
Programming techniques

Week 2

Topic 2: Data abstraction in C++

01/2014

What is in today?

 Terminology

 Data Hiding

 Class Constructors

 Defining and using functions in classes

 Where to place the class interface and

implementation of the member functions

“class” Terminology

 Class

 think data type

 Object

 instance of a class, e.g., variable

 Members

 like structures, the data and functions declared

in a class

 called “data members” and “member functions”

“class” Terminology

 A class could be a list, a string, a counter, a

clock, a bank account, etc.

 discuss a simple counter class on the board

 An object is as real as a variable, and gets

allocated and deallocated just like variables

 discuss the similarities of:

int i; list j;

“class” Terminology

 For the list of videos data type we used last
time....
class list { <--- the data type!!!

 public:

 list(); <--- the constructor

 int add (const video &); 3 member functions

 int remove (char title[]);

 int display_all();

 private:

 video my_list[CONST_SIZE]; data members

 int num_of_videos;

}; <--- notice like structures we need a semicolon

“class” Terminology

 If we examine the previous class,

 notice that classes are really very similar to
structures

 a class is simply a generalized structure

 in fact, even though we may not have used
structures in this way...

 Structures and Classes are 100% identical
except for their default conditions...
 by default, all members in a structure are available for

use by clients (e.g., main programs); they are public

“class” Terminology

 We have seen the use of structures in a more

simple context,

 as we examined with the video struct.

 It had three members (data members)

 called title, category, and quantity.

 They are “public” by default,

 so all functions that have objects of type video can

directly access members by:

video object;

object.title object.category object.quantity

“class” Terminology

 This limited use of a structure was appropriate,

because

 it served the purpose of grouping different types of data

together as a single unit

 so, anytime we want to access a particular video -- we

get all of the information pertaining to the video all at

once

 in fact, in your programming -- think about passing in

structures instead of a million different arguments!

 Think Grouping

Structure Example

 Remember, anything you can do in a struct you

can do in a class.

 It is up to your personal style how many structures

versus classes you use to solve a problem.

 Benefit: Using structures for simple “groupings” is

compatible with C
 struct video {

 char title[100];

 char category[5];

 int quantity;

};

“class” Terminology

 To accomplish data hiding and

encapsulation

 we usually turn towards classes

 What is data hiding?

 It is the ability to protect data from unauthorized

use

 Notice, with the video structure, any code that

has an object of the structure can access or

modify the title or other members

Data Hiding

 With data hiding

 accessing the data is restricted to authorized
functions

 “clients” (e.g., main program) can’t muck with
the data directly

 this is done by placing the data members in
the private section

 and, placing member functions to access &
modify that data in the public section

Data Hiding

 So, the public section

 includes the data and operations that are

visible, accessible, and useable by all of the

clients that have objects of this class

 this means that the information in the public

section is “transparent”; therefore, all of the

data and operations are accessible outside the

scope of this class

 by default, nothing in a class is public!

Data Hiding

 The private section

 includes the data and operations that are not visible to

any other class or client

 this means that the information in the private section is

“opaque” and therefore is inaccessible outside the

scope of this class

 the client has no direct access to the data and must use

the public member functions

 this is where you should place all data to ensure the

memory’s integrity

Data Hiding

 The good news is that

 member functions defined in the public section

can use, return, or modify the contents of any

of the data members, directly

 it is best to assume that member functions are

the only way to work with private data

 (there are “friends” but don’t use them this term)

 Think of the member functions and private data

as working together as a team

“class” Terminology

 Let’s see how “display_all” can access the data
members:
class list {

 public: notice it is public

 int display_all() {

 for (int i=0; i<num_of_videos; ++i)

 cout <<my_list[i].title <<‘\t’

 <<my_list[i].category

 <<‘\t’ <<my_list[i].quantity <<endl;

 }

 •••

 private:

 video my_list[CONST_SIZE];

 int num_of_videos;

};

Data Hiding

 Notice, that the display_all function can
access the private my_list and
num_of_videos members, directly

 without an object in front of them!!!

 this is because the client calls the display_all
function through an object

 object.display_all();

 so the object is implicitly available once we
enter “class scope”

Where to place....

 In reality, the previous example was

misleading. We don’t place the

implementation of functions with this this

class interface

 Instead, we place them in the class

implementation, and separate this into its

own file

Class Interface (.h)
 Class Interface: list.h

class list {

 public:

 int display_all()

 •••

 private:

 video my_list[CONST_SIZE];

 int num_of_videos;

};

 list.h can contain:
 prototype statements

 structure declarations and definitions

 class interfaces and class declarations

 include other files

Class Implementation

 Class Implementation list.cpp
#include “list.h” notice the double quotes

 int list::display_all() {

 for (int i=0; i<num_of_videos; ++i)

 cout <<my_list[i].title <<‘\t’

 <<my_list[i].category

 <<‘\t’ <<my_list[i].quantity <<endl;

 }

 Notice, the code is the same

 But, the function is prefaced with the class name and the scope
resolution operator!

 This places the function in class scope even though it is implemented in
another file

 Including the list.h file is a “must”

Class Implementation

 Note:

 the header file must be included in both the

class implementation (list.cpp) and the client

program (e.g., main.cpp)

 From now on, you will need to separate

your code into these “modules”.....

Constructors

 Remember that when you define a local variable

in C++, the memory is not automatically initialized

for you

 This could be a problem with classes and objects

 If we define an object of our list class, we really

need the “num_of_videos” data member to have

the value zero

 Uninitialized just wouldn’t work!

Constructors

 Luckily, with a constructor we can write a function

to initialize our data members

 and have it implicitly be invoked whenever a

client creates an object of the class

 The constructor is a strange function, as it

has the same name as the class, and no

return type (at all...not even void).

Constructor

 The list constructor was: (list.h)
class list {

 public:

 list(); <--- the constructor

 •••

};

 The implementation is: (list.cpp)
list::list(){

 num_of_videos = 0;

}

Constructor

 The constructor is implicitly invoked
when an object of the class is formed:

int main() {

 list fun_videos; implicitly calls the

 constructor

 list all_videos[10]; implicitly calls the

 constructor 10 times for

 each of the 10 objects!!

