
Programming techniques

Week 3 – Topic 2

Pointers and Dynamic Memory (cont)

2/2014

Agenda

 Review

 Dynamically allocating structures

 Combining the notion of classes and

pointers

 Destructors

Review of Pointers

 What is a pointer?

 How would you define a pointer variable,
that can point to a float?

 Would this change if you wanted the
pointer to reference an array of floats?

 Show how to dynamically allocate an array
of 20 floats

 Show two ways of accessing element 19

Review of Pointers

 What operator allocates memory

dynamically?

 What does it really mean to allocate

memory? Does it have a name?

 Why is it important to subsequently

deallocate that memory?

 What operator deallocates memory?

Dynamic Structures

 Let’s take these notions and apply them to

dynamically allocated structures

 What if we had a video structure, how

could the client allocate a video

dynamically?

video *ptr = new video;

 Then, how would we access the title?

*ptr.title ? Nope! WRONG

Dynamic Structures

 To access a member of a struct, we need to

realize that there is a “precedence” problem.

 Both the dereference (*) and the member access

operator (.) have the same operator

precedence....and they associate from right to left

 So, parens are required:

(*ptr).title Correct (but ugly)

Dynamic Structures

 A short cut (luckily) cleans this up:

(*ptr).title Correct (but ugly)

Can be replaced by using the indirect member

access operator (->) ... it is the dash followed

by the greater than sign:

ptr->title Great!

Dynamic Structures

 Now, to allocate an array of structures

dynamically:

video *ptr;

ptr = new video[some_size];

 In this case, how would we access the first

video’s title?

ptr[0].title

 Notice that the -> operator would be incorrect in this case

because ptr[0] is not a pointer variable. Instead, it is simply a

video object. ptr is a pointer to the first element of an array

of video objects

Dynamic Structures

 What this tells us is that the -> operator

expects a pointer variable as the first

operand.

 In this case, ptr[0] is not a pointer, but rather

an instance of a video structure. Just one of

the elements of the array!

 the . operator expects an object as the first

operand...which is why it is used in this case!

Dynamic Structures

 Ok, what about passing pointers to

functions?

 Pass by value and pass by reference

apply.

 Passing a pointer by value makes a copy of

the pointer variable (i.e., a copy of the

address).

 Passing a pointer by reference places an

address of the pointer variable on the program

stack.

Dynamic Structures

 Passing a pointer by value:
 video *ptr = new video;

 display(ptr);

 void display(video * p) {

 cout << p->title <<endl;

}

p is a pointer to a video object,

passed by value. So, p is a local

variable with an initial value of the

address of a video object

Dynamic Structures

 Here is the pointer diagram for the previous

example:

dynamic video
object

ptr

main function

p

display function

Dynamic Structures

 Passing a pointer by reference allows us to
modify the calling routine’s pointer variable
(not just the memory it references):

video *ptr; set(ptr); cout << ptr->title;

void set(video * & p) {

 p = new video;

 cin.get(p->title,100,’\n’);

 cin.ignore(100,’\n’);

}

The order of the *
and & is critical!

Dynamic Structures

 But, what if we didn’t want to waste memory for

the title (100 characters may be way too big (Big,

with Tom Hanks)

 So, let’s change our video structure to include a

dynamically allocated array:

struct video {

char * title;

char category[5];

int quantity;

};

Dynamic Structures

 Rewriting the set function to take advantage of

this:

video *ptr; set(ptr);

void set(video * & p) {

 char temp[100];

 cin.get(temp,100,’\n’);

 cin.ignore(100,’\n’);

 p = new video;

 p->title = new char[strlen(temp)+1];

 strcpy(p->title,temp); }

watch out for where
the +1 is placed!

Dynamic Structures

 But, what about that list of videos

discussed earlier this term?

 Let’s write a class that now allocates this

list of videos dynamically, at run time

 This way, we can wait until we run our

program to find out how much memory

should be allocated for our video array

Dynamic Structures

 What changes in this case are the data
members:
class list {

 public:

 list();

 int add (const video &);

 int remove (char title[]);

 int display_all();

 private:

 video *my_list;

 int video_list_size;

 int num_of_videos;

};

Replace the array
with these

Default Constructor

 Now, let’s think about the implementation.

 First, what should the constructor do?

 initialize the data members

list::list() {

 my_list = NULL;

 video_list_size = 0;

 num_of_videos = 0;

}

Another Constructor

 Remember function overloading? We can
have the same named function occur (in
the same scope) if the argument lists are
unique.

 So, we can have another constructor take
in a value as an argument of the number of
videos

 and go ahead and allocate the memory, so
that subsequent functions can use the array

2nd Constructor

list::list(int size) {

 my_list = new video [size];

 video_list_size = size;

 num_of_videos = 0;

}

Notice, unlike arrays of characters, we don’t need

to add one for the terminating nul!

Clients creating objs

 The client can cause this 2nd constructor to
be invoked by defining objects with initial
values

list fun_videos(20); //size is 20

If a size isn’t supplied, then no memory is
allocated and nothing can be stored in the
array....

Default Arguments

 To fix this problem, we can merge the two

constructors and replace them with a single

constructor:

list::list(int size=100) {

 my_list = new video [size];

 video_list_size = size;

 num_of_videos = 0;

}

(Remember, to change the prototype for the

constructor in the class interface)

Destructor

 Then, we can deallocate the memory when

the lifetime of a list object is over

 When is that?

 Luckily, when the client’s object of the list

class lifetime is over (at the end of the

block in which it is defined) -- the

destructor is implicitly invoked

Destructor

 So, all we have to do is write a destructor to

deallocate our dynamic memory.
list::~list() {

 delete [] my_list;

 my_list = NULL;

 •••

}

(Notice the ~ in front of the function name)

(It can take NO arguments and has NO return type)

(This too must be in the class interface....)

