Artificial Intelligence

Nguy&n Ngoc Thao — Nguy&n Hai Minh 3
{nnthao, nhminh}@fit.hcmus.edu.vn

Outline

 Introduction to Artificial neural networks
« Perceptron and Learning

« Multi-layer neural networks

Artificial |

 AAS
=t

SN

ural network

o L

" -
.
‘e ™

What Is a neural network?

* A reasoning model based on the human brain, including
billions of neurons and trillion connections between them

-

Ll "

Biological neural network

A system that is highly complex, nonlinear and parallel
Information-processing

« Learning through experience is an essential characteristic.

* Plasticity: connections between neurons leading to the
“right answer” are strengthened while those leading to the

“‘wrong answer” are weakened.

Artificial neural networks (ANN)

- Resemble the human brain in terms of learning mechanisms

« Improve performance through experience and generalization

Where is the train station?

How does an ANN model the brain?

* An ANN includes many neurons, which are simple and highly
Interconnected processors arranging in a hierarchy of layers.

Input signals
Qutput signals

Input layer Middle layer Qutput layer

« Each neuron is an elementary information-processing unit.

How does an ANN model the brain?

« Each neuron receives several input signals through its
connections and produces at most a single output signal.

« The neurons are connected by links, which pass signals
from one neuron to another.

« Each link associates with a numerical weight expressing the strength
of the neuron input.

« The set of weights is the basic mean of long-term memory in ANNS.

* ANNSs “learn” through iterative adjustments of weights.

Inputs —

Soma Synapse Axon
Dendrites

/

Synapse

\
// Axon

Soma

Dendrites
Synapse
Z f > Biological neuron
Output 9
l l
Sum Activation
Function

Artificial neuron

Analogy between biological and artificial neural networks

Biological neural network

Soma
Dendrite
Axon
Synapse

Artificial neural network

Neuron
Input

Output
Weight

How to builld an ANN?

 The network architecture must be decided first,

« How many neurons are to be used?

« How the neurons are to be connected to form a network?

* Then determine which learning algorithm to use,

« Supervised /semi-supervised / unsupervised / reinforcement learning

* And finally train the neural network
« How to initialize the weights of the network?

« How to update them from a set of training examples.

—

Input Cell

~—

(O Backfed Input Cell

-

/A Noisy Input Cell

. Hidden Cell

© Probablistic Hidden Cell

. Spiking Hidden Cell

. Capsule Cell
. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Gated Memory Cell

—~

Kernel

~

-

() Convolution or Pool

-t

A mostly complete chart of

Neural Networks rmmon

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org
Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

Recurrent Neural Network (RNN) Long /Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
Ay o O agya

—_

— PN

TN
R R

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

11

Deep Convolutional Network (DCN)

)

—_~

v_\,\/\

">_<’\/Q\’Cj
N o~
X0
X T &
/‘>_<’\/Q\’Cj
VX\/\/\/\/
a /\/\,

[

Generative Adversarial Network (GAN)

LR
RIS,

9,
AWAVAWAWAWS

Deep Residual Network (DRN)

Capsule Network (CN)

=
OBRSK NS
R ST
‘./,‘:’L‘ Q{\"
fi‘;‘v .‘

0, /A
e =

Deconvolutional Network (DN)

P

e
e AP
A/Q\/\/\,
o _ @ _
_ O @
P .
Q\Ej/\/
=~

[’
X

Liquid State Machine (LSM)

Kohonen Network (KN)

Extreme Learning Machine (ELM)

Deep Convolutional Inverse Graphics Network (DCIGN)

y N

&

y

)
4

4
N

O O O
avaY,

[
X

(
[’
X
[’
X

Echo State Network (ESN)

Attention Network (AN)

Source: http://www.asimovinstitute.org/neural-network-zoo/

http://www.asimovinstitute.org/neural-network-zoo/

Perceptron
and
Learning

Perceptron (Frank Rosenblatt, 1958)

« A perceptron has a single neuron with adjustable synaptic
weights and a hard limiter.

Inputs

X1 Linear Hard

combiner i
o IlmEer Output

-}
() 1
/

X2 9

Threshold

A single-layer two-input perceptron
14

How does a perceptron work?

 Divide the n-dimensional space into two decision regions by

a hyperplane defined by the linearly separable function
n

z XiW; — ;)
i=1 XE *
Class A;
N, Xt 1‘
N
X1W1+ XoWwo—0=0 X1W1+ Xowao+ Xaw3z—0=0

X3 15

Perceptron learning rule

« Step 1 — Initialization: Initial weights wy,w,,...,w, and threshold @ are randomly
assigned to small numbers (usually in [—0.5,0.5], but not restricted to).

« Step 2 — Activation: At iteration p, apply the pt"* example, which has inputs
x1(p), x2(p), ..., x,(p) and desired output Y ;(p), and calculate the actual output

1 ifx=0

Y(p) = o(Z'f_ X (P)Wi(p) 9) o(x) = {o if x<0

i=1

where n is the number of perceptron inputs and step is the activation function
« Step 3 — Weight training
« Update the weights w;: w;(p + 1) = w;(p) + Aw;(p)
where Aw;(p) is the weight correction at iteration p
 The delta rule determines how to adjust the weights: Aw;(p) = a X x;(p) X e(p)
where «a is the learning rate (0 < a < 1) and e(p) =Y (p) — Y(p)

« Step 4 — lteration: Increase iteration p by one, go back to Step 2 and repeat the process
until convergence.

Perceptron for the logical AND/OR

« A single-layer perceptron can learn the AND/OR operations.

Initial Final
Desired Actual
Inpute output welghts output Error _ Weights
Eech X1 Xz Ya wq wa Y e Wy Wa

1 0 o0 0 03 -01 0 0 03 -01
0o 1 0 03 -01 0 0 0.3 -041
1 0 0 03 -01 1 -1 0.2 -041
1 1 1 02 -01 0 1 0.3 0.0

D o 0 o 03 00 0 : : 1

0o 1 0 0. 0.0 0 0 0.3 0.0
1 0 0 0.3 0.0 1 -1 0.2 0.0
1 1 1 0.2 0.0 1 0 0.2 00 x1—> 1 W

3 0 0 0 0.2 0.0 0 0 0.2 0.0 1 0
o 1 0 0.2 0.0 0 0 0.2 0.0
1 0 0 0.2 0.0 1 -1 0.1 0.0 y
1 1 1 0.1 0.0 0 1 0.2 0.1

4 0 0 0 0.2 0.1 0 0 0.2 0.1
0o 1 0 0.2 0.1 0 0 0.2 0.1 Wo
1 0 0 0.2 0.1 1 -1 0.1 01 Xo—> 2
1 1 1 0.1 0.1 1 0 0.1 0.1

5 0 0 0 0.1 01 0 0 0.1 0.1
0o 1 0 0.1 01 0 0 0.1 0.1 . .
10 o o1 o1 o o o1 o1 Thelearning of logical AND
1 1 1 0.1 0.1 1 0 0.1 0.1

converged after several iterations

Threshold 6 = 0.2, learning rate a. = 0.1 .

Perceptron for the logical XOR

* [t cannot be trained to perform the Exclusive-OR.

<‘ XQA XQA

1¢ \1&—1 1>—T
of 1 \;1 of X X1 o 1 X1

(@) AND (x1 N Xx2) (b) OR (x1 W Xx2) (c) Exclusive-OR
(X1 D X2)

Will a sigmoidal element do better?

* Perceptron can classify only linearly separable patterns
regardless of the activation function used (Shynk, 1990;
Shynk and Bershad, 1992)

« Solution: advanced forms of neural networks (e.g., multi-
layer perceptrons trained with back-propagation algorithm)

An example of perceptron

S,

~ s the weather good?

Is the festival near public
transit? (You don't own a car)

go to the festival?

20

An example of perceptron
-1

weather X1 —> 1 & 39
W2 >() y
W3

partner wants to go X2 ——»{ 2

near public transit X3 —> 3 /

* w; =6,w, =2,wy =2 — the weather matters to you much more than
whether your partner joins you, or the nearness of public transit

« § =5 — decisions are made based on the weather only

« 8§ =3 — you go to the festival whenever the weather is good or when
both the festival is near public transit and your partner wants to join you.

Quiz 01: Perceptron

« Consider the following neural network which receives binary input
values, x; and x, and produces a single binary value.

0.5

« For every combination (x4, x,), what are the output values at neurons, A4,
B and C?

22

t | 7=y,
Layel

Multi-layer
neural networks

23

Multi-layer neural network

A feedforward network with one or more hidden layers.

 The Iinput signals are propagated forwardly on a layer-by-

layer basis.

INput signals

Input
layer

Y

Y

First
hidden
layer

Second
hidden
layer

Output
layer

Output signals

24

Back-propagation algorithm

* (Bryson and Ho, 1969), most popular among over a hundred
different learning algorithms available

Input signals >

Input Hidden Cutput
layer layer layer

Error signals
¢ I .

Back-propagation learning rule

« Step 1 — Initialization: Initial weights and thresholds are assigned to random numbers.

2.4

24 .
T, + ?1) (Haykin, 1999),

* The numbers may be uniformly distributed in the range (
where F; is the total number of inputs of neuron

» The weight initialization is done on a neuron-by-neuron basis

« Step 2 — Activation: At iteration p, apply the pt"* example, which has inputs
x1(p), x2(p), .., xn(p) and desired outputs y41(P), Ya2(P), -, Ya1(P)-

» (a) Calculate the actual output, from n inputs, of neuron j in the hidden layer.

n 1
yi(p) = “(Zi_ xi(p)w;ij(p) — 9,') o(x) =T =

* (b) Calculate the actual output, from k inputs, of neuron m in the hidden layer.

yr(p) =0 <Z;y,-(p)wjk(p) - 0k>

Back-propagation learning rule

« Step 3 — Weight training: Update the weights in the back-propagation network and

propagate backward the errors associated with output neurons.

ex(p)
« (@) Calculate the error gradient for neuron k in the output layer

61(p) = yi(p) X [1 — yr(P)] X|[yar(®) — yr(p)]
Calculate the weight corrections: Aw;,(p) = a X y;(p) X 8 (p)

Update the weights at the output neurons: wj,(p + 1) = wji(p) + Awj (p)

» (b) Calculate the error gradient for neuron j in the hidden layer
l
5®) =y, X (1= y;@]x) 5:®) wye®)
k=1

Calculate the weight corrections: Aw;;(p) = a X x;(p) X §;(p)
Update the weights at the hidden neurons: w;;(p + 1) = w;;(p) + Aw;i(p)

« Step 4: lteration: Increase iteration p by one, go back to Step 2 and repeat the process
until the selected error criterion is satisfied.

« A mathematical explanation can be found here.
27

https://dustinstansbury.github.io/theclevermachine/derivation-backpropagation

Back-propagation network for XOR

-1
* The logical XOR problem took ig
. : 3
224 epochs or 896 iterations Wis -1
f t K traini Xx1—> 1 = 3 Ws (j
or network training. Woa 05
(-_L J——> VS
W14
Xo — 2 @ Was
W24
o
-1
Input Hidden layer Output
layer layer
Inputs Desired Actual Sum of
npu output output Error squared
X1 X2 Ya Ys e errors
1 1 0 0.0155 —0.0155 0.0010
0 1 1 0.9849 0.0151
1 0 1 0.9849 0.0151
0 0 0 0.0175 —-0.0175

Sum of the squared errors (SSE)

 When the SSE in an entire pass through all training sets is
sufficiently small, a network is deemed to have converged.

l__
10 E Sum-squared network error for 224 epochs
100 B~
s
S 1071 -
b E Learning curve for
< - logical operation XOR
[wy
m . —
£ 10 EE
5 E
n C
10_‘3‘5 ——
10—4_ | | | |
0 50 100 150 200

29

Decision boundaries for XOR

Decision boundaries are demonstrated
with McCulloch-Pitts neurons using a

sign function.

X1—>

X2 —>

X1+ x2—0.5=0

Y5

1.0

~ 0.5

0.0 =

1.0

~ 0.5

017 @
w

T
0.0 0.5 1.0
X

1.0

= 0.5

1.0 -

= 0.5 =

0.0 .,

%

;;;;;;

——

-

-1

R

. Class “17

Class “—17"

Visualization of the XOR decision problem for different types of classifiers. Markers correspond to the
four data points to be classified. The colored/hatched background corresponds to the output of one
exemplary decision function. (A) The linear decision boundary of a single-layer Perceptron cannot solve
the problem. (B, C) This still holds for the generalization o(f(x) + g(¥)). (D) A multi-layer Perceptron
(MLP) of the form o(};; w;o(u;x + v;y + b;)) can be optimized using gradient descent to solve the
problem correctly. (E) An alternative solution using a non-monotonic nonlinearity o’ (§) = ¢'(§2? — 1).
(F) Multiplication of two real-valued variables x, y can be seen as a superset of the XOR problem. 31

Sigmoid neuron vs. Perceptron

« Sigmoid neuron better reflects the fact that small changes in
weights and bias cause only a small change in output.

step function
1.0 .
0.3
sigmoid function 0.6
1.0 P
0.4
0.8
0.2
0.6
4 0.0 1 I T T T T T T T
0.4- 4 3 2 a1 0 1 2 3 4
ff .- E
D-E_ . . . -
A sigmoidal function is a smoothed-out
0.0 +—— _|_-----|-. T | T T T T T 1 i I
P S S A S version of a step function.
Z

32

About back-propagation learning

« Are randomly initialized weights and thresholds leading to
different solutions?

« Starting with different initial conditions will obtain different weights
and threshold values. The problem will always be solved within
different numbers of iterations.

« Back-propagation learning cannot be viewed as emulation of
brain-like learning.

 Biological neurons do not work backward to adjust the strengths of
their interconnections, synapses.

* The training is slow due to extensive calculations.
* Improvements: Caudill, 1991; Jacobs, 1988; Stubbs, 1990

Gradient descent method

« Consider two parameters, w; and w,, in a network.
Error Surface

5 50018.000 —— 15.000 ==
500 13.500 \
ape: 7 10.500]

: 12.000

Randomly pick a
starting point 8°

Compute the negative ' The colors represent the value of the function f.

gradient at 8° ‘
0*

> ven I 1V (6°)
Time the learning raten | . 1 gl
D ~ e e
— [af<e°>7aw1
¥4 0
70 o)

0
Wq

Gradient descent method

« Consider two parameters, w; and w,, in a network.
Error Surface

Randomly pick a
starting point 8°

Compute the negative
gradient at 8°

> -VfO%) w, of

Time the learning rate n o S o

Gradient descent method

« Gradient descent never guarantees global minima.

Different initial
point 69

Reach different minima,
so different results

36

Gradient descent method

* |t also has issues at plateau and saddle point.

cost

Very slow at the plateau

Stuck at saddle point
Stuck at local minima

: - vre) v P pp(e)
: . ~0 _g =0 _g_ =0

parameter space
37

Accelerated learning in ANNS

« Use tanh instead of sigmoid: represent the sigmoidal function
by a hyperbolic tangent

2a where a = 1.716 and b = 0.667

tan h _ _
¥ 1 — e bX a (Guyon, 1991)

1.0
= sigmoid
- tanh

-1.0b 38

Accelerated learning in ANNS

 Generalized delta rule: A momentum term Is
Included in the delta rule (Rumelhart et al., 1986)

‘ Awj(p) = B X Awj(p — 1) + a X yj(p) X 6, (p)

where f = 0.95 is the momentum constant (0 < f < 1)

How about put momentum of physical world in gradient descent?

- o

39

Accelerated learning in ANNSs

Still not guarantee reaching global minima,

but give some hope

cost

Movement = Negative of Gradient + Momentum

—==p Negative of Gradient

«=a=p MOmentum

—p Real Movement

Eq E»lllll» :.....> «L-.-»
—] — —] =

Gradient =0 20

Accelerated learning in ANNS

« Adaptive learning rate: Adjust the learning rate parameter o
during training
« Small & — small weight changes through iterations — smooth

learning curve

« Large o — speed up the training process with larger weight changes
— possible instability and oscillatory

« Heuristic-like approaches for adjusting o

1. The algebraic sign of the SSE change remains for several
consequent epochs — increase o.

2. The algebraic sign of the SSE change alternates for several
conseqguent epochs — decrease a

 One of the most effective acceleration means

Learning with momentum only

101 Training for 126 epochs
Learning with momentum for

the logical operation XOR.

100

Sum-squared error

Learning rate

1 1 | | | | | |
0 20 40 60 80 100 120 140

Epoch

42

Learning with adaptive a only

Training for 103 epochs
1[':1 —

Learning with adaptive learning
rate for the logical operation XOR.

100 f

1'3_1 -

10-2|-

Sum-squared error

1@—3 e

104 | | | | | | | | | |

Epoch

Learning rate

0.5

0 20 40 60 80 100 120
Epoch 43

Learning with adaptive a and momentum

101 — Training for 85 epochs
10°

Sum-squared error

2.5

-
PO N
|

Learning rate

O
on
|

o

o

44

Epoch

Quiz 02: Multi-layer neural networks

» Consider the below feedforward network with one hidden layer of units.

* If the network is tested with an input vector x = [1.0, 2.0, 3.0] then what
are the activation H; of the first hidden neuron and the activation I; of the
third output neuron?

Quiz 02: Multi-layer neural networks

 The input vector to the network is x = [xq, x5, x3]7
- The vector of hidden layer outputs is y = [y, y,]"
 The vector of actual outputs is z = [z4, zy, z3]"
 The vector of desired outputs is t = [ty, ty, t3]"

* The network has the following weight vectors

_ A0 [0 1.0 _[05 0.3
V1 = 2.0 Uy, = 1.0 W, = 35 Wy = 1.2 W3 = 0.6
—2.0 —1.0 e i '

« Assume that all units have sigmoid activation function given by

f&) = 1+ exp(—x)
and that each unit has 6 = 0 (zero).

(Hint: on some calculators, exp(x) = e* where e = 2.7182818)

Quiz 03: Backpropagation

» The figure shows part of the
network described in Slide 48.

« Use the same weights,
activation functions and bias
values as described.

* A new input pattern is presented to the network and training proceeds as
follows. The actual outputs are given by z = [0.15,0.36,0.57]" and the
corresponding target outputs are given by ¢ = [1.0, 1.0, 1.0]".

* The weights wy,, w,, and ws, are also shown.

« What is the error for each of the output units?

l
nanks:

THE END

