
Bài 07: Thiết kế bộ xử lý

Phạm Tuấn Sơn
ptson@fit.hcmus.edu.vn

mailto:ptson@fit.hcmus.edu.vn

Quan điểm về cấu tạo CPU

• William Stallings
– Registers
– ALU
– CU
– Internal bus
Mục tiêu: hiểu được cấu tạo và hoạt động của CPU

• Patterson & Hennessy
– Datapath
– Control
Mục tiêu: thiết kế CPU

2

Các bước thiết kế một CPU
1. Phân tích kiến trúc bộ lệnh (ISA)

⇒ các yêu cầu về datapath
– Trình bày từng lệnh dưới dạng register transfers language

(RTL) để thấy rõ ý nghĩa các các lệnh
– datapath phải có thành phần lưu trữ (bộ nhớ chính / cache)

cho các thanh ghi trong kiến trúc bộ lệnh
– datapath phải hỗ trợ thực thi tất cả các lệnh

2. Lựa chọn các khối mạch cần thiết để xây dựng
datapath

– Khối mạch tổ hợp
– Khối mạch tuần tự

3. Lắp ráp các khối mạch đáp ứng yêu cầu bộ lệnh
4. Phân tích mỗi lệnh để xác định các tín hiệu điều khiển

cần thiết
5. Thiết kế mạch cho các tín hiệu điều khiển

Vấn đề thiết kế datapath

• Vấn đề: xây dựng một khối datapath phức tạp để
xử lý một lệnh (nạp lệnh à thực thi lệnh à…)
sẽ khó khăn và không hiệu quả

• Giải pháp: chia nhỏ quá trình xử lý một lệnh
thành các công đoạn nhỏ (stages), xây dựng
khối xử lý cho từng công đoạn rồi lắp ráp thành
datapath
– Các công đoạn nhỏ dễ thiết kế
– Dễ thay đổi, tối ưu một công đoạn mà ít ảnh hưởng

tới các công đoạn khác

Thiết kế bộ xử lý MIPS thu gọn

• Bộ xử lý MIPS thu gọn gồm 9 lệnh
– add $1, $2, $3
– sub $1, $2, $3
– and $1, $2, $3
– or $1, $2, $3
– lw $1, 0($2)
– sw $1, 0($2)
– beq $1, $2, NHAN
– slt $1, $2, $3
– j NHAN

• Tại sao là 9 lệnh này ?
5

• Tất cả các lệnh MIPS đều dài 32 bit. Có 3 cấu trúc
– R-type

– I-type

– J-type

• Các trường
– op (“opcode”): mã thao tác của lệnh, xác định lệnh làm gì
– funct: kết hợp với op (nếu cần) để xác định lệnh làm gì
– rs, rt, rd: địa chỉ các thanh ghi nguồn và đích
– shamt: số bit dịch
– address / immediate: địa chỉ hoặc hằng số tính toán
– target address: địa chỉ cần nhảy tới

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt address/immediate
016212631

6 bits 16 bits5 bits5 bits

Nhắc lại: Các cấu trúc lệnh của MIPS

• add, sub, and, or, slt
– add rd,rs,rt
– sub rd,rs,rt
– and rd,rs,rt
– or rd,rs,rt
– slt rd,rs,rt

• lw, sw, beq
– lw rt,imm16(rs)
– sw rt,imm16(rs)
– beq rs,rt,imm16

• j
– j addr26

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Cấu trúc các lệnh trong CPU
MIPS thu gọn

op target address
02631

6 bits 26 bits

Các công đoạn lệnh (1/3)

• Công đoạn 1: Nạp lệnh (Instruction Fetch)
– Nạp lệnh 32 bit từ bộ nhớ tại địa chỉ trong thanh ghi PC

vào thanh ghi lệnh. Công đoạn này như nhau cho tất cả
các lệnh

– Sau đó, tăng PC để chuẩn bị nạp lệnh kế tiếp sau khi
xử lý xong lệnh này (PC = PC + 4)

• Công đoạn 2: Giải mã lệnh (Instruction Decode)
– Phân tích các trường trong lệnh

• Xác định opcode để biết loại lệnh và vị trí của các trường khác
• Sau đó, đọc các thanh ghi nguồn để chuẩn bị thực hiện công
đoạn tiếp theo
Ví dụ

– Lệnh add, đọc 2 thanh ghi nguồn
– Lệnh lw, đọc 1 thanh ghi nguồn

• Công đoạn 3: Tính toán (ALU – Arithmetic-Logic
Unit)
– Công việc chính của hầu hết các lệnh thực hiện tại

công đoạn này: tính toán số học (+, -), luận lý (&, |), so
sánh (beq,slt)

– Lệnh beq tính vị trí cần nhảy tới
– Còn lệnh lw và sw làm gì trong công đoạn này ?

• lw $t0, 40($t1)
• Địa chỉ của vùng nhớ cần truy xuất = giá trị của $t1 CỘNG 40
• Do đó, thực hiện phép cộng trong công đoạn này

Các công đoạn lệnh (2/3)

Các công đoạn lệnh (3/3)

• Công đoạn 4: Truy xuất bộ nhớ (Memory Access)
– Thực sự chỉ có lệnh lw và sw thực hiện công đoạn

lệnh này
– Do công việc truy xuất bộ nhớ mất thời gian tương đối

nhiều nên cần một công đoạn riêng
• Công đoạn 5: Ghi kết quả vào thanh ghi (Register

Write)
– Hầu hết các lệnh đều ghi kết quả tính toán vào một

thanh ghi như tính toán số học, luận lý, lw, slt
– Còn các lệnh sw, lệnh nhảy ?

• Không ghi kết quả gì vào thanh ghi
• Do đó, các lệnh này không làm gì tại công đoạn lệnh này

Tại sao lại 5 công đoạn ?

• Chỉ có lệnh lw thực hiện cả 5 công đoạn. Vậy
tại sao MIPS lại chia làm 5 công đoạn ?
– Đó là sự tổ hợp đầy đủ cho tất cả các thao tác cần

thiết của tất cả các lệnh
– Thời gian thực hiện mỗi công đoạn không quá chênh

lệch nhau
• Có thể có nhiều công đoạn lệnh hơn không ?

– Có, các kiến trúc khác như x86

Kỹ thuật thiết kế CPU 1 chu kỳ

• Thiết kế CPU 1 chu kỳ: Tất cả các công đoạn
của 1 lệnh được xử lý trong 1 chu kỳ đồng hồ
– Chu kỳ đồng hồ phải đủ lâu để có thể hoàn thành xử

lý mọi lệnh

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory 5. Reg.
Write

Lệnh Register Transfers

Nạp {op , rs , rt , rd , shamt , funct} ← MEM[PC]

lệnh {op , rs , rt , Imm16} ← MEM[PC]

add R[rd] ←R[rs] + R[rt]; PC ← PC + 4

sub R[rd] ←R[rs] – R[rt]; PC ← PC + 4

and R[rd] ←R[rs] & R[rt]; PC ← PC + 4

or R[rd] ←R[rs] | R[rt]; PC ← PC + 4

lw R[rt] ← MEM[R[rs] + sign_ext(imm16)]; PC ← PC + 4

sw MEM[R[rs] + sign_ext(imm16)] ←R[rt]; PC ← PC + 4

beq if (R[rs] == R[rt]) then PC ← PC + 4 + (sign_ext(imm16) << 2)
else PC ← PC + 4

slt if (R[rs] < R[rt]) then R[rd] ← 1; PC ← PC + 4

j PC = {PC[31:28],Addr26 << 2}

Bước 1: Biểu diễn các lệnh dưới dạng
RTL

Bước 1: Các khối mạch cần thiết

• Bộ nhớ (MEM)
– Lệnh + Dữ liệu

• Thanh ghi (32 x 32)
– Đọc RS
– Đọc RT
– Ghi RT / RD

• Thanh ghi PC (Program Counter)
• Sign Extender
• Đơn vị thực hiện các phép tính add/sub/and/or trên

các thanh ghi hoặc hằng số
• Đơn vị thực hiện (PC + 4)
• So sánh thanh ghi ? (lệnh beq,slt)

Bước 2: Các thành phần của datapath

• Các khối mạch tổ hợp
• Các khối lưu trữ

Các khối mạch tổ hợp

• Adder
Shift left 2

• MUX
Extender

• ALU

32

32

A

B
32 Sum

CarryOut

32

32

A

B
32 Result

OP

32A

B 32

Y32

Select

A
dder

M
U

X

A
L

U

CarryIn
E

xtender 3216
imm16

Shift
left 2

Khối lưu trữ: Bộ nhớ

• Bộ nhớ
– Một đường dữ liệu vào

• Data In

– Một đường dữ liệu ra
• Data Out

– Đường địa chỉ (address) để xác định từ nhớ nào
được truy xuất

– Tính hiệu Write Enable = 1: xác định dữ liệu có được
ghi vào bộ nhớ qua đường vào dữ liệu hay không

Data In

Write Enable

32 32
DataOut

Address

Khối lưu trữ: Thanh ghi

• Xây dựng dựa trên các mạch lật (như mạch lật D)
– N bit đầu vào (Data In)
– N bit đầu ra (Data Out)
– Tín hiệu Write Enable

• Giá trị 0: dữ liệu trong thanh ghi không thay đổi
• Giá trị 1: cho phép ghi dữ liệu từ Data In vào thanh ghi

• Tập thanh ghi gồm 32 thanh ghi
– 2 đường truyền dữ liệu ra 32 bit

busA và busB
– Một đường truyền dữ liệu vào busW

• Thanh ghi được lựa chọn như sau
– RA lựa chọn thanh ghi để đưa dữ liệu ra busA
– RB lựa chọn thanh ghi để đưa dữ liệu ra busB RB
– RW lựa chọn thanh ghi để ghi dữ liệu từ busW vào khi Write

Enable = 1

Data In

Write Enable

N N

Data Out

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

Bước 3 : Lắp ráp các khối mạch
thành datapath

a. Công đoạn 1: Nạp lệnh
b. Công đoạn 2: Giải mã lệnh
c. Công đoạn 3: Thực thi lệnh
d. Công đoạn 4: Truy xuất bộ nhớ
e. Công đoạn 5: Ghi kết quả vào thanh ghi

3a: Khối nạp lệnh

• Tất cả các lệnh đều thực hiện như nhau
– Nạp lệnh

• IR ← mem[PC]

– Cập nhật thanh ghi PC
• PC ← PC + 4
• Lệnh nhảy: PC ← “???”

32

Instruction WordAddress
Instruction

Memory

PC

4

32 32-bit
Registers

1

0

???

adder

3b: Khối giải mã lệnh

• Tất cả các lệnh đều thực hiện như nhau
– Giải mã lệnh sẽ xác định được các giá trị Ra, Rb, Rw

(tương ứng với các trường Rs, Rt, Rd), và các tín
hiệu điều khiển RegWr,…

RegWr

32
busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

• Các lệnh R-Format
add,sub,and,or,beq,slt
– R[rs] op R[rt]

32

ALUctr

32busA

32

busB
A

L
U

3c: Khối thực thi lệnh (1/2)

=

Equal

• Lệnh lw, sw
– Mem[R[rs] + SignExt[imm16]]

3c: Khối thực thi lệnh (2/2)

32

ALUctr

32busA

32

busB
E

xtender 3216
imm16

ALUSrc

0

1

A
L

U

=

Equal
adder

PC+4

Shift
left 2

PC

4

1

0

• Lệnh beq
– PC + 4 + (SignExt[imm16]] << 2)

adder

PCSrc

• Lệnh lw, sw
– Mem[R[rs] + SignExt[imm16]]

Ví dụ: lw rt,rs,imm16
– Mem[R[rs] + SignExt[imm16]] = R[rt]

Ví dụ: sw rt, rs, imm16

3d: Truy xuất bộ nhớ

32

ALUctr

32busA

32

busB
E

xtender 3216
imm16

ALUSrc

Data In
32

MemWr

0

1

A
L

U

WrEn Adr

Data
Memory

=

Equal

• Các lệnh add,sub,add,or,lw,slt
– R[rd] = R[rs] op R[rt]
– R[rt] = Mem[R[rs] + SignExt[imm16]]

32

ALUctr

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

RdRegDst

E
xtender 3216

imm16

ALUSrc

MemtoReg

Data In
32

MemWr01

0

1

A
L

U 0

1
WrEn Adr

Data
Memory

5

3f: Ghi kết quả vào thanh ghi

Sơ đồ datapath tổng quát

26

Bước 4+5: Thiết kế đơn vị điều khiển

27

Thiết kế đơn vị điều khiển chính
(1/2)

28

Thiết kế đơn vị điều khiển chính
(2/2)

29

Thiết kế đơn vị điều khiển ALU
(1/2)

30

Thiết kế đơn vị điều khiển ALU
(2/2)

31

Sơ đồ xử lý lệnh R-Format

32

Sơ đồ xử lý lệnh lw

33

Sơ đồ xử lý lệnh beq

34

Bổ sung lệnh j

35

Hạn chế của kỹ thuật thiết kế CPU
một chu kỳ

• Kỹ thuật thiết kế CPU 1 chu kỳ không còn được sử dụng
vì không hiệu quả
– Tất cả công đoạn của 1 lệnh phải xử lý trong một chu kỳ theo tín

hiệu đồng bộ nên các thành phần mạch có khả năng dùng
chung đều được tách riêng, làm cho sơ đồ mạch phức tạp hơn

• Thành phần tính toán: ALU, Adder
• Thành phần lưu trữ: Instruction memory, Data memory

– Một chu kỳ đồng hồ phải đủ lâu để xử lý được lệnh phức tạp
nhất. Trong MIPS, lệnh lw xử lý phức tạp nhất (5 công đoạn),
trong khi tất cả các lệnh khác chỉ mất 3 (beq) hoặc 4 (R-Format,
…) công đoạn

– Với chương trình có IC (instruction count) lệnh thì sẽ xử lý trong
800×IC (ps)

Kỹ thuật thiết kế CPU nhiều chu kỳ

• Thiết kế CPU nhiều chu kỳ: Mỗi công đoạn lệnh thực
hiện trong 1 chu kỳ
– Mỗi chu kỳ đồng hồ phải đủ lâu để thực hiện mọi công đoạn lệnh

– Với chương trình có IC (instruction count) lệnh thì sẽ xử lý trong
(0.25×5 + 0.1×4 + 0.52×4 + 0.11×3 + 0.02×3) × 200 × IC
= 824×IC (ps) !!!

37

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory 5. Reg.
Write

Sơ đồ khối CPU nhiều chu kỳ

• Do mỗi công đoạn được thực thi trong một chu kỳ riêng,
nên có thể ghép các thành phần mạch dùng chung (ALU
+ Adder, Imem + DMem) mà không xảy ra đụng độ

• Cần thêm các thanh ghi để lưu giữ kết quả trung gian
của các công đoạn lệnh (A, B, ALUOut,…)

38

…

• Thiết kế chi tiết datapath và control của bộ
xử lý theo kỹ thuật nhiều chu kỳ
à môn KTMT nâng cao

39

Tham khảo

• Phần 5.5, P&H

40

