
Programming techniques

Week 8: Arrays with Structure Elements

4/2015

dbtien – Introduction to CS II

What is in today?

 Defining and using arrays of arrays

 Remember pointer arithmetic

dbtien – Introduction to CS II

Subscript Operator

 The subscript operator provides access to individual elements

of an array.

 The subscript operator is a binary operator.

 The first operand is an expression designating the address of

the first element of an array; this can be the array identifier, or

as we will see later, this can also be a pointer expression.

 The second operand is an integer expression contained within

the brackets designating the element of the array to be

accessed.

 The first element of an array always begins at index zero and

the last element of an array ends at the index that is one less

than the size of the array; thus, legal indices fall within the

range 0 through size-1.

dbtien – Introduction to CS II

Subscript Operator

//for some statically allocated array:

cout <<"address of array is " <<array << endl;

for(int i=0; i<size; ++i) //loop for i=0...6

 cout <<"array[" <<i <<"] equals " <<array[i] << endl;

 Each of the elements of the array sequentially follow one
another in memory.

 We can think of each element of an array as an unnamed
variable that we identify by using an index.

 The actual address of each element is computed by the
subscript operator and takes into the account the size of the
elements in the array.

 The index is independent of the actual address of each
element.

dbtien – Introduction to CS II

sizeof Operator

 The only other operator that can be directly applied to

arrays is the sizeof operator.

 The sizeof operator returns the number of characters

(bytes) that an array occupies.

 The number of elements in an array can be determined by

dividing the size of the array by the size of an element in

the array.

 cout <<"size of int array = "

 <<sizeof(array) <<endl;

cout <<"size of int = " <<sizeof(int) <<endl;

cout <<"number of elements in the array = "

 <<sizeof(array)/sizeof(array[0]) << endl;

dbtien – Introduction to CS II

Pointers and Arrays

 We can also use pointers to point to data that is

stored sequentially in memory.

 We can treat a pointer to data stored sequentially

in memory as an array.

 All operations on arrays have an equivalent

pointer representation.

 We can take advantage of this to improve our

programs' performance when operating on arrays.

dbtien – Introduction to CS II

Pointers and Arrays

 It is possible to define the behavior of the subscript

operator entirely in terms of operations on a pointer.

 The first thing we need to know is that the identifier of

an array is a constant pointer to the first element of

that array.

 It is a pointer to the same type as the elements of the

array.

 This means that we can initialize or assign an array

name to a pointer, where the pointer points to data of

the same type as the elements of our array.

dbtien – Introduction to CS II

Pointers and Arrays

int ai[7]; //ai is of type pointer to int

int* pi; //pi is a pointer to int

pi = ai; //pi now points to the array ai

 We now have two ways to access elements of an array,

one using the name of the array (ai) and the other using a

pointer (pi).

 In this example, the name of the array (ai) is a constant

pointer to an int.

 The pointer (pi) is a variable pointer to an int that has been

assigned the same address as ai.

dbtien – Introduction to CS II

Pointers and Arrays

 Since the value of ai has been assigned to pi, the

residual value of using either ai or pi in an expression

is the same in either case:

 it is the address of the first element of the array.

 When ai is used in an expression, that expression

uses the value that the constant ai represents.

 When pi is used in an expression, that expression

uses the value currently assigned to variable pi.

 We can apply the subscript operator to this residual

value (an expression of type pointer to an int) in order

to access the elements of the array.

dbtien – Introduction to CS II

Pointers and Arrays

int *pi; //pi is a pointer to an int

pi = ai; //same as pi = &a[0]

for(int i=0; i<7; i++)

 if(ai[i] != pi[i])

 cout <<"Oops - big trouble in River City"<<endl;

 The relationship between pointers and arrays is

defined by the following identity, where E1 is a pointer

(either an array name or a pointer expression) and E2

is an integer expression.

E1[E2] == *((E1)+(E2))

dbtien – Introduction to CS II

Pointers and Arrays

 ai[3] = 42; //this stores 42 w/array subscripting

 *(ai+3)=42; //same thing using pointer operations

 *(3+ai)=42; //addition is communitive

 3[ai] = 42; //this works!

 This identity means that the subscript operation is equivalent

to adding the index to the pointer expression and then

dereferencing the result.

 Understanding this identity allows us to decompose array

subscripting operations into pointer operations.

 Array and pointer operations can be the same, even though

the declarations for arrays and pointers are different.

dbtien – Introduction to CS II

Pointers and Arrays
 This identity means that the subscript operation is equivalent

to adding the index to the pointer expression and then

dereferencing the result.

 Understanding this identity allows us to decompose array

subscripting operations into pointer operations.

 Array and pointer operations can be the same, even though

the declarations for arrays and pointers are different.

 ai[3] = 42; //this stores 42 w/array subscripting

 *(ai+3)=42; //same thing using pointer operations

 *(3+ai)=42; //addition is communitive

 3[ai] = 42; //this works!

All of the above works as well if pi were used instead!

dbtien – Introduction to CS II

Pointers and Arrays

 We have seen that the name of an array can be

replaced with a pointer to the first element of the

array.

 The only difference is that the name of an array is a

constant and cannot be modified, whereas a pointer

can be defined as a variable and therefore can be

modified.

 The process of modifying a pointer variable is called

pointer arithmetic.

dbtien – Introduction to CS II

Pointer Arithmetic

 Walk through the following in class:
int a[10];
int* p=a; //initialize p to &a[0]
int* q=&a[2]; //initialize q to &a[2]
p = q; //assign q to p

p = &a[5]; //p points to the 6th element &a[5]
p+=3; //p now points to the 9th element &a[8]
p-=8; //p now points to the 1st element &a[0]

p = &a[5]; //p points to the 6th element &a[5]
++p; //p now points to the 7th element &a[6]
p++; //p now points to the 8th element &a[7]
p = p + 2; //p now points to the 10th element

&a[9]
--p; //p now points to the 9th element &a[8]
p--; //p now points to the 8th element &a[7]
p = p - 2; //p now points to the 6th element &a[5]

dbtien – Introduction to CS II

Pointer Arithmetic

 There are two key points in understanding pointer

arithmetic.

 The first is that pointer variables can be modified whereas

array names are constants and cannot be modified.

 The second is that pointer operations automatically take

into account the size of the data pointed to, just like array

subscripts do.

 This means that operations such as addition and

subtraction are independent of the size of the data.

 When we add one to a pointer of some type, we point to

the next element of that type.

dbtien – Introduction to CS II

Pointer Arithmetic
 Walk through the following in class:
int a[10];

int* p=a; //define and initialize p to &a[0]

p = p + 1; //add 1 to p; p==&a[1]

*p = *p + 1; //(*p)=(*p)+1; add 1 to a[1]

*p = *(p + 1); //copy a[2] to a[1]

p+=1; //add 1 to p; p==&a[2]

*p+=1; //(*p)+=1; add 1 to a[2]

*(p+=1); //add 1 to p; p==&a[3]

++p; //add 1 to p; p==&a[4]

++*p; //derefer p; add 1 to a[4]

*++p; //add 1 to p; p==&a[5]

p++; //add 1 to p; p==&a[6]

p++; //(p++); rvalue==6; add 1 to p; p==&a[7]

(*p)++; //dereference p; add 1 to a[7]

dbtien – Introduction to CS II

Arrays of Arrays

 Arrays can be formed from any type of data, even

other arrays!

 When each element is an array, we define an array of

arrays.

 With an array of arrays, each element is an array of

some type.

 Arrays of arrays are sometimes called

multidimensional arrays in C++.

 This is not strictly correct because each dimension

represents a different type, rather than each

dimension representing the same type.

dbtien – Introduction to CS II

Arrays of Arrays

 An array of arrays is defined just like an array of a

fundamental type, except that the identifier is

immediately followed by an additional pair of

brackets ([]).

 The size of each element's array, called a

subarray, is supplied within the second set of

brackets as a literal, constant, or constant

expression.

int array[3][2];

dbtien – Introduction to CS II

Arrays of Arrays

 To access elements of an array of arrays, we can use the

subscript operator. To access the appropriate subarray, we

follow the name of the array by an index in brackets. For

example, array[0] accesses the first subarray. The value of

this element is the first subarray of two integers. Its type is

an array of integers (a pointer to an int).

 To access elements within a subarray, we follow the name

of the array by the index of the subarray in brackets and

then follow that by the index of the element within the

subarray that we wish to access in brackets. For example,

array[0][0] accesses the first integer in the first subarray.

dbtien – Introduction to CS II

Arrays of Arrays

 The name of an array of arrays also represents a

pointer expression. By itself, it has a value equal to the

address of the first element of the array. The type is a

pointer to the first element of the array. For example, the

type of array is int (*)[2] (a pointer to an array of two

integers).

int array[3][2];

int (*p1)[2]; //define pointer of same type as array

p1 = array; //assign pointer to point to array

dbtien – Introduction to CS II

Array of Arrays
 Walk through the following in class:
int array[6][2];

int (*p1)[2]; //define pointer of same type as array

p1 = array; //assign pointer to point to array

int *p; //define ptr of same type as subarray

p = *p1; //assign ptr to point to 1st subarray

p = array[0]; //this also points to 1st subarray and

p = *(array+0); //so does this because of our identity

p = *array; //and so does this

 We can define and initialize a pointer to a subarray. The type

of a subarray is a pointer to an element of the subarray. By

defining a pointer of that type, we can use pointer arithmetic to

access the subarray.

dbtien – Introduction to CS II

Array of Arrays

 int a[3][2]={{0,1},{10,11},{20,21}};

a
a[0]
a[0][0]
a[0][1]
a[1]
a[1][0]
a[1][1]
a[2]
a[2][0]
a[2][1]

0 p1=a //int (*)[2]
 p1 //int
 **p1 //int
 p1+1 //int
*(*p1+1) //int
 p1+2 //int (*)[2]
 (p1+2) //int
 p=*(p1+2) //int*

 *p //int
 p+1 //int*

1

10

11

20

21

dbtien – Introduction to CS II

Arrays of Arrays

 If we were to print the value of the pointers p1 and p, their

values would be the same even though they are different

types.

 This is because the address of the first element of array is

at the same address as the first element in the first

subarray.

 However, when we add to or subtract from these two

pointers, the results are significantly different.

 By adding one to pointer p1, we point to the next subarray

of 2 integers.

 By adding one to pointer p, we point to the next int within

the first subarray.

