
Programming techniques

Week 3: Pointers and Dynamic Memory

1/2014

Week 3

 Pointers and Dynamic Memory

 What are pointers

 Why dynamically allocate memory

 How to dynamically allocate memory

 What about deallocation?

 Walk through pointer exercises

 Pointers

 In C++, a pointer is just a different kind of

variable.

 This type of variable points to another variable or

object

 (i.e., it is used to store the memory address of another

variable nor an object).

 Such pointers must first be defined and then initialized.

 Then, they can be manipulated.

 Pointers

 A pointer variable is simply a new type of
variable.

 Instead of holding an int, float, char, or some

object's data....it holds an address.

 A pointer variable is assigned memory.

 the contents of the memory location is some

address of another “variable”.

 Therefore, the value of a pointer is a memory

location.

 Pointers

 We can have pointers to (one or more)

 integers

 floating point types

 characters

 structures

 objects of a class

 Each represents a different type of pointer

 Pointers

 We define a pointer to an integer by:

int * ptr; //same as int *ptr;

 Read this variable definition from right to

left:

 ptr is a pointer (that is what the * means) to an

integer.

 this means ptr can contain the address of

some other integer

 Pointers

 At this point, you may be wondering why pointers

are necessary.

 They are essential for allowing us to use data

structures that grow and shrink as the program is

running.

 after midterm time we will learn how to do

this...with linked lists

 We are no longer stuck with a fixed size array

throughout the lifetime of our program.

 Pointers

 But first,

 we will learn that pointers can be used to allow

us to set the size of an array at run-time versus

fixing it at compilation time;

 if an object is a list of names...then the size of

that list can be determined dynamically while

the program is running.

 This cannot be accomplished in a user friendly

way with simple arrays!

 Defining Pointers

 So, what are the data types for the

following variables?

int *ptr1, obj1; //watch out!

char *ptr2, *ptr3;

float obj2, *ptr4;

 What are their initial values (if local

variables)? -- yes, garbage --

 Defining Pointers

 The best initial value for a pointer is

 zero (address zero),

 also known as NULL (this is a #define constant

in the iostream library for the value zero!)

 The following accomplish the same thing:

int *ptr1 = NULL;

int *ptr2 = 0;

int *ptr3 (0);

 Defining Pointers

 You can also initialize or assign the

address of some other variable to a pointer,

 using the address-of operator

int variable;

int *ptr1 = &variable;

 Allocating Memory

 Now the interesting stuff!

 You can allocate memory dynamically (as

our programs are running)

 and assign the address of this memory to a

pointer variable.
int *ptr1 = new int;

ptr1
dynamic variable

?

 int *ptr1 = new int;

 The diagram used is called a

 pointer diagram

 it helps to visualize what memory we have allocated

and what our pointers are referencing

 notice that the dynamic memory allocated is of size int

in this case

 and, its contents is uninitialized

 new is an operator and supplies back an address of the

memory set allocated

 Dereferencing

 Ok, so we have learned how to set up a
pointer variable to point to another variable
or to point to memory dynamically
allocated.

 But, how do we access that memory to set
or use its value?

 By dereferencing our pointer variable:
*ptr1 = 10;

 Dereferencing

 Now a complete sequence:
int *ptr1;

ptr1 = new int;

*ptr1 = 10;

•••

cout <<*ptr1; //displays 10

ptr1
dynamic variable

10

 Deallocating

 Once done with dynamic memory,

 we must deallocate it

 C++ does not require systems to do “garbage

collection” at the end of a program’s execution!

 We can do this using the delete operator:

delete ptr1;

 this does not delete the pointer variable!

 Deallocating

 Again:

 this does not delete the pointer variable!

 Instead, it deallocates the memory
referenced by this pointer variable

 It is a no-op if the pointer variable is NULL

 It does not reset the pointer variable

 It does not change the contents of memory

 Let’s talk about the ramifications of this...

 Allocating Arrays

 But, you may be wondering:

 Why allocate an integer at run time

(dynamically) rather than at compile time

(statically)?

 The answer is that we have now learned

the mechanics of how to allocate memory

for a single integer.

 Now, let’s apply this to arrays!

 Allocating Arrays

 By allocating arrays dynamically,

 we can wait until run time to determine what

size the array should be

 the array is still “fixed size”...but at least we

can wait until run time to fix that size

 this means the size of a dynamically allocated

array can be a variable!!

 Allocating Arrays

 First, let’s remember what an array is:

 the name of an array is a constant address to

the first element in the array

 So, saying char name[21];

 means that name is a constant pointer who’s

value is the address of the first character in a

sequence of 21 characters

 Allocating Arrays

 To dynamically allocate an array
 we must define a pointer variable to contain an address

of the element type

 For an array of characters we need a pointer to a
char:
 char *char_ptr;

 For an array of integers we need a pointer to an
int:
 int *int_ptr;

 Allocating Arrays

 Next, we can allocate memory and

examine the pointer diagram:
 int size = 21; //for example

 char *char_ptr;

 char_ptr = new char [size];

21 characters
(elements 0-20)

char_ptr

 Allocating Arrays

 Some interest thoughts:

 the pointer diagram is identical to the pointer

diagram for the statically allocated array

discussed earlier!

 therefore, we can access the elements in the

exact same way we do for any array:

 char_ptr[index] = ‘a’; //or

 cin.get(char_ptr,21,’\n’);

 Allocating Arrays

 The only difference is when we are finally

done with the array,

 we must deallocate the memory:

delete [] char_ptr;

not-your-memory
char_ptr

It is best, after doing this to say: char_ptr = NULL;

 Allocating Arrays

 One of the common errors we get

 once allocating memory dynamically

 is a segmentation fault

 it means you have accessed memory that is
not yours,

 you have dereferenced the null pointer,

 you have stepped outside the array bounds,

 or you are accessing memory that has already
been deallocated

 In Review

 On the board, let’s walk through examples

of the following:

 allocating an array of integers dynamically

 deallocating that array

 writing a loop to set the values

 now, allocate an array of video-structures

dynamically

 Show how you’d access the 3rd title

 Pointer Arithmetic

 When we use the subscript operator,

 pointer arithmetic is really happening

 this means the following are equivalent:

 ptr1[3] == *(ptr1+3)

 This means the subscript operator adds the

value of the index to the starting address and

then dereferences the quantity!!!

 For Next Time

 Next time we will discuss:

 more about pointers

 integrating pointers and classes

