

University of Science Department of Materials science

Chapter 6 Heat Capacity, Enthalpy, Entropy, and the Third Law of Thermodynamics

Assoc.Prof. Le Van Hieu Msc. Pham Van Viet Department of Materials science, University of Science, VNU-HCMC

Outline

- INTRODUCTION
- THE EMPIRICAL REPRESENTATION OF HEAT CAPACITIES
- ENTHALPY AS A FUNCTION OF TEMPERATURE AND COMPOSITION
- THE DEPENDENCE OF ENTROPY ON TEMPERATURE AND THE THIRD LAW OF THERMODYNAMICS
- EXPERIMENTAL VERIFICATION OF THE THIRD LAW
- THE INFLUENCE OF PRESSURE ON ENTHALPY AND ENTROPY

INTRODUCTION

$$C_{v} = \left(\frac{\partial U}{\partial T}\right)_{V}$$

and the heat capacity at constant pressure

$$C_{p} = \left(\frac{\partial H}{\partial T}\right)_{p} \tag{2.7}$$

If *E* is an extensive property for per mole of the system

E' will be used to denote the value of the property for the entire system containing *n* moles Eqs. (2.6) and (2.7) can thus be written equivalently as

$$dU' = C_{,}dT = nc_{,}dT \quad \text{or} \quad dU = c_{,}dT \tag{2.6a}$$

$$dH' = C_p dT = nc_p dT \text{ or } dH = c_p dT$$

$$\Delta H = H(T_2, P) - H(T_1, P) = \int_{T_1}^{T_2} c_p dT$$
(6.1)

Lê Văn Hiếu - Phạm Văn Việt

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

(2.6)

THE EMPIRICAL REPRESENTATION OF HEAT CAPACITIES

The experimentally measured variation of the constant-pressure molar heat capacity of a material with temperature is normally fitted to an expression of the form

$$c_p = a + bT + cT^{-2}$$

For example ZrO₂ exists as monoclinic α ZrO₂ from room temperature to 1478 K and as tetragonal β ZrO₂ in the range of temperature 1478–2670 K and each polymorph has its own equation giving the variation of its heat capacity with temperature.

$$\alpha$$
-ZrO₂ $c_p = 69.62 + 7.53 \times 10^{-3}T - 14.06 \times 10^{5}T^{-2}$ J/K·mole

over the temperature range 298-1478 K, and

$$\beta$$
-ZrO₂ $c_p = 74.48 \text{ J/K} \cdot \text{mole}$

ENTHALPY AS A FUNCTION OF TEMPERATURE AND COMPOSITION

For a closed system of fixed composition undergoing a change in temperature from T_1 to T_2 at the constant pressure *P*, integration of Eq. (2.7) gives Eq. (6.1):

$$\Delta H = H(T_2, P) - H(T_1, P) = \int_{T_1}^{T_2} c_p dT$$
(6.1)

When a system undergoes a chemical reaction or a phase transformation at constant temperature and pressure, e.g., the reaction A+B=AB, ΔH is the difference between the enthalpy of the products of the reaction (the state 2), and the enthalpy of the reactants (the state 1), i.e.

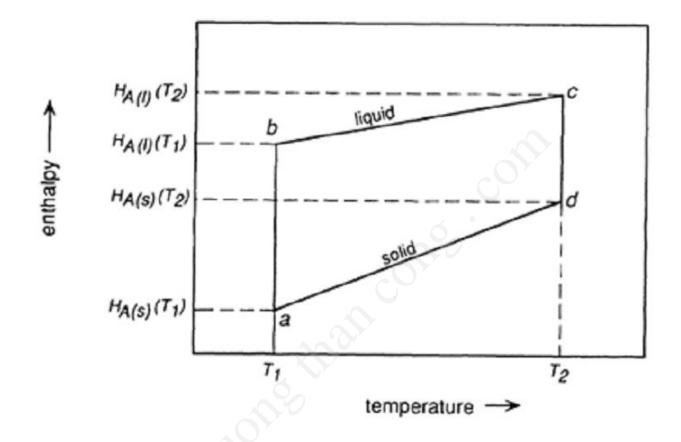
$$\Delta H(T,P) = H_{AB}(T,P) - [H_A(T,P) + H_B(T,P)]$$

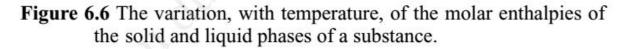
Hess's law

$$\Delta H(T,P) = H_{AB}(T,P) - [H_A(T,P) + H_B(T,P)]$$
(6.8) Hess's law

If ΔH is a **positive quantity** the reaction causes the system to absorb heat from its thermos starting heat bath, and the reaction is thus **endothermic**. Conversely, if ΔH is a **negative quantity** the reaction occurs with an evolution of heat and is thus an **exothermic** process.

TABLE 2 Relating Enthalpy, Entropy, and Free- Energy Changes to Reaction Occurrence		
ΔH	A5 0	ΔG
 value (exothermic) 	+ value (more random)	always negative
 value (exothermic) 	- value (less random)	negative at <i>lower</i> temperatures
+ value (endothermic)	+ value (more random)	negative at higher temperatures
+ value (endothermic)	 value (less random) 	never negative





$$A_{(s)} \rightarrow A_{(l)}$$

i.e., the melting of pure A. ΔH_{T1} for this process is the difference between the molar enthalpies of liquid and solid A at the temperature T_1 :

$$\Delta H_{T_1} = H_{A(l)}(T_1) - H_{A(s)}(T_1)$$

CuuDuongThanCong

https://fb.com/tailieudientucntt

This change in enthalpy is represented by line *ba* in Fig. 6.6.

For the change of phase occurring at the temperature T₂

$$\Delta H_{T_2} = H_{A(l)}(T_2) - H_{A(s)}(T_2)$$

which is represented in Fig. 6.6 by the line of cd. As H is a state function, then

$$\Delta H(a \to b) = \Delta H(a \to d) + \Delta H(d \to c) + \Delta H(c \to b)$$
(i)

where $\Delta H(a \rightarrow d)$ is the heat required to increase the temperature of one mole of solid A from T_1 to T_2 at constant pressure.

$$= \int_{T_1}^{T_2} c_{p_A(s)} dT$$

in which $d_{pA(s)}$ is the molar heat capacity of solid A

$$\Delta H(d \to c) = \Delta H_{T_2}$$

Lê Văn Hiếu - Phạm V⁸an Việt

 $\Delta H(c \rightarrow b)$ is the heat which is evolved by 1 mole of liquid A when its temperature is decreased from T_2 to T_1 (or the negative of the amount of heat required to raise the temperature of a mole of liquid A from T_1 to T_2)

$$\int_{T_2}^{T_1} c_{p_A(l)} dT = -\int_{T_1}^{T_2} c_{p_A(l)} dT$$

in which $C_{pA(l)}$ is the molar heat capacity of liquid A. Substitution of the individual expressions into Eq. (i) gives

$$\Delta H(A_{(s)} \to A_{(l)} \text{ at } T_1) = \Delta H(A_{(s)} \to A_{(l)} \text{ at } T_2) + \int_{T_1}^{T_2} c_{p_A(s)} dT - \int_{T_1}^{T_2} c_{p_A(l)} dT$$

or

$$\Delta H_{T_2} = \Delta H_{T_1} + \int_{T_1}^{T_2} \Delta c_p dT$$
(6.9)

where

$$\Delta c_p = c_{p_A(l)} - c_{p_A(s)}$$

ENTHALPY AND HESS' LAW

Ex #1 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} \Delta H^{\circ} = ?$

$$C_{[s]} + \frac{1}{2} O_{2[g]} \rightarrow CO_{[g]} \Delta H^{\circ} = -110.5 \text{ kJ}$$

$$C_{[g]} + \frac{1}{2} O_{2[g]} \rightarrow CO_{2[g]} \Delta H^{\circ} = -283.0 \text{ kJ}$$

$$C_{[s]} + O_{2[g]} \rightarrow CO_{2[g]} \Delta H^{\circ} = -393.5 \text{ kJ}$$

$$The enthalpies are added together$$

Therefore the enthalpy is -393.5 kJ

THE DEPENDENCE OF ENTROPY ON TEMPERATURE AND THE THIRD LAW OF THERMODYNAMICS

For a closed system undergoing a reversible process, the Second Law gives

$$dS = \frac{\delta q}{T} \tag{3.8}$$

If the process is conducted at constant pressure, then

$$dS = \left(\frac{\delta q}{T}\right)_p = \left(\frac{dH}{T}\right)_p = c_p \frac{dT}{T}$$

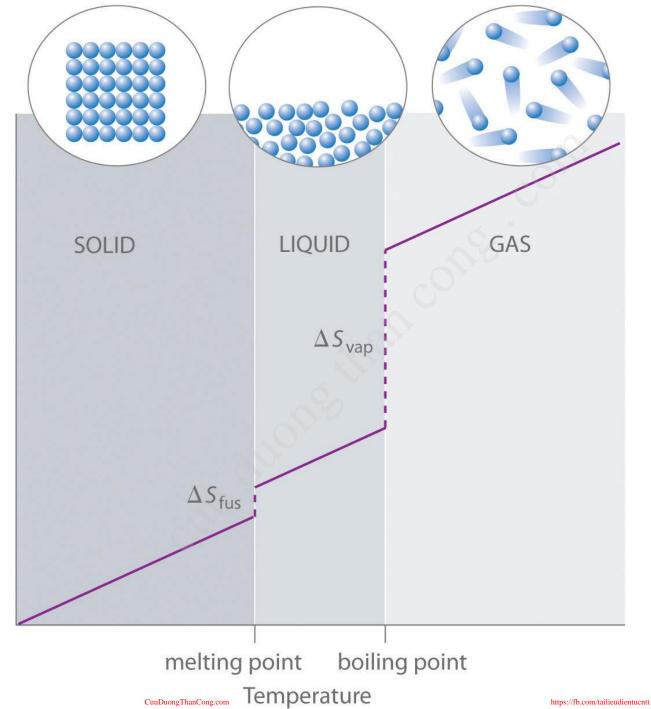
and thus if the temperature of a closed system of fixed composition is increased from T_1 to T_2 at constant pressure, the increase in the entropy per mole of the system, ΔS , is given by

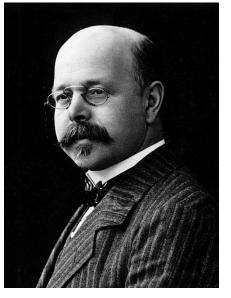
$$\Delta S = S(T_2, P) - S(T_1, P) = \int_{T_1}^{T_2} \frac{c_p}{T} dT$$
(6.12)

This change of entropy is obtained the area under a plot of C_p/T vs. T between the limits T_2 and T_1 , or, equivalently, as the area under a plot of C_p vs. In T between the limits In T_2 and In T_1 . Generally, S_T the molar entropy of the system at any temperature T is given by

$$S_T = S_0 + \int_0^T \frac{c_p}{T} dT$$
 (6.13)

where S_0 is the molar entropy of the system at 0 K. Consideration of the value of S_0 leads to the statement of what is commonly called the **Third Law of Thermodynamics**.





In 1906 Nernst postulated that, for chemical reactions between pure solids or pure liquids, the terms

$$\left(\frac{\partial \Delta G}{\partial T}\right)_{P}$$
 and $\left(\frac{\partial \Delta H}{\partial T}\right)_{P}$

approach zero as temperature approaches absolute zero. For any change in the state of a system, e.g., a chemical reaction at the constant temperature T, Eq. (5.2) gives

$$\Delta G_T = \Delta H_T - T \Delta S_T$$

and thus Nernst's postulate is that ΔG for the reaction varies with temperature as shown in *Fig. 6.10*

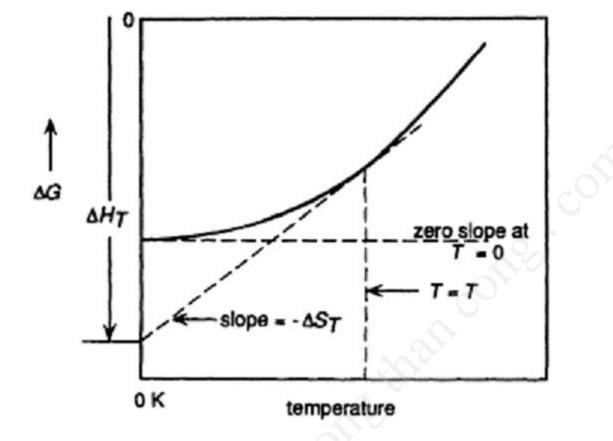


Figure 6.10 The variation of the change in the Gibbs free energy for a reaction with temperature as the temperature approaches absolute zero.

$$\left(\frac{\partial \Delta G}{\partial T}\right)_{P} = \left(\frac{\partial \Delta H}{\partial T}\right)_{P} - T\left(\frac{\partial \Delta S}{\partial T}\right)_{P} - \Delta S$$

From Eq. (5.12)

$$\left(\frac{\partial \Delta G}{\partial T}\right)_P = -\Delta S$$

and thus

CuuDuongThanCong.com

$$\left(\frac{\partial \Delta H}{\partial T}\right)_{P} = T \left(\frac{\partial \Delta S}{\partial T}\right)_{P} = \Delta c_{P}$$
15

Nernst's heat theorem states that "for all reactions involving substances in the condensed state, ΔS is zero at the absolute zero of temperature." Thus, for the general reaction

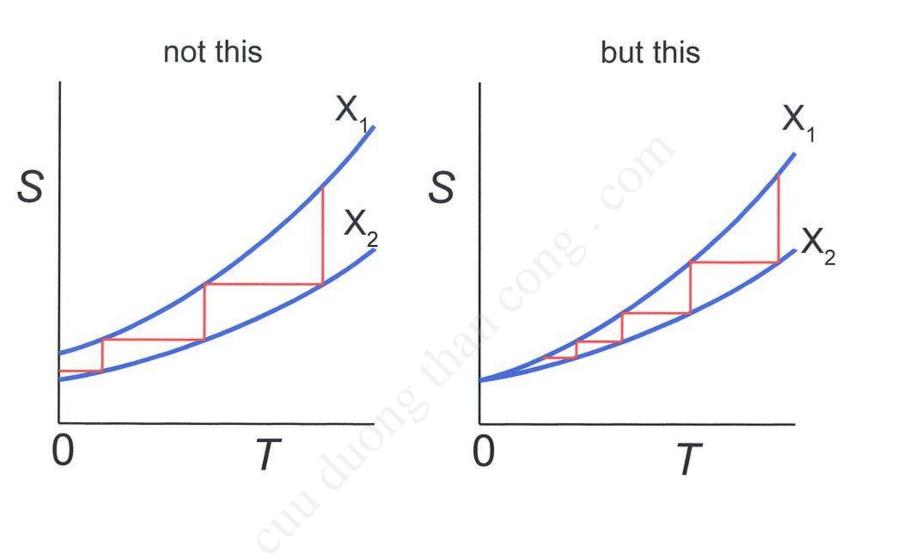
$$A + B = AB$$

 $\Delta S=S_{AB}-S_A-S_B=0$ at T=0, and if S_A and S_B are assigned the value of zero at 0 K, then the compound AB also has zero entropy at 0 K.

TABLE 19.2 Standard Molar Entropies of Selected Substances at 298 K		
Substance	S°, J/mol-K	
Gases	120 4	
$H_2(g)$ $N_2(g)$	130.6 191.5	
$O_2(g) \\ H_2O(g)$	205.0 188.8	
$NH_3(g)$	192.5	
$CH_3OH(g)$ $C_6H_6(g)$	237.6 269.2	
Liquids		
H ₂ O(<i>l</i>) CH ₃ OH(<i>l</i>)	69.9 126.8	
$C_6H_6(l)$	172.8	
Solids		
Li(s)	29.1	
Na(s)	51.4	
K(s)	64.7	
Fe(s)	27.23	
$FeCl_3(s)$	142.3	
NaCl(s)	72.3	

The Third Law of Thermodynamics defines zero entropy: The entropy of a perfectly ordered crystalline solid at 0K is 0. Under all other circumstances, absolute entropies are positive.

Copyright © 2006 Pearson Prentice Hall, Inc.



be reached in a finite number Left side: Absolute zero can of steps Right: if $S(0, X_1) \neq S(0, X_2)$. An infinite number of steps is needed since $S(0, X_1) = S(0, X_2)$.

EXPERIMENTAL VERIFICATION OF THE THIRD LAW

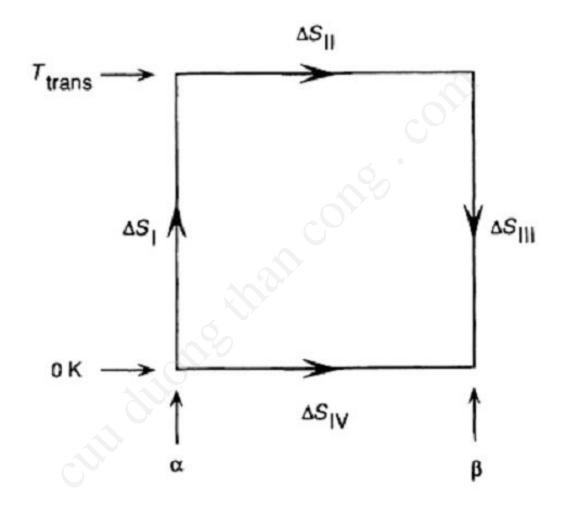


Figure 6.11 The cycle used for the experimental verification of the Third Law of Thermodynamics. The Third Law can be verified by considering a phase transition in an element such as

$$\alpha \rightarrow \beta$$

where α and β are allotropes of the element. In Fig. 6.11 T_{trans} is the temperature, at atmospheric pressure, at which the α and β phases are in equilibrium with one another. For the cycle shown in Fig. 6.11

$$\Delta S_{\rm IV} = \Delta S_{\rm I} + \Delta S_{\rm II} + \Delta S_{\rm III}$$

For the Third Law to be obeyed, $\Delta S_{IV}=0$, which requires that

$$\Delta S_{\rm II} = -(\Delta S_{\rm I} + \Delta S_{\rm III})$$

where

$$\Delta S_{\rm I} = \int_0^{T_{\rm trans}} \frac{c_{p(\alpha)}}{T} dT$$
$$\Delta S_{\rm II} = \frac{\Delta H_{\rm trans}}{T_{\rm trans}}$$
$$\Delta S_{\rm III} = \int_{T_{\rm trans}}^0 \frac{c_{p(\beta)}}{T} dT$$

Lê Văn Hiếu - Phạm Văn Việt

 ΔS_{II} , which is called the experimental entropy change, and $-(\Delta S_I + \Delta S_{III})$, which is called the Third Law entropy change, are equal to one another if the Third Law is proposed independent of the third Law is proposed.

THE INFLUENCE OF PRESSURE ON ENTHALPY AND ENTROPY

For a closed system of fixed composition undergoing a change of pressure at constant temperature.

$$dH = \left(\frac{\partial H}{\partial P}\right)_T dP$$

Eq. (5.10) gives dH=TdS+VdP, and thus

$$\left(\frac{\partial H}{\partial P}\right)_T = T\left(\frac{\partial S}{\partial P}\right)_T + V$$

Maxwell's equation (5.34) gives $(\partial S/\partial P)_T = -(\partial V/\partial T)_P$ in which case

$$\left(\frac{\partial H}{\partial P}\right)_T = -T\left(\frac{\partial V}{\partial T}\right)_P + V$$

The isobaric coefficient of thermal expansion, α , is defined as

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$

Lê Văn Hiếu - Phạm Văn Việt

https://fb.com/tailieudientucntt

and thus

$$\left(\frac{\partial H}{\partial P}\right)_T = -T\alpha V + V = V(1 - \alpha T)$$

The change in molar enthalpy caused by the change in state from (P_1, T) to (P_2, T) is thus

$$\Delta H = H(P_2,T) - H(P_1,T) = \int_{P_1}^{P_2} V(1 - \alpha T) dP$$
(6.14)

For an ideal gas, $\alpha = 1/T$, and thus Eq. (6.14) shows again that the enthalpy of an ideal gas is independent of pressure.

For an ideal gas, $\alpha = 1/T$, and thus Eq. (6.14) shows again that the enthalpy of an ideal gas is independent of pressure.

The molar volume and expansivity of Fe are, respectively, 7.1 cm³ and 0.3×10^{-4} K⁻¹. Thus an increase in the pressure exerted on Fe from 1 to 100 atm at 298 K causes the molar enthalpy to increase by

$$7.1 \times 10^{-3} \times (1 - 0.3 \times 10^{-4} \times 298) \times (100 - 1) = 0.696$$
 liter atm
= 0.696 × 101.3 = 71 J

The same increase in molar enthalpy would be obtained by heating Fe from 298 to 301 K at 1 atm pressure.

Lê Văn Hiếu - Phạm Văn Việt

CuuDuongThanCong.com

For a closed system of fixed composition undergoing a change of pressure at constant temperature,

$$dS = \left(\frac{\partial S}{\partial P}\right)_{T} dP$$

Maxwell's equation (5.34) is $(\partial S/\partial P)_T = -(\partial V/\partial T)_p$ which, with the definition of α , gives

$$\left(\frac{\partial S}{\partial P}\right)_T = -\alpha V$$

Thus, for the change of state (P_1, T) to (P_2, T)

$$\Delta S = S(P_2, T) - S(P_1, T) = -\int_{P_1}^{P_2} \alpha V dP$$
(6.15)

For an ideal gas, as $\alpha = 1/T$, Eq. (6.15) simplifies to

$$\Delta S = -\int_{P_1}^{P_2} Rd \ln P = -R \ln \left(\frac{P_2}{P_1}\right) = R \ln \left(\frac{V_2}{V_1}\right)$$

For a closed system of fixed composition undergoing changes in both pressure and temperature, combination of Eqs. (6.1) and (6.14) gives

$$\Delta H = H(P_2, T_2) - H(P_1, T_1) = \int_{T_1}^{T_2} c_p dT + \int_{P_1}^{P_2} V(1 - \alpha T) dP$$
(6.16)

and combination of Eqs. (6.12) and (6.15) gives

$$\Delta S = S(P_2, T_2) - S(P_1, T_1) = \int_{T_1}^{T_2} \frac{c_p}{T} dT - \int_{P_1}^{P_2} \alpha V dP$$
(6.17)

Just as it was required that the temperature dependence of C_p be known for integration of Eqs. (6.1) and (6.13), strictly, it is required that the pressure dependence of V and α be known for integration of Eqs. (6.14) and (6.15). However, for condensed phases being considered over small ranges of pressure, these pressure dependencies can be ignored.

Home works From 6.1 to 6.10, page 171 and 172, David Gaskell

