
Programming techniques

Week 7 - Recursion (cont)

3/2015

dbtien – Introduction to CS II

Agenda

 Problem solving with recursion

 Work through examples to get used to the

recursive process

dbtien – Introduction to CS II

Using Recursion

 Today we will walk through examples solving

problems with recursion

 To get used to this process

 we will select simple problems that in reality should be

solved using iteration and not recursion

 but, it should give you an understanding of how to

design using recursion

 which we will need to understand for CS163

dbtien – Introduction to CS II

Example #1

 First, let’s display the contents of a linear

linked list, recursively

 obviously this is should be done iteratively!

 but, as an exercise determine what the stopping

condition should be first:

 when the head pointer is NULL

 what should be done when this condition is

reached? return

 what should be done otherwise? display and call

the function recursively

dbtien – Introduction to CS II

Example #1

 If we were to do this iteratively:
void display(node * head) {

 while (head) {

 cout <<head->data->title <<endl;

 head = head->next;

 }

}

 Why is it ok in this case to change head?

 Look at the stopping condition

 with recursion we will replace the while with an
if....and replace the traversal with a function call

dbtien – Introduction to CS II

Example #1

 If we were to do this recursively:
void display(node * head) {

 if (head) {

 cout <<head->data->title <<endl;

 display(head->next);

 }

}

 Now, change this to display the list
backwards (recursively)

 Discuss the code you’d need to do
THAT recursively....

dbtien – Introduction to CS II

Example #2

 Next, let’s insert at the end of a linear linked

list, recursively

 again this is should be done iteratively!

 but, as an exercise determine what the stopping

condition should be first:

 when the head pointer is NULL

 what should be done when this condition is

reached? allocate memory and save the data

 what should be done otherwise? call the function

recursively with the next ptr

dbtien – Introduction to CS II

Example #2

 If we were to do this iteratively:
void append(node * & head, const video & d) {

 if (!head) {

 head = new node;

 head->data = ••• //save the data

 head->next = NULL;

 } else {

 node * current = head;

 while (current->next) {

 current = current->next;

 }

 current->next = new node;

 current = current->next;

 current->data = ••• //save the data

 current->next = NULL;

 }

}

dbtien – Introduction to CS II

Example #2

 If we were to do this recursively:

void append(node * & head, const video & d) {

 if (!head) {

 head = new node;

 head->data = ••• //save the data

 head->next = NULL;

 } else

 append(head->next, d);

}

dbtien – Introduction to CS II

Example #2

 Notice this is much shorter (but less efficient)

 Notice the stopping condition (!head)

 Examine how the pass by reference can be

used to implicitly connect up the nodes

 Walk thru an example of invoking this

function

dbtien – Introduction to CS II

Example #2

 This can also be done recursively by using the returned
value (rather than call by reference):
node * append(node * head, const video & d) {

 if (!head) {

 head = new node;

 head->data = ••• //save the data

 head->next = NULL;

 } else

 head ->next = append(head->next,d);

 return head;

}

 Notice the function call must use the returned value

 Here, we are explicitly connecting up the nodes

 Walk thru an example of invoking this function

dbtien – Introduction to CS II

Example #3

 Next, let’s remove an item from a linear linked list,

recursively

 again this is should be done iteratively!

 but, as an exercise determine what the stopping

condition should be first:

 when the head pointer is NULL

 when a match (the item to be removed) is found

 what should be done when this condition is reached?

deallocate memory

 what should be done otherwise? call the function

recursively with the next ptr

dbtien – Introduction to CS II

Example #3

 If we were to do this recursively:
int remove(node * & head, const video & d) {

 if (!head) return 0; //match not found!

 if (strcmp(head->data->title, d->title)==0)
{

 delete [] head->data->title;

 delete head->data;

 delete head;

 head = NULL;

 return 1;

 } return remove(head->next,d);

}

 Does this reconnect the nodes?

 How does it handle the special cases of a) empty list, b)
deleting the first item, c) deleting elsewhere

dbtien – Introduction to CS II

More Examples

 Now in class, let’s design and implement

the following recursively

 count the number of items in a linear linked list

 delete all nodes in a linear linked list

 Why would recursion not be the proper

solution for push, pop, enqueue, dequeue?

dbtien – Introduction to CS II

More Examples

 What is the output for the following
program fragment? called: f(5)

 int f(int n) {

 cout <<n <<endl;

 if (n == 0) return 4;

 else if (n == 1) return 2;

 else if (n == 2) return 3;

 n=f(n-2) * f(n-4);

 cout <<n <<endl;

 return n;

 }

dbtien – Introduction to CS II

More Examples

 What is the output of the following program or

write INFINITE if there are indefinite recursive

calls? called:

cout << watch(-7)

int watch(int n) {

 if (n > 0)

 return n;

 cout <<n <<endl;

 return watch(n+2)*2;

}

dbtien – Introduction to CS II

For Next Time

 Practice Recursion

 Do the following:

 Make a copy of a linear linked list, recursively

 Merge two sorted linear linked lists, keeping

the result sorted, recursively

