Programming techniques

Week 7 - Recursion (cont)

3/2015

Agenda

Problem solving with recursion

Work through examples to get used to the
recursive process

dbtien - Introduction to CS II

Using Recursion

Today we will walk through examples solving
problems with recursion

To get used to this process

B we will select simple problems that in reality should be
solved using iteration and not recursion

B Dbut, it should give you an understanding of how to
design using recursion

B which we will need to understand for CS163

dbtien - Introduction to CS II

Example #1

First, let’s display the contents of a linear
linked list, recursively
B obviously this is should be done iteratively!

B Dbut, as an exercise determine what the stopping
condition should be first:

1 when the head pointer is NULL

B what should be done when this condition is
reached? return

B what should be done otherwise? display and call
the function recursively

dbtien - Introduction to CS II

Example #1

If we were to do this iteratively:
vold display(node * head) {
while (head) {
cout <<head->data->title <<endl;
head = head->next;

}
Why Is it ok in this case to change head?

Look at the stopping condition

B with recursion we will replace the while with an
If....and replace the traversal with a function call

dbtien - Introduction to CS II

Example #1

If we were to do this recursively:

vold display(node * head) {

i1f (head) {
cout <<head->data->title <<endl;

display (head->next) ;

}
}

Now, change this to display the list
backwards (recursively)

Discuss the code you'd need to do
THAT recursively....

dbtien - Introduction to CS II

Example #2

Next, let’s insert at the end of a linear linked
list, recursively

B again this is should be done iteratively!

B Dbut, as an exercise determine what the stopping
condition should be first:

1 when the head pointer is NULL

B what should be done when this condition is
reached? allocate memory and save the data

B what should be done otherwise? call the function
recursively with the next ptr

dbtien - Introduction to CS II

Example #2

1 If we were to do this iteratively:
void append(node * & head, const video & d) {
1f ('head) {
head = new node;
head->data = e¢+ //save the data
head->next = NULL;

} else {
node * current = head;
while (current->next) {
current = current->next;
}
current->next = new node;
current = current->next;
current->data = *** //save the data

current—->next = NULL;

} dbtien - Introduction to CS II

Example #2

If we were to do this recursively:
void append(node * & head, const video & d) {
1f (lhead) {
head = new node;
head->data = +++ //save the data
head->next = NULL;
} else

append (head->next, d);

dbtien - Introduction to CS II

Example #2

Notice this is much shorter (but less efficient)

Notice the stopping condition ('head)

Examine how the pass by reference can be
used to implicitly connect up the nodes

Walk thru an example of invoking this
function

dbtien - Introduction to CS II

Example #2

[J This can also be done recursively by using the returned
value (rather than call by reference):
node * append(node * head, const video & d) {
if (lthead) {
head = new node;
head->data = e¢*¢ //save the data
head->next = NULL;

} else
head ->next = append(head->next,d);

return head;

}
[J Notice the function call must use the returned value

[0 Here, we are explicitly connecting up the nodes
[0 Walk thru an example of invoking this function

dbtien - Introduction to CS II

Example #3

Next, let’'s remove an item from a linear linked list,
recursively
B again this is should be done iteratively!

B Dbut, as an exercise determine what the stopping
condition should be first:

1 when the head pointer is NULL

[0 when a match (the item to be removed) is found

B what should be done when this condition is reached?
deallocate memory

B what should be done otherwise? call the function
recursively with the next ptr

dbtien - Introduction to CS II

Example #3

1 If we were to do this recursively:
int remove (node * & head, const video & d) {
if ('head) return 0; //match not found!
1f (strcmp(head->data->title, d->title)==0)
{
delete [] head->data->title;

delete head->data;
delete head;
head = NULL;
return 1;
} return remove (head->next,d):;

}
[1 Does this reconnect the nodes?

[How does it handle the special cases of a) empty list, b)
deleting the first item, c) deleting elsewhere

dbtien - Introduction to CS II

More Examples

Now in class, let’'s design and implement
the following recursively

B count the number of items In a linear linked list

B delete all nodes in a linear linked list

Why would recursion not be the proper
solution for push, pop, enqueue, dequeue?

dbtien - Introduction to CS II

More Examples

What is the output for the following
program fragment? called: £ (5)

int f£(int n) {
cout <<n <<Lendl;

if (n == 0) return 4;
else 1f (n == 1) return 2;
else if (n == 2) return 3;

n=f (n-2) * f£(n-4);
cout <<n <<Lendl;
return n;

dbtien - Introduction to CS II

More Examples

What Is the output of the following program or
write INFINITE if there are indefinite recursive
calls? called:

cout << watch(=7)

int watch(int n) {
if (n > 0)
return n;
cout <<n <<Kendl;

return watch(n+2) *2;

dbtien - Introduction to CS II

For Next Time

Practice Recursion

Do the following:
B Make a copy of a linear linked list, recursively

B Merge two sorted linear linked lists, keeping
the result sorted, recursively

dbtien - Introduction to CS II

