
Programming techniques

Topic 6 – Recursion

3/2015

Agenda

 The Nature of Recursion

 Tracing a Recursive Function

 Work through Examples of Recursion

Recursion

 Recursion is repetition (by self-reference)

 it is caused when a function calls/invokes itself.

 Such a process will repeat forever unless

terminated by some control structure.

Recursion

 So far, we have learned about control

structures that allow C++ to iterate a set of

statements a number of times.

 In addition to iteration, C++ can repeat an

action by having a function call itself.

 This is called recursion. In some cases it is

more suitable than iteration.

Recursion

 While recursion is very powerful

 and will allow us to at times simply solve

complex problems

 it should not be used if iteration can be used to

solve the problem in a maintainable way (i.e., if

it isn’t too difficult to solve using iteration)

 so, think about the problem. Can loops do the

trick instead of recursion?

Recursion

 Why select iteration versus recursion?

 Efficiency!

 Every time we call a function a stack frame is
pushed onto the program stack and a jump is
made to the corresponding function

 This is done in addition to evaluating a control
structure (such as the conditional expression for an
if statement) to determine when to stop the
recursive calls.

 With iteration all we need is to check the control
structure (such as the conditional expression for
the while, do-while, or for)

Recursion

 Let's look at a very simple example;

 in this case we can see that by using recursion

we can make some difficult problems very

trivial...

 many of these problems would be very difficult

to solve if you only were able to use iteration.

 trace through the following problem in

class...showing how the stack frame works

Recursion

 What is the purpose of the following?
 void strange(void);

 int main(){

 cout <<"Please enter a string" <<endl;

 strange();

 cout <<endl;

 return 0;

 }

 void strange(void) {

 char ch;

 cin.get(ch);

 if (!cin.eof() && ch != '\n'){

 strange();

 cout << ch;

 }

 }

Recursion

 This program writes the reverse of what was

entered at the keyboard, no matter how many

characters were entered!

 Try to write an equally simple program just using the

iterative statements we know about; it would be difficult

to make it behave the same without limiting the number

of characters that can be entered or using up a lot of

memory with a huge array of characters!

 Notice, with recursion, we didn't have to even use an

array!!

Recursion

 What happens to this “power” if we had

swapped the cout statement with the

recursive call in the previous example?

 It would have simply read and echoed what

was typed in.

 Recursion would be overkill; iteration should be

used instead.

Recursion

 When a recursive call is encountered, execution of the

current function is temporarily stopped.

 This is because the result of the recursive call must be

known before it can proceed.

 So, it saves all of the information it needs in order to

continue executing that function later (i.e., all current

values of all local variables and the location where it

stopped).

 Then, when the recursive call is completed, the

computer returns and completes execution of the

function.

Recursion

 In order for your recursive calls to be useful, they must

be designed so that your program will ultimately

terminate.

 As with iteration or looping, there is danger of creating

a recursive function that is an infinite loop!

 We need to be careful to prevent infinite repetition.

 Therefore, when designing a recursive function

 one of the first steps should be to determine what the

stopping condition should be

Recursion

 The best way to do this is to use

 an if statement to determine if a recursive call

should be made -- depending on the value of some

conditional expression.

 Eventually, every recursive set of calls should

reach a point that does not require recursion (i.e.,

this will stop recursion).

 Recursion should not be used if it makes your

algorithm harder to understand or if it results in

excessive demands on storage or execution time.

Recursion

 Therefore, there are 3 requirements when using recursion:

 Every recursive function must contain a control structure

that prevents further recursion when a certain state is

reached.

 That state must be able to be reached each time you run

the program.

 When that state is reached, the function must have

completed its computation and (if the function returns a

value) return the appropriate value for each recursive call.

don’t forget to have the function “use” the returned value...if

there is one!

Recursion

 In class, walk through the following:

int factorial(int n)

 {

 if (n < 2)

 return 1;

 else

 return (n * factorial(n-1));

 }

Recursion

 In class, walk through the following:

int factorial(int n)

 {

 if (n < 2)

 return 1;

 else

 return (n * factorial(n-1));

 }

 Compare and contrast with the iterative version.
Which is better? Why?

Recursion

 If you request nesting or recursion that goes

beyond what your system can handle...you

will get an error when you try to execute your

program...such as "stack overflow".

 This simply means that you've tried to make

too many function calls - recursively.

 If you get this error, one clue would be to

look to see if you have infinite recursion.

 This situation will cause you to exceed the size of

your stack -- no matter how large your stack is!

Examples of Recursion

 Two meaningful examples of recursion are the

 towers of hanoi problem

 binary search

 Let’s discuss each of these and examine:

 the process they go thru

 see how recursion helps solve the problem

 look at the implementation details (of the binary

search)

 discuss the benefits and drawbacks of recursion

for these algorithms

For Next Time

 Practice Recursion

 Do the following:

 Rewrite the insert and remove functions with

linked lists using recursion (just for practice...)

 try to add to the end recursively

 try to remove in the middle recursively

