
Programming techniques

Week 7 - Recursion (cont)

3/2015

dbtien – Introduction to CS II

Agenda

 Problem solving with recursion

 Work through examples to get used to the

recursive process

dbtien – Introduction to CS II

Using Recursion

 Today we will walk through examples solving

problems with recursion

 To get used to this process

 we will select simple problems that in reality should be

solved using iteration and not recursion

 but, it should give you an understanding of how to

design using recursion

 which we will need to understand for CS163

dbtien – Introduction to CS II

Example #1

 First, let’s display the contents of a linear

linked list, recursively

 obviously this is should be done iteratively!

 but, as an exercise determine what the stopping

condition should be first:

 when the head pointer is NULL

 what should be done when this condition is

reached? return

 what should be done otherwise? display and call

the function recursively

dbtien – Introduction to CS II

Example #1

 If we were to do this iteratively:
void display(node * head) {

 while (head) {

 cout <<head->data->title <<endl;

 head = head->next;

 }

}

 Why is it ok in this case to change head?

 Look at the stopping condition

 with recursion we will replace the while with an
if....and replace the traversal with a function call

dbtien – Introduction to CS II

Example #1

 If we were to do this recursively:
void display(node * head) {

 if (head) {

 cout <<head->data->title <<endl;

 display(head->next);

 }

}

 Now, change this to display the list
backwards (recursively)

 Discuss the code you’d need to do
THAT recursively....

dbtien – Introduction to CS II

Example #2

 Next, let’s insert at the end of a linear linked

list, recursively

 again this is should be done iteratively!

 but, as an exercise determine what the stopping

condition should be first:

 when the head pointer is NULL

 what should be done when this condition is

reached? allocate memory and save the data

 what should be done otherwise? call the function

recursively with the next ptr

dbtien – Introduction to CS II

Example #2

 If we were to do this iteratively:
void append(node * & head, const video & d) {

 if (!head) {

 head = new node;

 head->data = ••• //save the data

 head->next = NULL;

 } else {

 node * current = head;

 while (current->next) {

 current = current->next;

 }

 current->next = new node;

 current = current->next;

 current->data = ••• //save the data

 current->next = NULL;

 }

}

dbtien – Introduction to CS II

Example #2

 If we were to do this recursively:

void append(node * & head, const video & d) {

 if (!head) {

 head = new node;

 head->data = ••• //save the data

 head->next = NULL;

 } else

 append(head->next, d);

}

dbtien – Introduction to CS II

Example #2

 Notice this is much shorter (but less efficient)

 Notice the stopping condition (!head)

 Examine how the pass by reference can be

used to implicitly connect up the nodes

 Walk thru an example of invoking this

function

dbtien – Introduction to CS II

Example #2

 This can also be done recursively by using the returned
value (rather than call by reference):
node * append(node * head, const video & d) {

 if (!head) {

 head = new node;

 head->data = ••• //save the data

 head->next = NULL;

 } else

 head ->next = append(head->next,d);

 return head;

}

 Notice the function call must use the returned value

 Here, we are explicitly connecting up the nodes

 Walk thru an example of invoking this function

dbtien – Introduction to CS II

Example #3

 Next, let’s remove an item from a linear linked list,

recursively

 again this is should be done iteratively!

 but, as an exercise determine what the stopping

condition should be first:

 when the head pointer is NULL

 when a match (the item to be removed) is found

 what should be done when this condition is reached?

deallocate memory

 what should be done otherwise? call the function

recursively with the next ptr

dbtien – Introduction to CS II

Example #3

 If we were to do this recursively:
int remove(node * & head, const video & d) {

 if (!head) return 0; //match not found!

 if (strcmp(head->data->title, d->title)==0)
{

 delete [] head->data->title;

 delete head->data;

 delete head;

 head = NULL;

 return 1;

 } return remove(head->next,d);

}

 Does this reconnect the nodes?

 How does it handle the special cases of a) empty list, b)
deleting the first item, c) deleting elsewhere

dbtien – Introduction to CS II

More Examples

 Now in class, let’s design and implement

the following recursively

 count the number of items in a linear linked list

 delete all nodes in a linear linked list

 Why would recursion not be the proper

solution for push, pop, enqueue, dequeue?

dbtien – Introduction to CS II

More Examples

 What is the output for the following
program fragment? called: f(5)

 int f(int n) {

 cout <<n <<endl;

 if (n == 0) return 4;

 else if (n == 1) return 2;

 else if (n == 2) return 3;

 n=f(n-2) * f(n-4);

 cout <<n <<endl;

 return n;

 }

dbtien – Introduction to CS II

More Examples

 What is the output of the following program or

write INFINITE if there are indefinite recursive

calls? called:

cout << watch(-7)

int watch(int n) {

 if (n > 0)

 return n;

 cout <<n <<endl;

 return watch(n+2)*2;

}

dbtien – Introduction to CS II

For Next Time

 Practice Recursion

 Do the following:

 Make a copy of a linear linked list, recursively

 Merge two sorted linear linked lists, keeping

the result sorted, recursively

