
Programming techniques

Week 3 – Topic 2

Pointers and Dynamic Memory (cont)

2/2014

Agenda

 Review

 Dynamically allocating structures

 Combining the notion of classes and

pointers

 Destructors

Review of Pointers

 What is a pointer?

 How would you define a pointer variable,
that can point to a float?

 Would this change if you wanted the
pointer to reference an array of floats?

 Show how to dynamically allocate an array
of 20 floats

 Show two ways of accessing element 19

Review of Pointers

 What operator allocates memory

dynamically?

 What does it really mean to allocate

memory? Does it have a name?

 Why is it important to subsequently

deallocate that memory?

 What operator deallocates memory?

Dynamic Structures

 Let’s take these notions and apply them to

dynamically allocated structures

 What if we had a video structure, how

could the client allocate a video

dynamically?

video *ptr = new video;

 Then, how would we access the title?

*ptr.title ? Nope! WRONG

Dynamic Structures

 To access a member of a struct, we need to

realize that there is a “precedence” problem.

 Both the dereference (*) and the member access

operator (.) have the same operator

precedence....and they associate from right to left

 So, parens are required:

(*ptr).title Correct (but ugly)

Dynamic Structures

 A short cut (luckily) cleans this up:

(*ptr).title Correct (but ugly)

Can be replaced by using the indirect member

access operator (->) ... it is the dash followed

by the greater than sign:

ptr->title Great!

Dynamic Structures

 Now, to allocate an array of structures

dynamically:

video *ptr;

ptr = new video[some_size];

 In this case, how would we access the first

video’s title?

ptr[0].title

 Notice that the -> operator would be incorrect in this case

because ptr[0] is not a pointer variable. Instead, it is simply a

video object. ptr is a pointer to the first element of an array

of video objects

Dynamic Structures

 What this tells us is that the -> operator

expects a pointer variable as the first

operand.

 In this case, ptr[0] is not a pointer, but rather

an instance of a video structure. Just one of

the elements of the array!

 the . operator expects an object as the first

operand...which is why it is used in this case!

Dynamic Structures

 Ok, what about passing pointers to

functions?

 Pass by value and pass by reference

apply.

 Passing a pointer by value makes a copy of

the pointer variable (i.e., a copy of the

address).

 Passing a pointer by reference places an

address of the pointer variable on the program

stack.

Dynamic Structures

 Passing a pointer by value:
 video *ptr = new video;

 display(ptr);

 void display(video * p) {

 cout << p->title <<endl;

}

p is a pointer to a video object,

passed by value. So, p is a local

variable with an initial value of the

address of a video object

Dynamic Structures

 Here is the pointer diagram for the previous

example:

dynamic video
object

ptr

main function

p

display function

Dynamic Structures

 Passing a pointer by reference allows us to
modify the calling routine’s pointer variable
(not just the memory it references):

video *ptr; set(ptr); cout << ptr->title;

void set(video * & p) {

 p = new video;

 cin.get(p->title,100,’\n’);

 cin.ignore(100,’\n’);

}

The order of the *
and & is critical!

Dynamic Structures

 But, what if we didn’t want to waste memory for

the title (100 characters may be way too big (Big,

with Tom Hanks)

 So, let’s change our video structure to include a

dynamically allocated array:

struct video {

char * title;

char category[5];

int quantity;

};

Dynamic Structures

 Rewriting the set function to take advantage of

this:

video *ptr; set(ptr);

void set(video * & p) {

 char temp[100];

 cin.get(temp,100,’\n’);

 cin.ignore(100,’\n’);

 p = new video;

 p->title = new char[strlen(temp)+1];

 strcpy(p->title,temp); }

watch out for where
the +1 is placed!

Dynamic Structures

 But, what about that list of videos

discussed earlier this term?

 Let’s write a class that now allocates this

list of videos dynamically, at run time

 This way, we can wait until we run our

program to find out how much memory

should be allocated for our video array

Dynamic Structures

 What changes in this case are the data
members:
class list {

 public:

 list();

 int add (const video &);

 int remove (char title[]);

 int display_all();

 private:

 video *my_list;

 int video_list_size;

 int num_of_videos;

};

Replace the array
with these

Default Constructor

 Now, let’s think about the implementation.

 First, what should the constructor do?

 initialize the data members

list::list() {

 my_list = NULL;

 video_list_size = 0;

 num_of_videos = 0;

}

Another Constructor

 Remember function overloading? We can
have the same named function occur (in
the same scope) if the argument lists are
unique.

 So, we can have another constructor take
in a value as an argument of the number of
videos

 and go ahead and allocate the memory, so
that subsequent functions can use the array

2nd Constructor

list::list(int size) {

 my_list = new video [size];

 video_list_size = size;

 num_of_videos = 0;

}

Notice, unlike arrays of characters, we don’t need

to add one for the terminating nul!

Clients creating objs

 The client can cause this 2nd constructor to
be invoked by defining objects with initial
values

list fun_videos(20); //size is 20

If a size isn’t supplied, then no memory is
allocated and nothing can be stored in the
array....

Default Arguments

 To fix this problem, we can merge the two

constructors and replace them with a single

constructor:

list::list(int size=100) {

 my_list = new video [size];

 video_list_size = size;

 num_of_videos = 0;

}

(Remember, to change the prototype for the

constructor in the class interface)

Destructor

 Then, we can deallocate the memory when

the lifetime of a list object is over

 When is that?

 Luckily, when the client’s object of the list

class lifetime is over (at the end of the

block in which it is defined) -- the

destructor is implicitly invoked

Destructor

 So, all we have to do is write a destructor to

deallocate our dynamic memory.
list::~list() {

 delete [] my_list;

 my_list = NULL;

 •••

}

(Notice the ~ in front of the function name)

(It can take NO arguments and has NO return type)

(This too must be in the class interface....)

