤12, 𝑤22 and 𝑤32 are also shown.

• What is the error for each of the output units?
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THE END


