
Programming techniques

Week 2

Topic 2: Data abstraction in C++

01/2014

What is in today?

 Terminology

 Data Hiding

 Class Constructors

 Defining and using functions in classes

 Where to place the class interface and

implementation of the member functions

“class” Terminology

 Class

 think data type

 Object

 instance of a class, e.g., variable

 Members

 like structures, the data and functions declared

in a class

 called “data members” and “member functions”

“class” Terminology

 A class could be a list, a string, a counter, a

clock, a bank account, etc.

 discuss a simple counter class on the board

 An object is as real as a variable, and gets

allocated and deallocated just like variables

 discuss the similarities of:

int i; list j;

“class” Terminology

 For the list of videos data type we used last
time....
class list { <--- the data type!!!

 public:

 list(); <--- the constructor

 int add (const video &); 3 member functions

 int remove (char title[]);

 int display_all();

 private:

 video my_list[CONST_SIZE]; data members

 int num_of_videos;

}; <--- notice like structures we need a semicolon

“class” Terminology

 If we examine the previous class,

 notice that classes are really very similar to
structures

 a class is simply a generalized structure

 in fact, even though we may not have used
structures in this way...

 Structures and Classes are 100% identical
except for their default conditions...
 by default, all members in a structure are available for

use by clients (e.g., main programs); they are public

“class” Terminology

 We have seen the use of structures in a more

simple context,

 as we examined with the video struct.

 It had three members (data members)

 called title, category, and quantity.

 They are “public” by default,

 so all functions that have objects of type video can

directly access members by:

video object;

object.title object.category object.quantity

“class” Terminology

 This limited use of a structure was appropriate,

because

 it served the purpose of grouping different types of data

together as a single unit

 so, anytime we want to access a particular video -- we

get all of the information pertaining to the video all at

once

 in fact, in your programming -- think about passing in

structures instead of a million different arguments!

 Think Grouping

Structure Example

 Remember, anything you can do in a struct you

can do in a class.

 It is up to your personal style how many structures

versus classes you use to solve a problem.

 Benefit: Using structures for simple “groupings” is

compatible with C
 struct video {

 char title[100];

 char category[5];

 int quantity;

};

“class” Terminology

 To accomplish data hiding and

encapsulation

 we usually turn towards classes

 What is data hiding?

 It is the ability to protect data from unauthorized

use

 Notice, with the video structure, any code that

has an object of the structure can access or

modify the title or other members

Data Hiding

 With data hiding

 accessing the data is restricted to authorized
functions

 “clients” (e.g., main program) can’t muck with
the data directly

 this is done by placing the data members in
the private section

 and, placing member functions to access &
modify that data in the public section

Data Hiding

 So, the public section

 includes the data and operations that are

visible, accessible, and useable by all of the

clients that have objects of this class

 this means that the information in the public

section is “transparent”; therefore, all of the

data and operations are accessible outside the

scope of this class

 by default, nothing in a class is public!

Data Hiding

 The private section

 includes the data and operations that are not visible to

any other class or client

 this means that the information in the private section is

“opaque” and therefore is inaccessible outside the

scope of this class

 the client has no direct access to the data and must use

the public member functions

 this is where you should place all data to ensure the

memory’s integrity

Data Hiding

 The good news is that

 member functions defined in the public section

can use, return, or modify the contents of any

of the data members, directly

 it is best to assume that member functions are

the only way to work with private data

 (there are “friends” but don’t use them this term)

 Think of the member functions and private data

as working together as a team

“class” Terminology

 Let’s see how “display_all” can access the data
members:
class list {

 public: notice it is public

 int display_all() {

 for (int i=0; i<num_of_videos; ++i)

 cout <<my_list[i].title <<‘\t’

 <<my_list[i].category

 <<‘\t’ <<my_list[i].quantity <<endl;

 }

 •••

 private:

 video my_list[CONST_SIZE];

 int num_of_videos;

};

Data Hiding

 Notice, that the display_all function can
access the private my_list and
num_of_videos members, directly

 without an object in front of them!!!

 this is because the client calls the display_all
function through an object

 object.display_all();

 so the object is implicitly available once we
enter “class scope”

Where to place....

 In reality, the previous example was

misleading. We don’t place the

implementation of functions with this this

class interface

 Instead, we place them in the class

implementation, and separate this into its

own file

Class Interface (.h)
 Class Interface: list.h

class list {

 public:

 int display_all()

 •••

 private:

 video my_list[CONST_SIZE];

 int num_of_videos;

};

 list.h can contain:
 prototype statements

 structure declarations and definitions

 class interfaces and class declarations

 include other files

Class Implementation

 Class Implementation list.cpp
#include “list.h” notice the double quotes

 int list::display_all() {

 for (int i=0; i<num_of_videos; ++i)

 cout <<my_list[i].title <<‘\t’

 <<my_list[i].category

 <<‘\t’ <<my_list[i].quantity <<endl;

 }

 Notice, the code is the same

 But, the function is prefaced with the class name and the scope
resolution operator!

 This places the function in class scope even though it is implemented in
another file

 Including the list.h file is a “must”

Class Implementation

 Note:

 the header file must be included in both the

class implementation (list.cpp) and the client

program (e.g., main.cpp)

 From now on, you will need to separate

your code into these “modules”.....

Constructors

 Remember that when you define a local variable

in C++, the memory is not automatically initialized

for you

 This could be a problem with classes and objects

 If we define an object of our list class, we really

need the “num_of_videos” data member to have

the value zero

 Uninitialized just wouldn’t work!

Constructors

 Luckily, with a constructor we can write a function

to initialize our data members

 and have it implicitly be invoked whenever a

client creates an object of the class

 The constructor is a strange function, as it

has the same name as the class, and no

return type (at all...not even void).

Constructor

 The list constructor was: (list.h)
class list {

 public:

 list(); <--- the constructor

 •••

};

 The implementation is: (list.cpp)
list::list(){

 num_of_videos = 0;

}

Constructor

 The constructor is implicitly invoked
when an object of the class is formed:

int main() {

 list fun_videos; implicitly calls the

 constructor

 list all_videos[10]; implicitly calls the

 constructor 10 times for

 each of the 10 objects!!

