

University of Science Department of Materials science

Chapter 7 Phase Equilibrium in a One-Component System

Assoc.Prof. Le Van Hieu Msc. Pham Van Viet Department of Materials science, University of Science, VNU-HCMC

Lê Văn Hiếu - Phạm Văn Việt

Outline

- 1. Definition of a Phase
- 2. Phase Equilibrium
- 3. Phase Diagram for One-Component System

1. Definition of a Phase Definition of a phase

- Any part of a system which is physically separated from other parts of the system by a *distinct boundary*.
- A phase can be a solid, liquid, vapour (gas) or aqueous solution which is *uniform in both chemical constitution and physical state*.

1. Definition of a Phase

Heterogeneous system ---- system with more than one phase

Homogeneous system ---- system consists of one phase only

The phases of various systems

Type of system	System	Example	Number of phases
Homogeneous	Mixture of gases	Air (mixture of N_2 , O_2 , CO_2)	1 gaseous phase
Homogeneous	Mixture of two miscible liquids	Ethanol and water	1 liquid phase
Homogeneous	Mixture of two immiscible liquids	Salt and sand	2 solid phases
Homogeneous	Mixture of two solids	Ice and water	1 solid phase and 1 liquid phase

1. Definition of a Phase

The phases of various systems

Heterogeneous	Mixture of a solid and a liquid	Ice, water and vapour	1 solid phase, 1 liquid phase and 1 gaseous phase
Heterogeneous	Mixture of a solid, a liquid and a gas	Ice, water and vapour	 solid phase, liquid phase and 1 gaseous phase
Heterogeneous	Mixture of two solids and a gas	CaCO ₃ , CaO and CO ₂	2 solid phases and 1 gaseous phase

Phase Equilibrium

Ice and water at 273 K (solid and liquid phases coexist)

Water (solid phase disappeared)

A *phase equilibrium* is a balance between phases, that is the coexistence of two or more phases in a state of *dynamic equilibrium*.

A component is a *chemical species* which may be used to specify the composition of a system.

Lê Văn Hiểu - Phạm Văn Việt

2. Phase Equilibrium

Evaporation and Condensation

At a fixed temperature

Lê Văn Hiếu - Phạm Văn Việt

2. Phase Equilibrium

One Component System - General

The general features of a phase diagram

Region/Line/	Name	Dynamic equilibrium
Point		
Region	Solid	Only solid phase exists.
	Liquid	Only liquid phase exists.
	Vapour	Only vapour phase exists
Line	S-L (fusion curve)	Solid and liquid phases are in equilibrium.
	L-V (vaporization curve)	Liquid and vapour phases are in equilibrium.
	S-V (sublimation curve)	Solid, liquid and vapour phases are in equilibrium.
Point	T (triplet point)	Solid, liquid and vapour phases in equilibrium.
	C (critical point) Lê Văn Hiếu - Phạm V	Beyond this point, the vapour cannot be changed into liquid by altering the pressure alone. 11

THE VARIATION OF GIBBS FREE ENERGY WITH TEMPERATURE AT CONSTANT PRESSURE

 $H_2O_{(solid)} \rightarrow H_2O_{(liquid)}$ at 1 atm and 273 K $\Delta G = G_{\mathrm{H_2O_{co}}} - G_{\mathrm{H_2O_{co}}} = 0$

Thus, at the state of equilibrium between ice and water,

$$G_{\mathrm{H}_{2}\mathrm{O}_{(l)}} = G_{\mathrm{H}_{2}\mathrm{O}_{(l)}} \tag{7.1}$$

where $G_{H_2O_{10}}$ is the molar Gibbs free energy of H_2O in the solid (ice) phase, and $G_{H_2O_{10}}$ is the molar Gibbs free energy of H₂O in the liquid (water) phase. For the system of ice+water containing n moles of H₂O, $n_{H_2O_{(1)}}$ which are in the ice phase and $n_{H_2O_{(2)}}$ of which are in the water phase, the Gibbs free energy of the system, G', is

$$G' = n_{\rm H_2O_{10}}G_{\rm H_2O_{10}} + n_{\rm H_2O_{10}}G_{\rm H_2O_{10}}$$
(7.2)

where $G_{H20(I)}$ is the molar Gibbs free energy of H2O in the solid (ice) phase, and G_{H20 (s)} is the molar Gibbs free energy of H2O in the liquid (water) phase.

For the system of ice + water containing n moles of H₂O

$$G' = n_{\rm H_2O_{10}}G_{\rm H_2O_{10}} + n_{\rm H_2O_{0}}G_{\rm H_2O_{0}}$$
(7.2)

The chemical potential of a species in a particular state equals the molar Gibbs free energy of the species in the particular state.

$$\left(\frac{\partial G'}{\partial n_i}\right)_{T,P} = \mu_i$$

In a one-component system, the chemical potential of the component equals the increase in the value of G' which occurs when 1 mole of the component is added to the system at constant T and P. That is, if the component is the species *i*,

$$\Delta G' = \mu_i$$

and as the increase in the value of G' for the one-component system is simply the molar Gibbs free energy of *i*, then

Phase Diagram of Water

Lê Văn Hiếu - Phạm Văn Việt

An increase in pressure lowers the m.p. of water.

By Le Chatelier's principle, the effect of increasing the pressure will favour a reduction in volume, causing the equilibrium to be shifted to the right.

Phase Diagram of Carbon Dioxide

TA= sublimation curve

Lê Văn Hiếu - Phạm Văn Việt

T above 1 atm \Rightarrow solid CO₂ sublimes when left in a warm atmosphere

GIBBS FREE ENERGY AS A FUNCTION OF TEMPERATURE AND PRESSURE

$$G_{(l)} = G_{(s)}$$

or, for any infinitesimal change in T and P,

$$dG_{(l)} = dG_{(s)}$$

From Eq. (5.12)

$$dG_{(l)} = -S_{(l)}dT + V_{(l)}dF$$

and

$$dG_{(s)} = -S_{(s)}dT + V_{(s)}dP$$

Thus, for equilibrium to be maintained between the two phases,

$$-S_{(l)}dT + V_{(l)}dP = -S_{(s)}dT + V_{(s)}dP$$

or

$$\begin{pmatrix} \frac{dP}{dT} \end{pmatrix}_{\text{Le}, \text{Velt}} = \frac{S_{(s)} - S_{(l)}}{V_{(s)} \sqrt{an}} = \frac{\Delta S_{(l \to s)}}{\Delta V_{(l \to s)}}$$

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

At equilibrium $\Delta G=0$, and hence $\Delta H=T\Delta S$, substitution of which into the above equation gives

EQUILIBRIUM BETWEEN THE VAPOR PHASE AND A CONDENSED PHASE

$$\Delta V = V_{\text{vapor}} - V_{\text{condensed phase}}$$

and as V_{vapor} is very much larger than $V_{\text{condensed phase}}$, then, with the introduction of an insignificant error,

$$\Delta V = V_{vapor}$$

Thus, for condensed phase-vapor equilibria, Eq. (7.5) can be written as

$$\left(\frac{dP}{dT}\right)_{\rm eq} = \frac{\Delta H}{TV_{(\nu)}}$$

in which $V_{(v)}$ is the molar volume of the vapor. If it is further assumed that the vapor in equilibrium with the condensed phase behaves ideally, i.e., PV=RT, then

$$\left(\frac{dP}{dT}\right)_{\rm eq} = \frac{P\Delta H}{RT^2}$$

Lê Văn Hiếu - Phạm Văn Việt

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

rearrangement of which gives

$$\frac{dP}{P} = \frac{\Delta H}{RT^2} dT$$

or

$$d\ln P = \frac{\Delta H}{RT^2} dT \tag{7.6}$$

Eq. (7.6) is known as the Clausius-Clapeyron equation.

If ΔH is independent of temperature, i.e., if $C_p(\text{vapor})=C_p(\text{condensed phase})$, integration of Eq. (7.6) gives

$$\ln P = -\frac{\Delta H}{RT} + \text{constant}$$
(7.7)

	LAW/ [condensed form]
0 th	The EQUILIBRIUM Principle
1st	The ENERGY Principle
2 nd	The ENTROPY Principle
3rd	The TEMPERATURE Principle

