Programming techniques

Week 3 — Topic 2
Pointers and Dynamic Memory (cont)

2/2014

Agenda

Review
Dynamically allocating structures

Combining the notion of classes and
pointers

Destructors

Review of Pointers

What is a pointer?

How would you define a pointer variable,
that can point to a float?

Would this change If you wanted the
pointer to reference an array of floats?

Show how to dynamically allocate an array
of 20 floats

Show two ways of accessing element 19

Review of Pointers

What operator allocates memory
dynamically?

What does it really mean to allocate
memory? Does it have a name?

Why Is it important to subsequently
deallocate that memory?

What operator deallocates memory?

Dynamic Structures

Let’'s take these notions and apply them to
dynamically allocated structures

What if we had a video structure, how
could the client allocate a video
dynamically?

video *ptr = new video;

Then, how would we access the title?
*ptr.title ? Nope! WRONG

Dynamic Structures

To access a member of a struct, we need to
realize that there is a “precedence” problem.

Both the dereference (*) and the member access
operator (.) have the same operator
precedence....and they associate from right to left

So, parens are required:
(*ptr) .title Correct (but ugly)

Dynamic Structures

A short cut (luckily) cleans this up:
(*ptr) .title Correct (but ugly)

Can be replaced by using the indirect member
access operator (->) ... it is the dash followed
by the greater than sign:

ptr->title Great!

Dynamic Structures

Now, to allocate an array of structures
dynamically:
video *ptr;

ptr = new video[some size];

In this case, how would we access the first
video’s title?
ptr[0].title

Notice that the -> operator would be incorrect in this case
because ptr[0] is not a pointer variable. Instead, it is simply a
video object. ptr is a pointer to the first element of an array
of video objects

Dynamic Structures

What this tells us Is that the -> operator
expects a pointer variable as the first
operand.

B In this case, ptr[0] is not a pointer, but rather
an instance of a video structure. Just one of
the elements of the array!

B the . operator expects an object as the first
operand...which is why It Is used In this case!

Dynamic Structures

Ok, what about passing pointers to
functions?

Pass by value and pass by reference
apply.

B Passing a pointer by value makes a copy of
the pointer variable (i.e., a copy of the
address).

B Passing a pointer by reference places an
address of the pointer variable on the program
stack.

Dynamic Structures

Passing a pointer by value:
video *ptr = new video;

display(ptr);

void display(video * p) {
cout << p->title <<endl\

} p is a pointer to a video object,
passed by value. So, p is a local
variable with an initial value of the
address of a video object

Dynamic Structures

Here Is the pointer diagram for the previous
example:

ptr P
dynamic video
object

main function display function

Dynamic Structures

Passing a pointer by reference allows us to
modify the calling routine’s pointer variable
(not just the memory it references):

video *ptr; set(ptr); cout << ptr->title;

void set (video * & p) < The order of the *
p = new video; and & is critical!
cin.get (p->title, 100, \n’);
cin.ignore (100, ’\n’);

Dynamic Structures

But, what if we didn’t want to waste memory for
the title (100 characters may be way too big (Big,
with Tom Hanks)

So, let’'s change our video structure to include a
dynamically allocated array:
struct wvideo {
char * title;

char category[5];

int gquantity;
I

Dynamic Structures

this:
video *ptr; set (ptr) ;

Rewriting the set function to take advantage of

void set(video * & P) { watch out for where
char temp[100]; the +1 is placed!

cin.get (temp, 100, "\n’");
cin.ignore (100,’\n’);

p = new video;

p->title = new char[strlen(temp)+1];

strcpy (p->title, temp); }

Dynamic Structures

But, what about that list of videos
discussed earlier this term?

Let’'s write a class that now allocates this
list of videos dynamically, at run time

This way, we can wait until we run our
program to find out how much memory
should be allocated for our video array

Dynamic Structures

What changes in this case are the data
members:

class list {

public:
list (),
int add (const video &);
int remove (char titlel]);
int display all();

e B Replace the array
video *my list; */7 with these
int video list size;
int num of videos;

Default Constructor

Now, let’s think about the implementation.

First, what should the constructor do?

B initialize the data members

list::list () {
my list = NULL;
video list size 0;

num of videos = 0;

Another Constructor

Remember function overloading? We can
have the same named function occur (in
the same scope) Iif the argument lists are
unique.

So, we can have another constructor take
In a value as an argument of the number of
videos

B and go ahead and allocate the memory, so
that subsequent functions can use the array

2nd Constructor

list::1list(int size) {

my list = new video [size];
video list size = size;
num of videos = 0;

Notice, unlike arrays of characters, we don’t need
to add one for the terminating nul!

Clients creating objs

The client can cause this 2"9 constructor to
be invoked by defining objects with initial
values

list fun videos (20); //size is 20

If a size isn’t supplied, then no memory is
allocated and nothing can be stored in the
array....

Default Arguments

To fix this problem, we can merge the two
constructors and replace them with a single
constructor:

list::1list(int size=100) {

my list = new video [size];
video_list_size = size;
num_of_videos = 0;

}

(Remember, to change the prototype for the
constructor in the class 1nterface)

Destructor

Then, we can deallocate the memory when
the lifetime of a list object is over

When iIs that?

Luckily, when the client’s object of the list
class lifetime is over (at the end of the
block in which it is defined) -- the
destructor Is implicitly invoked

Destructor

So, all we have to do iIs write a destructor to

deallocate our dynamic memory.
list::~1ist () {
delete [] my list;
my list = NULL;

}

(Notice the ~ in front of the function name)
(It can take NO arguments and has NO return type)

(This too must be in the class interface....)

