
Programming Techniques

Week 2

Topic: Data abstraction and ADTs

01/2014

What is in today?

 Programming paradigms in C++

 Data Abstraction and Abstract Data Types

Programming Paradigms

 The most important aspect of C++ is its

ability to support many different

programming paradigms

 We will cover this term

 procedural abstraction

 modular abstraction

 data abstraction

 as ways or techniques used to solve problems

Procedural Abstraction

 This is where you build a “fence” around

program segments, preventing some parts

of the program from “seeing” how tasks are

being accomplished.

 Any use of globals causes side effects that

may not be predictable, reducing the

viability of procedural abstraction

Procedural Abstraction

 This may be the approach taken with stage

#1...where the major tasks are broken into

functions.

 You can test your functions separately

before the entire program is written and

debugged.

Modular Abstraction

 With modular abstraction, we build a “screen”

surrounding the internal structure of our program

prohibiting programmers from accessing the data

except through specified functions.

 Many times data structures (e.g., structures)

common to a module are placed in a header files

along with prototypes (allows external references)

Modular Abstraction

 The corresponding functions that manipulate the

data are then placed in an implementation file.

 Modules (files) can be compiled separately,

allowing users access only to the object (.o) files

 We progress one small step toward OOP by

thinking about the actions that need to take place

on data...

Modular Abstraction

 Later this term we will be implementing
modular abstraction by separating out
various functions/structures/classes into
multiple .cpp and .h files.

 .cpp files contain the implementation of our
functions

 .h files contain the prototypes, class and
structure definitions.

Modular Abstraction

 We then include the .h files in modules that
need access to the prototypes, structures,
or class declarations:

 #include “myfile.h”

 (Notice the double quotes!)

 We then compile the programs

Data Abstraction

 Data Abstraction is one of the most

powerful programming paradigms

 It allows us to create our own user defined

data types (using the class construct) and

 then define variables (i.e., objects) of those

new data types.

Data Abstraction

 With data abstraction we think about what

operations can be performed on a

particular type of data and not how it does

it

 Here we are one step closer to object

oriented programming

Data Abstraction

 Data abstraction is used as a tool to

increase the modularity of a program

 It is used to build walls between a program

and its data structures

 what is a data structure?

 talk about some examples of data structures

 We use it to build new abstract data types

Data Abstraction

 An abstract data type (ADT) is a data type

that we create

 consists of data and operations that can be

performed on that data

 Think about an char type

 it consists of 1 byte of memory and operations

such as assignment, input, output, arithmetic

operations can be performed on the data

Data Abstraction

 An abstract data type is any type you want to add

to the language over and above the fundamental

types

 For example, you might want to add a new type

called: list

 which maintains a list of data

 the data structure might be an array of structures

 operations might be to add to, remove, display all,

display some items in the list

Data Abstraction

 Once defined, we can create lists without
worrying about how the data is stored

 We “hide” the data structure used for the
data within the data type -- so it is
transparent to the program using the data
type

 We call the program using this new data
type: the client program (or client)

Data Abstraction

 Once we have defined what data and operations

make sense for a new data type, we can define

them using the class construct in C++

 Once you have defined a class, you can create as

many instances of that class as you want

 Each “instance” of the class is considered to be

an “object” (variable)

Data Abstraction

 Think of a class as similar to a data type

 and an object as a variable

 And, just as we can have zero or more
variables of any data type...

 we can have zero or more objects of a class!

 Then, we can perform operations on an
object in the same way that we can access
members of a struct...

Example

 For a list of videos, we might start with a

struct defining what a video is:

 struct video {

 char title[100];

 char category[5];

 int quantity;

};

Example

 For a list of videos data type:
class list {

 public:

 list();

 int add (const video &);

 int remove (char title[]);

 int display_all();

 private:

 video my_list[CONST_SIZE];

 int num_of_videos;

};

Example

 For a client to create a list object:
main() {

 list home_videos; //has an array of 100 videos

 list kids_shows; //another 100 videos here...

 •••

 video out_of_site;

 cin.get(out_of_site.title,100,’\n’);

 cin.ignore(100,’\n’);

 •••

 home_videos.add(out_of_site); //use operation

For Next Time

 Study classes...we’ll look at terminology

 Next time we will discuss:

 class constructors

 where to place the class “interface” we saw

previously and

 where to place the implementation of the

“member functions”

