15

MULTIPLE INTEGRALS

A double integral of a positive function is a volume, which

is the limit of sums of volumes of rectangular columns.

In this chapter we extend the idea of a definite integral to double and triple integrals
of functions of two or three variables. These ideas are then used to compute volumes,
masses, and centroids of more general regions than we were able to consider in
Chapters 6 and 8. We also use double integrals to calculate probabilities when two
random variables are involved.

We will see that polar coordinates are useful in computing double integrals over some
types of regions. In a similar way, we will introduce two new coordinate systems in
three-dimensional space——cylindrical coordinates and spherical coordinates——that
greatly simplify the computation of triple integrals over certain commonly occurring
solid regions.
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15.1 DOUBLE INTEGRALS OVER RECTANGLES

In much the same way that our attempt to solve the area problem led to the definition of a
definite integral, we now seek to find the volume of a solid and in the process we arrive at
the definition of a double integral.

REVIEW OF THE DEFINITE INTEGRAL

First let’s recall the basic facts concerning definite integrals of functions of a single vari-
able. If f(x) is defined for a < x < b, we start by dividing the interval [a, b] into 1 sub-
intervals [x;-;, x;] of equal width Ax = (b — a)/nand we choose sample points x;" in these
subintervals. Then we form the Riemann sum

n

] 2 f(x) Ax

=1

and take the limit of such sums as 7 — o to obtain the definite integral of f from a to b:

jb f(x) dx = lim 2, f(x}) Ax

a Kl eS|

In the special case where f(x) = 0, the Riemann sum can be interpreted as the sum of the
areas of the approximating rectangles in Figure 1, and |” f(x) dx represents the area under
the curve y = f(x) from ato b.
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VOLUMES AND DOUBLE INTEGRALS

In a similar manner we consider a function f of two variables defined on a closed rectangle
R=[a b x[cdl={xy€ER|asx<b c<y<d)

and we first suppose that f(x, y) = 0. The graph of fis a surface with equation z = f(x, ).
Let Sbe the solid that lies above K and under the graph of £ that is,

S={xy2)ER|0<z<flxy. (xy) €R}

(See Figure 2.) Our goal is to find the volume of S.

The first step is to divide the rectangle R into subrectangles. We accomplish this by
dividing the interval [a, b] into m subintervals [x;-1, x;] of equal width Ax = (b — a)/m
and dividing [¢, d] into n subintervals [ y-1, y;] of equal width Ay = (d — ¢)/n. By draw-

FIGURE 2
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FIGURE 3
Dividing R into subrectangles

FIGURE 4
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ing lines parallel to the coordinate axes through the endpoints of these subintervals, as in

Figure 3, we form the subrectangles
Ry =[x, %1% [yl = {9 | x0 < x< 0 yor < y < y}

each with area AA = AxAy.
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If we choose a sample point (x;;, y;/) in each Ry, then we can approximate the part of
S that lies above each R; by a thin rectangular box (or “column”) with base R; and height
f(x;f, y7) as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the
height of the box times the area of the base rectangle:

f(xi, yiy) AA
If we follow this procedure for all the rectangles and add the volumes of the corresponding
boxes, we get an approximation to the total volume of S:

(3] V=2 2 flx], yi) AA

=1 j=1

(See Figure 5.) This double sum means that for each subrectangle we evaluate f at the cho-
sen point and multiply by the area of the subrectangle, and then we add the results.

z

FIGURE 5
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The meaning of the double limit in Equation 4
is that we can make the double sum as close as
we like to the number I/ [for any choice of
(x77, yi¥) in K] by taking m and n sufficiently
large.

Notice the similarity between Definition 5
and the definition of a single integral in
Equation 2.

Although we have defined the double integral
by dividing Rinto equal-sized subrectangles, we
could have used subrectangles K of unequal
size. But then we would have to ensure that all
of their dimensions approach 0 in the limiting
process.

CuuDuongThanCong.com
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Our intuition tells us that the approximation given in (3) becomes better as m and n
become larger and so we would expect that

[4] V= lim > ¥ f(x, y;j) AA

a1 =] =1

We use the expression in Equation 4 to define the volume of the solid S that lies under the
graph of £ and above the rectangle R. (It can be shown that this definition is consistent with
our formula for volume in Section 6.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding vol-
umes but in a variety of other situations as well—as we will see in Section 15.5—even
when £ is not a positive function. So we make the following definition.

[5] DEFINITION The double integral of fover the rectangle R is

Jf f, ) dA= lim 3 Y AxF yi) AA

m, n—>%

b =1 j=1

if this limit exists.

The precise meaning of the limit in Definition 5 is that for every number ¢ > 0 there is
an integer Vsuch that

([ fx9 dA = 3 3 0, yi) AA| < &
R

=1 j=1

for all integers m and n greater than NV and for any choice of sample points (x;}, y;/) in R

A function f is called integrable if the limit in Definition 5 exists. It is shown in courses
on advanced calculus that all continuous functions are integrable. In fact, the double inte-
gral of f exists provided that f is “not too discontinuous.” In particular, if f is bounded
[that is, there is a constant M such that | f(x, y)| < M for all (x, y) in R], and £ is con-
tinuous there, except on a finite number of smooth curves, then f is integrable over R.

The sample point (x;f, y;/) can be chosen to be any point in the subrectangle R, but if
we choose it to be the upper right-hand corner of R;; [namely (x; y;), see Figure 3], then
the expression for the double integral looks simpler:

@ [y da= 1 3% 1 0
R =

=1 /=1

By comparing Definitions 4 and 5, we see that a volume can be written as a double
integral:

If f(x, y) = 0, then the volume V of the solid that lies above the rectangle R and
below the surface z = f(x, y) is

V= [j f(x, y) dA

R
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The sum in Definition 5,

M=

2 2 f(xi. yi) AA
=1 1

J

is called a double Riemann sum and is used as an approximation to the value of the
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of a
single variable.] If f happens to be a positive function, then the double Riemann sum
represents the sum of volumes of columns, as in Figure 5, and is an approximation to the
volume under the graph of fand above the rectangle K.

Y .2) I EXAMPLE 1 Estimate the volume of the solid that lies above the square
2 p 2,2) R =10, 2] X [0, 2] and below the elliptic paraboloid z = 16 — x* — 2y Divide R
2 R into four equal squares and choose the sample point to be the upper right corner of
2 2 each square Kj;. Sketch the solid and the approximating rectangular boxes.
! (1,1 =0 SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
Ry, Ry, f(x, y) = 16 — x* — 2y* and the area of each square is 1. Approximating the volume
by the Riemann sum with m = n = 2, we have
0 1 2 X
2 2
FIGURE 6 V= ZZI f(x:, yj) AA

=f1,1)AA+ f(1,2) AA + £(2, 1) AA + £(2,2) AA
=13(1) + 7(1) + 10(1) + 4(1) = 34
This is the volume of the approximating rectangular boxes shown in Figure 7. |
We get better approximations to the volume in Example 1 if we increase the number of
squares. Figure 8 shows how the columns start to look more like the actual solid and the

corresponding approximations become more accurate when we use 16, 64, and 256
squares. In the next section we will be able to show that the exact volume is 48.

o

FIGURE 7

FIGURE 8

The Riemann sum approximations to
the volume under z = 16 — x> — 2y?
become more accurate as m and

n increase. (@m=n=4,V=41.5

() m=n=16,V=46.46875

W1 EXAMPLE 2 If R={(x, )| =1 < x < 1, —2 < y < 2}, evaluate the integral

[ T= aa
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FIGURE 9
y
2 (2,2)
3 * R, * Ry,
’ * Ry * Ry,
1 | |
| |
| |
| |
| |
0 1 2 X
FIGURE 10
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SOLUTION It would be very difficult to evaluate this integral directly from Definition 5 but,
because /1 — x* = 0, we can compute the integral by interpreting it as a volume. If

= /1 — x*, then x* + 2z = 1 and z = 0, so the given double integral represents the
volume of the solid S that lies below the circular cylinder x* + z* = 1 and above the
rectangle R. (See Figure 9.) The volume of S'is the area of a semicircle with radius 1
times the length of the cylinder. Thus

[J\/l—xz dA =171 x4 =2m =
b

THE MIDPOINT RULE

The methods that we used for approximating single integrals (the Midpoint Rule, the
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we
consider only the Midpoint Rule for double integrals. This means that we use a double Rie-
mann sum to approximate the double integral, where the sample point (x;/, y;) in R is
chosen to be the center (%; y) of R;. In other words, x; is the midpoint of [x,-1, x;] and y;
is the midpoint of [ y;-1, y;].

MIDPOINT RULE FOR DOUBLE INTEGRALS

fJ fxp) dA= 3 Y (%, 7) AA

I =1 j=1

where X is the midpoint of [x,-;, x;] and J; is the midpoint of [ y;—1, y;].

7 EXAMPLE 3 Use the Midpoint Rule with m = n = 2 to estimate the value of the
integral [, (x — 3y%) dA, where R={(x,)) |0 = x<2,1 < y <2}

SOLUTION In using the Midpoint Rule with m = n = 2, we evaluate f(x, y) = x — 3y* at
the centers of the four subrectangles shown in Figure 10. So xi =3, % =3, 7 = 3, and
¥, = 4. The area of each subrectangle is A4 = ;. Thus

[[ r=3yyaa= S S f(7,7) A

=1 j=1

P
= f(Xl,yl) AA + f(/_\’l yz)AA + f(;(z j/l)AA + f(}z,yz)AA
= (5.5 a4+ (LD AA+ (35 AA + £(37) AA
= (=1 + (=5%) + (=5 + (=9):
= —% = —11.875
Thus we have ﬂ (x — 3y%) dA = —11.875 [ |
R

In the next section we will develop an efficient method for com-
puting double integrals and then we will see that the exact value of the double integral in
Example 3 is —12. (Remember that the interpretation of a double integral as a volume is
valid only when the integrand f is a positive function. The integrand in Example 3 is not
a positive function, so its integral is not a volume. In Examples 2 and 3 in Section 15.2 we
will discuss how to interpret integrals of functions that are not always positive in terms of
volumes.) If we keep dividing each subrectangle in Figure 10 into four smaller ones with
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Number of Midpoint Rule
subrectangles approximations

1 —11.5000

4 —11.8750

16 —11.9687

64 —11.9922

256 —11.9980

1024 —11.9995

similar shape, we get the Midpoint Rule approximations displayed in the chart in the mar-
gin. Notice how these approximations approach the exact value of the double integral, —12.

AVERAGE VALUE

FIGURE 11

FIGURE 12

CuuDuongThanCong.com

Recall from Section 6.5 that the average value of a function £ of one variable defined on
an interval [a, b] is
1

fove = h— a abf(X) dx

In a similar fashion we define the average value of a function f of two variables defined
on a rectangle R to be

foye = ﬁ ff f(x, y) dA

where A(R) is the area of R.
If f(x, y) = 0, the equation

AR) X Lo = [ 11x, ) @A

says that the box with base R and height £, has the same volume as the solid that lies
under the graph of f. [If z = f(x, y) describes a mountainous region and you chop off the
tops of the mountains at height £, then you can use them to fill in the valleys so that the
region becomes completely flat. See Figure 11.]

EXAMPLE 4 The contour map in Figure 12 shows the snowfall, in inches, that fell on the
state of Colorado on December 20 and 21, 2006. (The state is in the shape of a rectangle
that measures 388 mi west to east and 276 mi south to north.) Use the contour map to
estimate the average snowfall for the entire state of Colorado on those days.
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SOLUTION Let’s place the origin at the southwest corner of the state. Then 0 < x < 388,

0 < y= 276, and f(x, y) is the snowfall, in inches, at a location x miles to the east and
y miles to the north of the origin. If K is the rectangle that represents Colorado, then the
average snowfall for the state on December 20-21 was

1§ve=ﬁﬂf(xy) dA
R

where A(R) = 388 - 276. To estimate the value of this double integral, let’s use the Mid-
point Rule with m = n = 4. In other words, we divide K into 16 subrectangles of equal
size, as in Figure 13. The area of each subrectangle is

AA = 1:(388)(276) = 6693 mi’

276

0 388 ¥

FIGURE 13

Using the contour map to estimate the value of £ at the center of each subrectangle,

we get
4 4
([ fep dA=3 3 (3%, 5) A4
% =1 j=1
~AA[0+15+8+7+2+25+ 185+ 11
+45+ 28+ 17+ 135+ 12 + 15+ 175 + 13]
= (6693)(207)
Therefore ~ w =~ 12.9

“e T (388)(276)

On December 20-21, 2006, Colorado received an average of approximately 13 inches of
SNOW. |
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PROPERTIES OF DOUBLE INTEGRALS

We list here three properties of double integrals that can be proved in the same manner as
in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are referred to
as the Iinearity of the integral.

([ Lree ) + gtx plaa= [ x ) dA + [[ gtx ) da
Double integrals behave this way because " # #
the double sums that define them behave
this way. . .
Jj cf(x, y) dA = cﬂ f(x, y) dA where cis a constant
R R

If f(x, y) = g(x, y) for all (x, y) in R, then

(9]

I5.1 | EXERCISES

[ ey aa = [ gl ) a4
R R

[1.] () Estimate the volume of the solid that lies below
the surface z = xyand above the rectangle

R={(xp|0<x=<60<y<4}

Use a Riemann sum with m = 3, n = 2, and take the sample

point to be the upper right corner of each square.

(b) Use the Midpoint Rule to estimate the volume of the solid
in part (a).

2. If R=1[—-1,3] X [0, 2], use a Riemann sum with m = 4,
n = 2 to estimate the value of [[, (y* — 2x*) dA. Take the
sample points to be the upper left corners of the squares.

3. (a) Use a Riemann sum with m = n = 2 to estimate the value
of [[,sin(x + y) dA, where R = [0, 7] X [0, 7]. Take the
sample points to be lower left corners.

(b) Use the Midpoint Rule to estimate the integral in part (a).

4. (a) Estimate the volume of the solid that lies below the surface
z = x + 2y” and above the rectangle R = [0, 2] X [0, 4].
Use a Riemann sum with m = n = 2 and choose the
sample points to be lower right corners.
(b) Use the Midpoint Rule to estimate the volume in part (a).

5. A table of values is given for a function /(x, y) defined on
R=11,3] %[0, 4].
(a) Estimate [, f(x, y) dA using the Midpoint Rule with
m=n=2.

CuuDuongThanCong.com

(b) Estimate the double integral with m = n = 4 by choosing
the sample points to be the points farthest from the origin.

o 1 2 3 4
0 | 2 0 | -3 | -6 | =5
15 | 3 1 -4 | -8 | -6
20 | 4 3 0| -5 | -8
25 | 5 5 3| -1 | -4
30 | 7 8 6 3 0

6. A 20-ft-by-30-ft swimming pool is filled with water. The depth
is measured at 5-ft intervals, starting at one corner of the pool,
and the values are recorded in the table. Estimate the volume of
water in the pool.

0 9 10 15 20 25 30

0 2 3 4 6 7 8 8
5 2 3 4 7 8 10

10 2 4 6 8 10 12 10
15 2 3 4 5 6 8

20 2 2 2 2 3 4 4

Let V be the volume of the solid that lies under the graph of

f(x, y) = +/52 — x* — y? and above the rectangle given by
2<x<4, 2< y=<6.We use the lines x =3 and y = 4 to

https://fb.com/tailieudientucntt
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divide R into subrectangles. Let L and U be the Riemann sums
computed using lower left corners and upper right corners,
respectively. Without calculating the numbers V, L, and U,
arrange them in increasing order and explain your reasoning.
8. The figure shows level curves of a function f in the square
R =10, 2] X [0, 2]. Use the Midpoint Rule with m = n = 2
to estimate ([, £(x, y) dA. How could you improve your
estimate?

—1

A contour map is shown for a function £ on the square
R=10, 4] x [0, 4].
(a) Use the Midpoint Rule with m = n = 2 to estimate the
value of ([, £(x, y) dA.

(b) Estimate the average value of f.

10 0 0 10 20 30

\30\ \

10. The contour map shows the temperature, in degrees Fahrenheit,
at 4:00 M on February 26, 2007, in Colorado. (The state
measures 388 mi east to west and 276 mi north to south.) Use
the Midpoint Rule with m = n = 4 to estimate the average
temperature in Colorado at that time.

SECTION 15.2 ITERATED INTEGRALS |[[|| 959

4
S

11-13 Evaluate the double integral by first identifying it as the
volume of a solid.

I [[,3dA, R={(xy | -2=<x<21<y<6}

12. WR(5 - X) dA, R={(X,y) | 0<x< 5’0§y$ 3}
03] [f,(4 = 2y) dA, R=10,1] x [0, 1]

14. The integral [[,+/9 — y? dA, where R = [0, 4] X [0, 2],
represents the volume of a solid. Sketch the solid.

I5. Use a programmable calculator or computer (or the sum
command on a CAS) to estimate

ﬂmdA

where R = [0, 1] X [0, 1]. Use the Midpoint Rule with the
following numbers of squares of equal size: 1, 4, 16, 64, 256,
and 1024.

16. Repeat Exercise 15 for the integral |[, sin(x + \/}_/) dA.

If £is a constant function, f(x, y) = k, and
R=[a, b] X [¢, d], show that ||, kdA = k(b — a)(d — ©).

18. Use the result of Exercise 17 to show that

- 1
0= ﬂ sin wx cos my dA < 3
R

where R = [0, %] X H%]

15.2| ITERATED INTEGRALS

Recall that it is usually difficult to evaluate single integrals directly from the definition of
an integral, but the Fundamental Theorem of Calculus provides a much easier method. The
evaluation of double integrals from first principles is even more difficult, but in this sec-
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tion we see how to express a double integral as an iterated integral, which can then be eval-
uated by calculating two single integrals.

Suppose that f is a function of two variables that is integrable on the rectangle
R=1a, b] X [c, d]. We use the notation f:’ f(x, y) dy to mean that x is held fixed and
f(x, y) is integrated with respect to y from y = cto y = d. This procedure is called par-
tial integration with respect to y. (Notice its similarity to partial differentiation.) Now
¢ f(x, y) dyis a number that depends on the value of x, so it defines a function of x:

AG) = [ 1 p) dy

If we now integrate the function A with respect to x from x = ato x = b, we get

0 [ A ax= |’ [fjf(x, » dy] dx

The integral on the right side of Equation 1 is called an iterated integral. Usually the
brackets are omitted. Thus

2] [ fxp dyax= 1" [ [“rtx ) dy] dx

means that we first integrate with respect to y from cto d and then with respect to x from
ato b.
Similarly, the iterated integral

(3] f: Lb f(x, y) dxdy = Ld [Lb f(x, y) dx] dy

means that we first integrate with respect to x (holding y fixed) from x = a to x = b and
then we integrate the resulting function of y with respect to y from y = cto y = d. Notice
that in both Equations 2 and 3 we work from the inside out.

EXAMPLE | Evaluate the iterated integrals.
32, 23 2
(a) fo Jl x“y dy dx (b) L JO X'y dx dy

SOLUTION
(a) Regarding x as a constant, we obtain

2 ]l 2 2
(2 2 _ | 2) _ 22) 2<1>_32
xydy=|x"*— =x\——)—x|— ) =3x
Jl d [ 2:|};1 (2 2 ’

Thus the function A in the preceding discussion is given by A(x) = 3 x* in this example.
We now integrate this function of x from 0 to 3:
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Theorem 4 is named after the Italian mathe-
matician Guido Fubini (1879-1943), who proved
a very general version of this theorem in 1907.
But the version for continuous functions was
known to the French mathematician Augustin-
Louis Cauchy almost a century earlier.

FIGURE 1

m Visual 15.2 illustrates Fubini’s
Theorem by showing an animation of
Figures | and 2.

FIGURE 2

CuuDuongThanCong.com

SECTION 15.2 ITERATED INTEGRALS [||| 961

(b) Here we first integrate with respect to x:

g [ [[eva o [ [50] o

)72
2 P4 :27
—J]9ydy—92] 2 “

1

Notice that in Example 1 we obtained the same answer whether we integrated with
respect to yor x first. In general, it turns out (see Theorem 4) that the two iterated integrals
in Equations 2 and 3 are always equal; that is, the order of integration does not matter.
(This is similar to Clairaut’s Theorem on the equality of the mixed partial derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

[4] FUBINI’S THEOREM If £ is continuous on the rectangle
R={(x,y)|a< x< b c< y=<d} then

” f(x, y) dA = Lb Ld f(x, y) dy dx = LdLb f(x, y) dx dy
R

More generally, this is true if we assume that fis bounded on R, fis discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can at least
give an intuitive indication of why it is true for the case where f(x, y) = 0. Recall that if
f is positive, then we can interpret the double integral (|, f(x, y) dA as the volume V of
the solid S that lies above R and under the surface z = f(x, y). But we have another for-
mula that we used for volume in Chapter 6, namely,

V= Lb A(x) dx

where A(x) is the area of a cross-section of S in the plane through x perpendicular to the
x-axis. From Figure 1 you can see that A(x) is the area under the curve C whose equation
is z = f(x, y), where x is held constant and ¢ < y < d. Therefore

d
A = [ ix ) dy
and we have

gf(x, ydA= V= L A(x) dx = L L f(x, y) dy dx

A similar argument, using cross-sections perpendicular to the y-axis as in Figure 2, shows
that

H f(x, y) dA = Ld Lb f(x, y) dx dy
R

https://fb.com/tailieudientucntt
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Notice the negative answer in Example 2;
nothing is wrong with that. The function £in
that example is not a positive function, so its
integral doesn't represent a volume. From
Figure 3 we see that £is always negative on
R, so the value of the integral is the negative
of the volume that lies above the graph of
and below R.

NN
1

FIGURE 3

For a function £ that takes on both positive
and negative values, ([, /(x, y) dAis a differ-
ence of volumes: Vi — V4, where 1/ is the vol-
ume above R and below the graph of £and V5 is
the volume below R and above the graph. The
fact that the integral in Example 3 is 0 means
that these two volumes 14 and V; are equal.
(See Figure 4.)

FIGURE 4

CuuDuongThanCong.com

7 EXAMPLE 2 Evaluate the double integral ([, (x — 3y*) dA, where
R={(x,»|0=<x<2,1< y< 2} (Compare with Example 3 in Section 15.1.)

SOLUTION | Fubini’s Theorem gives

H (x—3y*) dA = j: f (x — 3y") dy dx = foz [Xy— y3])}:f dx

"2 X ’
—JO (x—=17) dx—7 - 7X]0— -12

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with respect to x
first, we have

” (x — 3y%) dA

R

flz foz (x — 3y*) dx dy
2

f{%—snﬂ dy

x=0

["@—o6yyay=2y-2y] = -12

7 EXAMPLE 3 Evaluate [{, ysin(xy) dA, where R = [1, 2] X [0, =].

SOLUTION | If we first integrate with respect to x, we get
7 (2 . T =
ﬂ ysin(xy) dA = fo Jl ysin(xy) dx dy = JO [—cos(xy)],(:? dy
R

= fuﬂ(—cos 2y + cos y) dy

= —;sin2y + siny]g= 0
SOLUTION 2 If we reverse the order of integration, we get
(2 (7
ﬂ ysin(xy) dA = Jl Jo ysin(xy) dy dx
R

To evaluate the inner integral, we use integration by parts with

u=y dv = sin(xy) dy
du — dy _ _cos(xy)
X
cos(xy) T
and so fﬂysin(xy) dy = _ O +— fﬂ cos(xy) dy
0 X =0 X JO
T COS TX

L % [sinCop)

T COS TX sin 7x

X X2
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In Example 2, Solutions 1 and 2 are equally
straightforward, but in Example 3 the first solu-
tion is much easier than the second one. There-
fore, when we evaluate double integrals, it is
wise to choose the order of integration that gives
simpler integrals.

RN
RN
S

S

RN

SRR
RIS

FIGURE 5
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If we now integrate the first term by parts with « = —1/xand dv = 7 cos 7x dx, we get
du = dx/x’, v = sin 7x, and
) T COS TX sinTx sin Tx
[ P,
X e X
TCOoS X  sin wx sin mx
Therefore j (— + > ) dx = —
X X D'
. 2
2 [n sin wx
and so L JO ysin(xy) dy dx = [— ]
X
1
sin 2
= +sinm=0 [ |

7 EXAMPLE 4 Find the volume of the solid S that is bounded by the elliptic paraboloid
x* + 2y* + z = 16, the planes x = 2 and y = 2, and the three coordinate planes.

SOLUTION We first observe that Sis the solid that lies under the surface z = 16 — x* — 2y*
and above the square R = [0, 2] X [0, 2]. (See Figure 5.) This solid was considered in
Example 1 in Section 15.1, but we are now in a position to evaluate the double integral
using Fubini’s Theorem. Therefore

V=[[ 16— -2 a4 = [[[706 = ¥ = 2 dxay
R
= foz [16X - 358 - ZYZX]:(Z) dy
=B - a=[3r-irl=1s .

In the special case where f(x, y) can be factored as the product of a function of x only
and a function of y only, the double integral of £ can be written in a particularly simple
form. To be specific, suppose that f(x, y) = g(x) A(y) and R = [a, b] X [¢, d]. Then
Fubini’'s Theorem gives

jf f(x, y) dA = J'Cd f: 9(x) h(y) dx dy = J‘j Lb g(x) h(y) dX] dy
R

In the inner integral, yis a constant, so A(y) is a constant and we can write

[ [ [NELE) dX] dy= [’ [h(y) Qb 9(x) dX>

since |’ f g(x) dxis a constant. Therefore, in this case, the double integral of f can be writ-
ten as the product of two single integrals:

dy = Lb 9(x) dx f h(y) dy

[5] ﬂ g(x) h(y) dA = Lb g(x) dxf h(y) dy where R = [a, b] X [¢, d]

https://fb.com/tailieudientucntt
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EXAMPLE 5 If R= [0, 7/2] X [0, 7/2], then, by Equation 5,

Jf sin x cos y dA = j‘oﬂ/z sin x dx fow/z cos ydy
R

The function £(x, y) = sin x cos yin
Example 5 is positive on R, so the integral repre-
sents the volume of the solid that lies above R
and below the graph of £ shown in Figure 6.

FIGURE 6

15.2 | EXERCISES

77/2_

= [—cos X]g/z [siny]O =1-1=1

N
AR
R
N

1-2 Find [} f(x, y) dxand |} f(x, y) dy.

. f(x, y) = 12x°y° 2. f(x,y) =y + xe

3-14 Calculate the iterated integral.

3] .[13 ’0' (1 + 4xy) dx dy a. JOI J’f (1x° — 9x% ) dy dx
5. 0[02 ‘[O”/ ? x sin y dy dx 6. |://6 ’ [_51 cos y dx dy

7. JOZ JO' (2x + y)* dxdy 8. JOI J'f % dy dx

J’l" ‘[12 (% + %) dy dx 10. |01 jj e dx dy

. ‘[01 ‘[0' (u— o) du 12. ‘[01 jo' xy/x? + 7 dy dx
13. {7 [ rsino do dr 14, |1 [T Vs+ s

15-22 Calculate the double integral.

I5. [J 6x°5° — 55" ) dA, R={(xy)|0=<x<3 0<y<1}

R

16. [J'cos(x+ 20 dA. R={xy|0<x<m 0<y<mu/2}

R

2
Cxy
I7.ﬂXZ+1dA, R={(x,p]|0sx=<1, -3<sys<3}

CuuDuongThanCong.com

s 1+ X
Is.ﬂ 15 dA, R={(xp|0=sx<1,0=<y<1}

ﬂxsin(x-l—y) dA, R=10, w/6] x [0, /3]

R

" X
. A, R=10,1] x [0,
20 IJnyd [0, 1] x [0, 1]

21. [ X e*z-ydA, R=10,1] X [0, 2]
1
R

X

22. ﬂ e dA, R=1[1,2] [0, 1]
R

23-24 Sketch the solid whose volume is given by the iterated
integral.

23] { ‘[01 (4 — x— 2y) dxdy

1
0

24. { ‘[01 (2 —x*— y*)dydx

1
Jo

25. Find the volume of the solid that lies under the plane
3x + 2y + z = 12 and above the rectangle
R={(xp|0<sx<1 -2<y<3}

26. Find the volume of the solid that lies under the hyperbolic

paraboloid z = 4 + x* — y* and above the square
R=[-1,1] X [0, 2].

https://fb.com/tailieudientucntt
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Find the volume of the solid lying under the elliptic 34. Graph the solid that lies between the surfaces
paraboloid x%/4 + y%9 + z = 1 and above the rectangle z=e"cos(x* + y*)andz =2 — x* — y*for |x| < 1,
R=[-11]x[~22] |¥| = 1. Use a computer algebra system to approximate the

olume of this solid correct to four decimal places.
28. Find the volume of the solid enclosed by the surface o 15 508 b imatp

z =1+ e*sin yand the planes x = =1, y =0, y = =,

and z = 0. 35-36 Find the average value of fover the given rectangle.

B5] f(x, y) = x’y, Rhas vertices (—1, 0), (—1, 5), (1, 5), (1, 0)
29. Find the volume of the solid enclosed by the surface
z = xsec’yand the planesz = 0, x=0,x=2, y =0, 36. f(x,y) = Vx+e’, R=1[0,4]x[0,1]
and y = /4.

30. Find the volume of the solid in the first octant bounded by 37. Use your CAS to compute the iterated integrals
the cylinder z = 16 — x” and the plane y = 5.

1M X— 11X
31. Find the volume of the solid enclosed by the paraboloid JO JO (XT};g dydx  and JO JO (XT};S dx dy
z=2+x*+ (y—2)andtheplanesz =1, x=1, x= —1, V) o
y=20,and y = 4.

Do the answers contradict Fubini’s Theorem? Explain what

/17 32. Graph the solid that lies between the surface is happening.

z = 2xy/(x* + 1) and the plane z = x + 2yand is bounded

. In wh he th f Fubini lai
by the planes x = 0, x = 2, y — 0, and y — 4. Then find its 38. (a) In what way are the theorems of Fubini and Clairaut

similar?

volume. (b) If £(x, y) is continuous on [a, b] X [c, d] and
4533, Use a computer algebra system to find the exact value of the Xy
integral ([, x’y*e*" dA, where R = [0, 1] X [0, 1]. Then use 9% y) = L L 1(s, 0) dt ds
the CAS to draw the solid whose volume is given by the
integral. fora< x< b, ¢ < y < d, show that g,, = g, = 1(x, ).

15.3| DOUBLE INTEGRALS OVER GENERAL REGIONS

For single integrals, the region over which we integrate is always an interval. But for
double integrals, we want to be able to integrate a function £ not just over rectangles but
also over regions D of more general shape, such as the one illustrated in Figure 1. We sup-
pose that D is a bounded region, which means that D can be enclosed in a rectangular
region R as in Figure 2. Then we define a new function /" with domain R by

_Jflxy if (xp)isinD
(1] Hx y) = {0 if (x, y) is in Rbut not in D

y y
R
0 X 0 X
FIGURE 1 FIGURE 2

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

966 |||/ CHAPTER I5 MULTIPLE INTEGRALS

Q/ graph of f
|
|

FIGURE 3

FIGURE 4
y
Y =¢(x)
D
[ [
| |
I y=g(x) I
0 a b X

FIGURE 5 Some type [ regions

Y =g,(x)
T \
D

cl—_

| | y=gi(x) |

| | |
0 a X b X

FIGURE 6

CuuDuongThanCong.com

If Fis integrable over R, then we define the double integral of f over D by

2] f f f(x,y) dA = ﬂ Fx, y) dA where F'is given by Equation 1
D R

Definition 2 makes sense because R is a rectangle and so ([, F{x, y) dA has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the
values of F{x, y) are 0 when (x, y) lies outside D and so they contribute nothing to the inte-
gral. This means that it doesn’t matter what rectangle R we use as long as it contains D.

In the case where f(x, y) = 0, we can still interpret [{,, f(x, y) dA as the volume of the
solid that lies above D and under the surface z = f(x, y) (the graph of f). You can see that
this is reasonable by comparing the graphs of f and F in Figures 3 and 4 and remember-
ing that ([, F(x, y) dA is the volume under the graph of F.

Figure 4 also shows that F'is likely to have discontinuities at the boundary points of
D. Nonetheless, if f is continuous on D and the boundary curve of D is “well behaved”
(in a sense outside the scope of this book), then it can be shown that J““R F(x, y) dA exists
and therefore [{, f(x. y) dA exists. In particular, this is the case for the following types
of regions.

A plane region D is said to be of type I if it lies between the graphs of two continuous
functions of x, that is,

D={xylas<x<b g(x <y=gsx)}

where g; and g are continuous on [a, b]. Some examples of type I regions are shown in
Figure 5.

' Y =g,(x) ’ Y =¢,(x)
D
| D | |
| | |
| | Y=g:(x) |
I y=gi(%) I |
| | | |
0| 4 b X 0| 4 b X

In order to evaluate [{, f(x, y) dA when D is a region of type I, we choose a rectangle
R=[a, b] X [c, d] that contains D, as in Figure 6, and we let F'be the function given by
Equation 1; that is, /" agrees with fon D and F'is 0 outside D). Then, by Fubini’s Theorem,

ﬁ f(x,y) dA = ﬂ Hx, y) dA = Lb Ld Fx, y) dy dx
D R

Observe that Flx, y) = 0 if y < gi(x) or y > g»(x) because (x, y) then lies outside D.
Therefore

N

fﬂ&ﬁ@=J

g2(%)

Fx, y) dy = J‘M (x, ) dy
gi(x) gi1(x)

https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS ||| 967

because F(x, y) = f(x, y) when gi(x) < y < g(x). Thus we have the following formula
that enables us to evaluate the double integral as an iterated integral.

[3] If fis continuous on a type I region D such that

D={xyla=<x=b g =y=g(x}

then JJ f(x, y) dA = J‘h ngm f(x, y) dy dx
a Jgi(x)
y D
d _
x=h(y) xX=I,(y) The integral on the right side of (3) is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard x as being
c———— constant not only in f(x, y) but also in the limits of integration, gi(x) and g(x).
5 We also consider plane regions of type II, which can be expressed as
X
y (4] D={xylc<y=<d h(y) < x< h(y}
. where f; and h, are continuous. Two such regions are illustrated in Figure 7.
x=h| p |x=h(y) Using the same methods that were used in establishing (3), we can show that
0 X o
P S _ d (“hay)
H j [ flxyyad=["["" flx.y) dxdy
FIGURE 7 where D is a type II region given by Equation 4.
Some type Il regions

K7 EXAMPLE | Evaluate ||, (x + 2y) dA, where Dis the region bounded by the
parabolas y = 2x*and y = 1 + x%

SOLUTION The parabolas intersect when 2x* = 1 + x% thatis, x> = 1,s0 x = *1. We
note that the region D, sketched in Figure 8, is a type I region but not a type II region
and we can write

DZ{(X,)/)|—1$X$1, 2X2$y$l+xz}

Since the lower boundary is y = 2x* and the upper boundary is y = 1 + x*, Equation 3
gives

ﬂ (x +2y)dA = j_ll LI;XZ (x + 2y) dy dx

-1

FIGURE 8

D

y=1+x*

i J‘_ll [X}/ + yz]y=2xz dx

= [ L0+ ) + (1 + 2 - x(2) - @x)]dx

f_ll (=3x"— X +2x*+ x+ 1) dx

x° x* x° x° : 32
=342 +=+x| =—
5 4 3 2 . 15 u
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! - When we set up a double integral as in Example 1, it is essential to draw a
&4 diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of
y=2x integration for the inner integral can be read from the diagram as follows: The arrow
starts at the lower boundary y = gi(x), which gives the lower limit in the integral, and
y=x the arrow ends at the upper boundary y = g,(x), which gives the upper limit of integration.
For a type II region the arrow is drawn horizontally from the left boundary to the right
D boundary.
, , EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z = x* + y* and
0 2 * above the region D in the xy-plane bounded by the line y = 2x and the parabola y = x°.
SOLUTION | From Figure 9 we see that D is a type I region and
FIGURE 9
Das atype [ region
Y & D={(X,}/)|0$X$2, XZSySZX}
)7
41 2,4) Therefore the volume under z = x* + y* and above D is
X = %y N (2 (2x
V= ‘ (x* + y*)dA = Jo jz (x* + y*) dy dx
r=Vy ?
) 372 5 253 2\3
D = j [xzy+ L] dx = [ [XZ(ZX) + @9 _ x'xt — ﬂ] dx
0 3 1,.v Jo 3 3
0 * r x° 1% 14 d X X N = |1 216
= - Xt —|dx=—FT-——+— | =——
0 3 3 21 5 6 |, 35
FIGURE 10
Das a type Il region

SOLUTION 2 From Figure 10 we see that D can also be written as a type II region:

Figure 11 shows the solid whose volume
is calculated in Example 2. It lies above the D= {(X ) | 0=<y=</{4 %y <x< \/}_/}
xy-plane, below the paraboloid z = x* + y?,
and between the plane y = 2xand the
parabolic cylinder y = x”. Therefore another expression for V'is

V= H (x* + y*) dA = j: ‘ff(xz + y*) dx dy
) ;

x=\y
kS " vy
=\ |=+) dy = +yt—=—=—=)d
<22 J\U [ 3 yXi|X—;v 7 J\0 ( 3 7 24 2 v
= 4
= Ly g Ly Bl ue u

FIGURE 11

7 EXAMPLE 3 Evaluate ([, xy dA, where Dis the region bounded by the line y = x — 1
and the parabola y* = 2x + 6.

SOLUTION The region D is shown in Figure 12. Again D is both type I and type II, but the
description of D as a type I region is more complicated because the lower boundary con-
sists of two parts. Therefore we prefer to express D as a type II region:

D={xp|-2=y=4 3y -3=x=y+1}

CuuDuongThanCong.com https://fb.com/tailieudientucntt
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y y
(5.4) - (5.4)
=J2x+6 * = % -3
L y=x—1 7 x=y+1
3 ‘ 0 X 0 x
/
< L2 —1,-2) Xt -2
y=—2x+6 ( )
FIGURE 12 (a) Das a type I region (b) Das a type II region
Then (5) gives
o1 Xz x=y+l
ﬂ xy dA = f LY dxdy = J [7)/] dy
—2 =13

4
= %f_zy[(wf 2 = (b2 = 3)2 ay
[t }’5 2
ZZJ_2<—T+4)/3+2}/ —8}/> dy
! 1
z _ = }/ 42 _
2|: 24+y+23 4}/]_2 36

If we had expressed D as a type I region using Figure 12(a), then we would have
obtained

V2x+6

nydA f Ve Xydydx+f fZH xy dy dx
D

but this would have involved more work than the other method. [ |

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes x + 2y + z =

FIGURE 13 x=2y,x=0,andz = 0.
SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
y dimensional solid and another of the plane region D over which it lies. Figure 13 shows
x+2y=2 the tetrahedron 7 bounded by the coordinate planes x = 0, z = 0, the vertical plane
It ory=1=2/2) x = 2y, and the plane x + 2y + z = 2. Since the plane x + 2y + z = 2 intersects the
/ xy-plane (whose equation is z = 0) in the line x + 2y = 2, we see that T lies above the
B <1 1 ) triangular region D in the xy-plane bounded by the lines x = 2y, x + 2y = 2, and x = 0.
2 (See Figure 14.)
y=x/2 The plane x + 2y + z = 2 can be written as z = 2 — x — 2y, so the required volume
0 ' > lies under the graph of the function z = 2 — x — 2y and above
FIGURE 14 D={xpl0=x=<1 x2<y<1-x2}
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y
y=1
D
y=x
0
FIGURE 15
Das a type I region
y
1..
L,
x=0| D
x=y
0
FIGURE 16
D as a type Il region

Therefore
V= ﬂ(Z —x—2y)dA= ‘ jl e (2 —x—2y dydx
D
y=1-x/2

f oy — = 100" ax

0

)

3
1
fl(xz—Zx+l)dx=—X —X2+X:| =— [ |
3 o 3

—
™o
|
N~
|
>
/-
—
|
0o |
~—
|
I/
—
|
0o |
~—
|
X
+
NS
+
..:;|><N
I
&

o

i EXAMPLE 5 Evaluate the iterated integral [, | sin(y*) dy dx.

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task of first
evaluating [ sin(y”) dy. But it's impossible to do so in finite terms since [ sin(y*) dy is
not an elementary function. (See the end of Section 7.5.) So we must change the order
of integration. This is accomplished by first expressing the given iterated integral as a
double integral. Using (3) backward, we have

fol j}: sin(y*) dy dx = ” sin(y?) dA
D

where D={xyp|0<sx<1 x<y<1}

We sketch this region D in Figure 15. Then from Figure 16 we see that an alternative
description of D is

={(X,y)|0§y§l, OSXSJ/}

This enables us to use (5) to express the double integral as an iterated integral in the
reverse order:

fol f sin(y?) dy dx “ sin(y*) dA

D

[1 jo) sin(y?) dx dy = f [Xsm(y )]rav dy

o

= [ ysin(y") dy = =} cos(y)]y

=1(1 - cos 1) [

PROPERTIES OF DOUBLE INTEGRALS

CuuDuongThanCong.com

We assume that all of the following integrals exist. The first three properties of double inte-
grals over a region D follow immediately from Definition 2 and Properties 7, 8, and 9 in
Section 15.1.

(¢] ﬂ [f(x y) + g(x, )] dA = U f(x, y) dA + U g(x, y) dA
D D D
Jj cf(x, y) dA = c” f(x, y) dA
D D

https://fb.com/tailieudientucntt
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FIGURE 17
FIGURE 18
z
0
X
FIGURE 19

Cylinder with base [ and height 1
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If f(x, y) = g(x, y) for all (x, y) in D, then

([ fx ) da = [ gtx 5 aa

The next property of double integrals is similar to the property of single integrals given
by the equation [” f(x) dx = [ f(x) dx + [” f(x) dx.

If D= Dy U D,, where D, and D, don't overlap except perhaps on their boundaries
(see Figure 17), then

[9] ﬂ f(x, y) dA = H f(x, y) dA + ﬂ f(x, y) dA
D D, D,

Property 9 can be used to evaluate double integrals over regions D that are neither type I
nor type II but can be expressed as a union of regions of type I or type II. Figure 18 illus-
trates this procedure. (See Exercises 51 and 52.)

y y
0 X 0 X
(a) Dis neither type I nor type II. (b) D=D, U D,, D, is type L, D, is type II.

The next property of integrals says that if we integrate the constant function f(x, y) = 1
over a region D, we get the area of D:

Jj 1dA = AD)
D

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is D and whose
height is 1 has volume A(D) - 1 = A(D), but we know that we can also write its volume
as ([, 1 dA.

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See
Exercise 57.)

[ If m=< f(x, y) < Mforall (x, y) in D, then

mA(D) < j j f(x, y) dA < MA(D)

https://fb.com/tailieudientucntt
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EXAMPLE 6 Use Property 11 to estimate the integral ([, e"" *“*”dA, where Dis the disk
with center the origin and radius 2.

SOLUTION Since —1 < sin x< 1 and —1 < cos y =< 1, we have —1 < sin x cos y =< 1 and

therefore

e—l < esi.anosyg el =e

Thus, using m = e~ = 1/e, M = e, and A(D) = m(2)* in Property 11, we obtain

|15.3| EXERCISES

4_7TSJ\[ esinxcosydAgll,n_e .
e J
D

I-6 Evaluate the iterated integral.

I J: .[0\6 xy* dx dy 2 .fol LZX (x — y) dy dx

3. fol [; (I + 2y) dydx 4. JOZ fyzyxydxdy

S S e

0

7-18 Evaluate the double integral.

1([ran D=ip|-1=y=1 -y-2=x=y

D
y
B.gxs_l_ld/l, D={xy|0=sx=<1 0=<y= x4

9. ﬁXdA, D={(xy|0sx<m 0<ys<sinx}
D

0. [[x'dA D={(xp[1<x<e0<y<inx
D
1. j‘J‘yzewdA, D={(xy|0<y<4 0<x<y}

D

12. jJQXVyZ_Xz dA, D={(xy|0<y<1 0=<x<y

D
(3] ﬂ xcos ydA, Disbounded by y=0, y=x% x=1
D

14, ﬂ (x+ y) dA, Disbounded by y = \/x and y = x*
D

15. ([ 52 aA,
i
D is the triangular region with vertices (0, 2), (1, 1), (3, 2)

16. ﬂ xy? dA, Disenclosed by x = 0and x = /1 — y?2
D

CuuDuongThanCong.com

jj @2x— y) dA,
D

D is bounded by the circle with center the origin and radius 2
18. [ ' 2xy dA, Dis the triangular region with vertices (0, 0),

D
(1,2), and (0, 3)

19-28 Find the volume of the given solid.

19. Under the plane x + 2y — z = 0 and above the region
bounded by y = xand y = x*

20. Under the surface z = 2x + y* and above the region bounded
by x = y*and x = y*

[21.] Under the surface z = xy and above the triangle with vertices
(1,1), (4,1), and (1, 2)

22. Enclosed by the paraboloid z = x* + 3y* and the planes x = 0,
y=1y=xz=0

23. Bounded by the coordinate planes and the plane
3x+2y+z=6

24. Bounded by the planesz = x, y=x, x + y = 2,and z = 0

25. Enclosed by the cylinders z = x% y = x* and the planes
=0 y=14

26. Bounded by the cylinder y* + z* = 4 and the planes x = 2y,
x =0, z=0in the first octant

27. Bounded by the cylinder x* + y? = 1 and the planes y = z,
x =0, z =0 in the first octant

28. Bounded by the cylinders x* + y* = r’and y* + z* = r?

/129. Use a graphing calculator or computer to estimate the

x-coordinates of the points of intersection of the curves y = x*

and y = 3x — x% If Dis the region bounded by these curves,
estimate [[,, x dA.
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30. Find the approximate volume of the solid in the first octant
that is bounded by the planes y = x, z = 0, and z = xand
the cylinder y = cos x. (Use a graphing device to estimate
the points of intersection.)

31-32 Find the volume of the solid by subtracting two volumes.

31. The solid enclosed by the parabolic cylinders
y=1—x%y=x*—1andthe planes x + y + z = 2,
2x+2y—z+10=0

32. The solid enclosed by the parabolic cylinder y = x* and the
planesz =3y,z =2+ y

33-34 Sketch the solid whose volume is given by the iterated

integral.

1 [1-x 1 [1-%
33. fo [0 —x—pdyax 3 fo fo (1 — x) dydx

35-38 Use a computer algebra system to find the exact volume
of the solid.

35.

36.

37.
38.

Under the surface z = x*y* + xy? and above the region
bounded by the curves y = x* — xand y = x* + xfor x= 0

Between the paraboloids z = 2x* + y* and
z =8 — x* — 2y* and inside the cylinder x* + y* = 1

Enclosed by z =1 — x* — y*andz = 0

Enclosed by z = x* + y?and z = 2y

973

51-52 Express D as a union of regions of type I or type II and
evaluate the integral.

51 ([ x2 a4 52. ([ yaa

i j
y
y1 L x=y—y’
(1,1 _ 2
D y=(x+1
—1
-1 0 1 X 0 ¥
-1
-1

53-54 Use Property 11 to estimate the value of the integral.

53.

ﬂ e W dA,  (Qis the quarter-circle with center the origin

and radius 3 in the first quadrant

54. ﬂ sin‘(x + y) dA, Tis the triangle enclosed by the lines

T
y=0,y=2xandx=1

55-
55.

56.

56 Find the average value of fover region /).

f(x, y) = xy, Dis the triangle with vertices (0, 0), (1, 0),
and (1, 3)
f(x,y) = xsiny, Dis enclosed by the curves y = 0,

y=x%andx=1

39-44 Sketch the region of integration and change the order of
integration.
f4 (VX (14
39. jo jo f(x, y) dy dx 40. jo J“ f(x, y) dy dx
3 V97 3 (Vo
41. fo [_W f(x, y) dx dy 4. L ‘[0 (x, y) dx dy
-f “f(x, y) dy dx 44. f 7/4 f(x, y) dy dx
Jarctan x
45-50 Evaluate the integral by reversing the order of integration.
"1 3 2 v\/; '«/; )
jo Lye dx dy 46. jo Jy cos(x?) dx dy

47f \xy3+1

49.

50.

dy dx e dy dx

w [

f cos x+/1 + cos?x dxdy
arcsm}

j;s Lzy e’ dxd ly

CuuDuongThanCong.com

57.

Prove Property 11.

In evaluating a double integral over a region D, a sum of

59.

60.

6l.

(AS] 62.

iterated integrals was obtained as follows:

" [l '3 (3-y
JJ f(x,y) dA = jo JU f(x,y) dxdy + Jl jo f(x, y) dxdy
D
Sketch the region [ and express the double integral as an
iterated integral with reversed order of integration.

Evaluate ([, (x*tan x + y* + 4) dA, where
D={(x,y) | x* + y* < 2}. [Hint: Exploit the fact that
D is symmetric with respect to both axes.]

Use symmetry to evaluate ([, (2 — 3x + 4y) dA, where D
is the region bounded by the square with vertices (£5, 0)
and (0, =5).

Compute [[,+/1 — x* — y? dA where Dis the disk
x* + y* < 1, by first identifying the integral as the volume
of a solid.

Graph the solid bounded by the plane x + y + z = 1 and
the paraboloid z = 4 — x* — y* and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
the boundary curves of the region of integration, and to eval-
uate the double integral.)
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154

DOUBLE INTEGRALS IN POLAR COORDINATES

\0

FIGURE 1|

]

FIGURE 2

CuuDuongThanCong.com

Suppose that we want to evaluate a double integral ([, f(x, y) dA, where R is one of the
regions shown in Figure 1. In either case the description of K in terms of rectangular coor-
dinates is rather complicated but R is easily described using polar coordinates.

y y

@
<

(@ R={r,0)|0=<r<1,0<6<2mw} b)) R={r,0)|1sr=<2,0s0<m}

+y’=1 X4yi=4

@V

Recall from Figure 2 that the polar coordinates (r, 0) of a point are related to the rect-
angular coordinates (x, y) by the equations

rfr=x+y Xx=rcos 0 y=rsin 0

(See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle

R={ro|asr<ba<o<p}

which is shown in Figure 3. In order to compute the double integral [, f(x, y) dA, where
R is a polar rectangle, we divide the interval [a, b] into m subintervals [r,-1, r;] of equal
width Ar = (b — a)/m and we divide the interval [«, B] into n subintervals [0, 6;] of
equal width A§ = (B — «)/n. Then the circles r = r;and the rays 0 = 6, divide the polar
rectangle R into the small polar rectangles shown in Figure 4.

/
/ P
B_~
/v/\/\a

0

FIGURE 3 Polar rectangle FIGURE 4 Dividing Rinto polar subrectangles
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The “center” of the polar subrectangle
Ry={r0|r<sr=no.<0<0}

has polar coordinates

7 =Y + 1) 0f =3(6-1 + 6)

We compute the area of R;; using the fact that the area of a sector of a circle with radius r
and central angle 6 is ;r*6. Subtracting the areas of two such sectors, each of which has
central angle A§ = 6, — 6,—1, we find that the area of R; is

AA = 31700 — 51t AG = 5 (rF = r21) A6
=Y+ ) — 1) A = 1 ArAg

Although we have defined the double integral [, f(x, y) dA in terms of ordinary rect-
angles, it can be shown that, for continuous functions /, we always obtain the same
answer using polar rectangles. The rectangular coordinates of the center of R; are
(rf cos 0, i sin 6}), so a typical Riemann sum is

(1] X X A5 cos OF, rf sin 6f) AA, = 3, > f(rf cos 6], ri sin 6]) 1} ArA6

=1 j-1 i~1 j-1

If we write g(r, 0) = rf(rcos 6, rsin ), then the Riemann sum in Equation 1 can be writ-
ten as

m n

2 2 g, 6f) ArAe

=1 j=1

which is a Riemann sum for the double integral

f f Lb g(r, 6) dr do

Therefore we have

m n

lim Y, > £(rf cos 6], rf sin ) A4,

m o= g e

Jf f(x, y) dA
R

m 1

lim Y S gl 0F) ArAo = J‘beg(r, 9) dr do

m o= ) a Ja

= J‘B Jb f(rcos 6, rsin 0) rdr d

CHANGE TO POLAR COORDINATES IN A DOUBLE INTEGRAL If fis con-
tinuous on a polar rectangle Rgivenby 0 < a< r=< b, a < 6 < 3, where
0<pB — a =2, then

— (A (? .
g A(x, y) dA L L f(rcos 0, rsin 0) r dr do
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The formula in (2) says that we convert from rectangular to polar coordinates in a
double integral by writing x = rcos 6 and y = rsin 6, using the appropriate limits of

[@ integration for rand 6, and replacing dA by r dr d6. Be careful not to forget the additional

FIGURE 5

= Here we use the trigonometric identity
sin?6 =1 (1 — cos 26)

See Section 7.2 for advice on integrating
trigonometric functions.

FIGURE 6

CuuDuongThanCong.com

factor r on the right side of Formula 2. A classical method for remembering this is shown
in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an ordinary rect-
angle with dimensions r df and dr and therefore has “area” dA = r dr dé.

0

EXAMPLE | Evaluate |[,(3x + 4y*) dA, where Ris the region in the upper half-plane
bounded by the circles x* + y* = 1 and x* + y* = 4.

SOLUTION The region R can be described as
R:{(X,y) |y>0’ 1§X2+y2$4}

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by 1 < r < 2,
0 =< 0 =< . Therefore, by Formula 2,

ﬂ (Bx + 4y*) dA = Lﬂ J'IZ (3rcos 8 + 4r’sin’0) rdr do

R

= Lﬂ flz (3% cos 0 + 41°sin’0) dr do

=

= joﬂ [r3 cosf + r' sinZH],;f do = fﬂw (7 cos 6 + 15sin’) db

= joﬂ [7 cos 0 + %(1 — cos 20)] do

=7sin0+ﬁ—£sin20 =15—7T [ |
2 4 0 2

i1 EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the parabo-
loidz =1 — x* — y~

SOLUTION If we put z = 0 in the equation of the paraboloid, we get x* + y* = 1. This
means that the plane intersects the paraboloid in the circle x> + y* = 1, so the solid
lies under the paraboloid and above the circular disk D given by x* + y* < 1 [see
Figures 6 and 1(a)]. In polar coordinates Dis givenby 0 < r< 1,0 < 6 < 2. Since
1 — x* — y* =1 — r? the volume is

V= ” (1—x*—y")dA= f;ﬂj‘@l (1 = r*)rdrde

D

2 !
o 2m 1 3 _ r _ r _ 1
_‘[O de‘[o (r—r*)dr 277[—2 —] ;
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D
/
/
/B 0=a
%:K
% r=nm(o)
FIGURE 7

D={(r,0)|a= 6= B. h(0)<r=hy6)}

FIGURE 8
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If we had used rectangular coordinates instead of polar coordinates, then we would have
obtained

V= Jf (1—x*— y?)dA = J‘_llfg(l — X2 = y¥)dydx
D

which is not easy to evaluate because it involves finding [ (1 — x*)** dx. [ |

What we have done so far can be extended to the more complicated type of region
shown in Figure 7. It’s similar to the type II rectangular regions considered in Section 15.3.
In fact, by combining Formula 2 in this section with Formula 15.3.5, we obtain the fol-
lowing formula.

[3] If fis continuous on a polar region of the form

D={(r )| a=6=p, n(6) =r= (o)}

then ” f(x, y) dA = J: JI::::) f(rcos 0, rsin 0) r dr do

D

In particular, taking f(x, y) = 1, m(6) = 0, and m(6) = h(6) in this formula, we see
that the area of the region D bounded by 6 = «, 6 = 3, and r = h(6) is

A(D) = f [1d4= JB jo”“)rdrde
D

h(6)
- F [%2] db = [*3me)Y do

a 0
and this agrees with Formula 10.4.3.

i1 EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the four-
leaved rose r = cos 26.

SOLUTION From the sketch of the curve in Figure 8, we see that a loop is given by the
region

D={(r, 0| —m/4<60<m/4 0<r= cos 26}
So the area is

/4 cos 26

A= [faa=["],

[_”i j4 [1r2]5% g = L |_”1/T j4 cos?20 db

rdrdo

%fi; (1 + cos 40) do = %[6 + Isin 40]7_7/:/4 = % o
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(=12 +y* =1

I EXAMPLE 4 Find the volume of the solid that lies under the paraboloid z = x* + y?,
above the xy-plane, and inside the cylinder x* + y* = 2x.

SOLUTION The solid lies above the disk [ whose boundary circle has equation
x* + y* = 2xor, after completing the square,

(x— 1%+ y =1
J

(See Figures 9 and 10.) In polar coordinates we have x* + y* = r and x = rcos 6, so
the boundary circle becomes r* = 2rcos 6, or r = 2 cos 6. Thus the disk D is given by

FIGURE 9 D={(r,0)| -w/2<0<m/2 0<r=<2cosf}
V4
and, by Formula 3, we have
2 cos 6
_ 2 2 _ (/2 2 cos 6 2 _ /2 i
14 g(x + y%) dA J_”/ZL rdrdo L/Z [ . ]D do
Eé_ , , T, 1+ 29 2
=4[™ cos'0do =8 cos'odn =8 | <A) do
—m/2 0 Jo 2
) = 2" [1+ 2cos 20 +3(1 + cos 40)] ao
Y 3 3
_ 3 . 1. w2 9 1 :_77
FIGURE 10 —2[20+sm20+gsm40]0 —2<2><2> > |

| 15.4| EXERCISES

1-4 A region R is shown. Decide whether to use polar coordinates
or rectangular coordinates and write Jf « [(x. y) dA as an iterated
integral, where £ is an arbitrary continuous function on R.

II| y 2. y
/“—\ 1 y=1-x2
0 4 x
—1 0 1 X

CuuDuongThanCong.com

5-6 Sketch the region whose area is given by the integral and eval-
uate the integral.

5. j:" j: rdrdf 6. fo"/ : f: 1 dr do

7-14 Evaluate the given integral by changing to polar coordinates.
1. ([, xy dA,
where /) is the disk with center the origin and radius 3

8. ([, (x + y) dA, where Ris the region that lies to the left of the
y-axis between the circles x* + y* = 1 and x* + y* = 4

9. [[,cos(x* + y*) dA, where Ris the region that lies above the
x-axis within the circle x* + y* =9

10. [, — % — 7 dA,

V;/hereR:{(X,)/HXZ +yP<4, x=0}

(L] [[, e dA, where Dis the region bounded by the
semicircle x = /4 — y? and the y-axis

12. ([, ye"dA, where Ris the region in the first quadrant enclosed
by the circle x* + y* = 25

https://fb.com/tailieudientucntt
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[13.] [f,arctan( y/x) dA.,
where R={(x, ) |1sx*+y'<4, 0sys<x}

14. [f, x dA, where Dis the region in the first quadrant that lies
between the circles x* + y? = 4 and x* + y* = 2x

15-18 Use a double integral to find the area of the region.

[15.] One loop of the rose r = cos 36

16. The region enclosed by the curve r = 4 + 3 cos 6

17. The region within both of the circles r = cos 6 and r = sin 6

18. The region inside the cardioid r = 1 + cos 0 and outside the
circle r = 3 cos f

19-27 Use polar coordinates to find the volume of the given solid.

19. Under the cone z = +/x2 + y? and above the disk x* + y’ < 4

20. Below the paraboloid z = 18 — 2x* — 2y” and above the
xy-plane

21. Enclosed by the hyperboloid —x* — y* + z2 = 1 and the
plane z = 2

22. Inside the sphere x* + y* + z? = 16 and outside the
cylinder x* + y* = 4

23. A sphere of radius a

24. Bounded by the paraboloid z = 1 + 2x* + 2y* and the
plane z = 7 in the first octant

[25. Above the cone z = /x2 + y? and below the sphere
X+ y+2=1

26. Bounded by the paraboloids z = 3x” + 3y* and
z=4— x*—

27. Inside both the cylinder x* + y* = 4 and the ellipsoid
4x* + 4y + 2 = 64

28. (a) A cylindrical drill with radius r is used to bore a hole
through the center of a sphere of radius r». Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height A of
the ring. Notice that the volume depends only on 4, not
on ry Or r3.

29-32 Evaluate the iterated integral by converting to polar
coordinates.

)1 s o [T v

0 J—al—y

32. ‘[02 [(;/m Vx* + y?dydx

31. lol f;m (x + y) dxdy

CuuDuongThanCong.com
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33. A swimming pool is circular with a 40-ft diameter. The depth
is constant along east-west lines and increases linearly from
2 ft at the south end to 7 ft at the north end. Find the volume of
water in the pool.

34. An agricultural sprinkler distributes water in a circular pattern
of radius 100 ft. It supplies water to a depth of e " feet per hour
at a distance of r feet from the sprinkler.

(@) If 0 < R < 100, what is the total amount of water supplied
per hour to the region inside the circle of radius K centered
at the sprinkler?

(b) Determine an expression for the average amount of water
per hour per square foot supplied to the region inside the
circle of radius K.

[35.] Use polar coordinates to combine the sum

"1 [ x NS AN
Jl/ﬁJmeddeJr L JO xy dy dx + Jﬂ,‘o xy dy dx
into one double integral. Then evaluate the double integral.

36. (a) We define the improper integral (over the entire plane R?)

= H e gA = ’m ’m e dy dx
o U

a—>x

= lim j f e qA
Da

where 1), is the disk with radius a and center the origin.
Show that

EO ‘; eV gA = 7

(b) An equivalent definition of the improper integral in part (a)
is

l[ e W) dA = lim “ e dA

a—e J

R Sa

where S, is the square with vertices (*=a, *a). Use this to
show that

jf e dx [j e dy=1
(c) Deduce that
j_w e dx = \/;
(d) By making the change of variable 7 = /2 x, show that

f X2 dx = 27

(This is a fundamental result for probability and statistics.)

37. Use the result of Exercise 36 part (c) to evaluate the following
integrals.

(a) J: X2 dx

(b) J: Vx e dx
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15.5

APPLICATIONS OF DOUBLE INTEGRALS

We have already seen one application of double integrals: computing volumes. Another
geometric application is finding areas of surfaces and this will be done in Section 16.6. In
this section we explore physical applications such as computing mass, electric charge, cen-
ter of mass, and moment of inertia. We will see that these physical ideas are also impor-
tant when applied to probability density functions of two random variables.

DENSITY AND MASS

y
()
D
0 X
FIGURE |
y Wi i) Ry
i
0 X
FIGURE 2

CuuDuongThanCong.com

In Section 8.3 we were able to use single integrals to compute moments and the center of
mass of a thin plate or lamina with constant density. But now, equipped with the double
integral, we can consider a lamina with variable density. Suppose the lamina occupies a
region D of the xy-plane and its density (in units of mass per unit area) at a point (x, y) in
Dis given by p(x, y), where p is a continuous function on ) This means that

Am

,y) = lim——
p(x, y) im A

where Am and AA are the mass and area of a small rectangle that contains (x, y) and the
limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass m of the lamina, we divide a rectangle R containing D into sub-
rectangles R; of equal size (as in Figure 2) and consider p(x, y) to be 0 outside D. If
we choose a point (x;;, y;) in R, then the mass of the part of the lamina that occupies £,
is approximately p(x;, y}) AA, where AA is the area of K. If we add all such masses, we
get an approximation to the total mass:

k1

m=~ 3 % p(xj. yj) AA

i1 j-1

If we now increase the number of subrectangles, we obtain the total mass m of the lamina
as the limiting value of the approximations:

M m=1im 33 p(xf, ) A4 = || p(x y) aA

e ) =1 5

Physicists also consider other types of density that can be treated in the same manner.
For example, if an electric charge is distributed over a region D and the charge density (in
units of charge per unit area) is given by o'(x, y) at a point (x, y) in D, then the total charge
Qs given by

bl 0= [[ oxy as

D
EXAMPLE | Charge is distributed over the triangular region D in Figure 3 so that the

charge density at (x, y) is o(x, y) = xy, measured in coulombs per square meter (C/m?).
Find the total charge.
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SOLUTION From Equation 2 and Figure 3 we have

Q= ﬂ o(x, y) dA = fol L]_Xxy dy dx
D

N T

0 y=1-x 02
1
17 2 .3 _ 1 2_X3 _ ﬁ - S
), @6 =) dx 2[3 1|, "2
Thus the total charge is 3; C. [

MOMENTS AND CENTERS OF MASS

In Section 8.3 we found the center of mass of a lamina with constant density; here we con-
sider a lamina with variable density. Suppose the lamina occupies a region D and has den-
sity function p(x, y). Recall from Chapter 8 that we defined the moment of a particle about
an axis as the product of its mass and its directed distance from the axis. We divide D into
small rectangles as in Figure 2. Then the mass of R, is approximately p(x}, y;;) A4, so we
can approximate the moment of K;; with respect to the x-axis by

[p(x}. yi) AAlyj

If we now add these quantities and take the limit as the number of subrectangles becomes
large, we obtain the moment of the entire lamina about the x-axis:

B M,= lim X X yjp(xf. yi) AA = ﬂ yp(x, y) dA
D

m, =% o ]

Similarly, the moment about the y-axis is

m n

[ M= tim 3 x5 p(f, ) A = [ xp(x,y) dA
D

m, >0 )

As before, we define the center of mass (%, y) so that mx = M, and ny = M,. The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center
of mass. Thus the lamina balances horizontally when supported at its center of mass (see
Figure 4).

[5] The coordinates (X, y) of the center of mass of a lamina occupying the region
D and having density function p(x, y) are

=%ﬁxp(x,y) dA 5/=%=%ﬁ}’ﬂ(&}’) dA

X =

M
m

where the mass m is given by

m= [ p(x y) aA
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i1 EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices
(0, 0), (1, 0), and (0, 2) if the density function is p(x, ) = 1 + 3x + y.
y SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper boundary
0,2) 1 is y= 2 — 2x.) The mass of the lamina is
y=2-—2x -2y
m= ﬂ p(x, y) dA = jol JOZ : (I +3x+ y) dydx
31 b
./(8 l()) ” o |22k 3! 8
1 X
D =‘ [y+3xy+L] dx=4f (l—XZ)dx=4[X——] =—
: vo 2 »=0 v 31 3
0 1,0) X
Then the formulas in (5) give
FIGURE 5 I 3 122 )
X—;Jb} Xp()(,}/)dA—gJ0 Jo (x + 3x* + xy) dy dx
y=2—2x
3 A A .
=—J Xy+3xzy+xy— dX=%J1(X—X3)dX
8 0 2 =0 0
_3 [_ _ _] _3
2] 2 41, 8
- 1 3l )
V= mij yp(x ) dA = sfo |, 7t 3xy + ) dydx
=2-2x
3 )/2 yz y3 Ve .
=§~0 |:7 + 3X7 +? . dx=ijo (7 — 9x — 3x* + 5x°) dx
y=
1 % A1 1
=—|Tx—9=—-xX+5—| =—
4 [ * ey ]0 16
The center of mass is at the point (g %) |
i EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the
distance from the center of the circle. Find the center of mass of the lamina.
y SOLUTION Let’s place the lamina as the upper half of the circle x* + y* = a’. (See Fig-
a R ure 6.) Then the distance from a point (x, y) to the center of the circle (the origin) is
) Vx? + y?. Therefore the density function is
D 3a
o.37) p(x ) = KJx* + y?
4 0 ad & where K is some constant. Both the density function and the shape of the lamina suggest
that we convert to polar coordinates. Then +/x? + y? = rand the region D is given by
0 <r=a 0= 6= 7 Thus the mass of the lamina is
FIGURE 6

CuuDuongThanCong.com

m= ‘Qﬁ p(x, y) dA = ‘g Kyx* + y* dA = foﬂ j: (Kr) rdrde

|

Both the lamina and the density function are symmetric with respect to the y-axis, so the

['3

3

_ Knd
3

= Kfoﬂ dOJ: r’dr= K
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Compare the location of the center of mass in
Example 3 with Example 4 in Section 8.3, where
we found that the center of mass of a lamina
with the same shape but uniform density is
located at the point (0, 4a/(3m)).
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center of mass must lie on the y-axis, that is, x = 0. The y-coordinate is given by

y= %H ypx y) dA = Kia3 fowfoa rsin 6 (Kr) r dr do
D

= 71-333 joﬂsin()d() J:r3dr= 3 [—cos 9]; [%4]0

wa’
_ 3 2 _3a
ma® 4 2
Therefore the center of mass is located at the point (0, 3a/(27)). [ |

MOMENT OF INERTIA

The moment of inertia (also called the second moment) of a particle of mass m about an
axis is defined to be mr?, where ris the distance from the particle to the axis. We extend
this concept to a lamina with density function p(x, y) and occupying a region D by pro-
ceeding as we did for ordinary moments. We divide D into small rectangles, approximate
the moment of inertia of each subrectangle about the x-axis, and take the limit of the sum
as the number of subrectangles becomes large. The result is the moment of inertia of the
lamina about the x-axis:

8] L= lim 3 % () plxj. yi) A = ([ ¥px. ) aa
=1 j= v

m n—>% ;_
D

Similarly, the moment of inertia about the y-axis is

L= lim X X (x;)p(x;, yi)AA = f J x*p(x, y) dA
D

m = ] -]

It is also of interest to consider the moment of inertia about the origin, also called the
polar moment of inertia:

= 1im 33 [+ Gt ad = [[ (2 + ol ) aa
=1 j=1 D

m, n—%.

Note that [y = I, + I,.
7 EXAMPLE 4 Find the moments of inertia /,, /,, and J; of a homogeneous disk D with

density p(x, y) = p, center the origin, and radius a.

SOLUTION The boundary of Dis the circle x* + y* = a® and in polar coordinates D is
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described by 0 < 6 < 27, 0 < r =< a. Let’s compute [ first:

Iy= U (x> + yH)p dA = pJ:ﬂ Jﬂa r’rdrdf
D

4 ]2 4
2 ta 3 _ f_ _ mpa
P, dGJU r’dr= 27Tp|: 1 ]0 —

Instead of computing I, and I, directly, we use the facts that [, + I, = Iy and I, = I,
(from the symmetry of the problem). Thus

_ b _ mpa’
2 4

In Example 4 notice that the mass of the disk is
m = density X area = p(mwa’)

so the moment of inertia of the disk about the origin (like a wheel about its axle) can be
written as
1
mpa
b= =}(pra’)a’ = jma
Thus if we increase the mass or the radius of the disk, we thereby increase the moment of
inertia. In general, the moment of inertia plays much the same role in rotational motion
that mass plays in linear motion. The moment of inertia of a wheel is what makes it diffi-
cult to start or stop the rotation of the wheel, just as the mass of a car is what makes it dif-
ficult to start or stop the motion of the car.
The radius of gyration of a lamina about an axis is the number R such that

2

9] mR* = [

where m is the mass of the lamina and / is the moment of inertia about the given axis.
Equation 9 says that if the mass of the lamina were concentrated at a distance K from the
axis, then the moment of inertia of this “point mass” would be the same as the moment of
inertia of the lamina.

In particular, the radius of gyration y with respect to the x-axis and the radius of gyra-
tion x with respect to the y-axis are given by the equations

my* = I mx* = I,

Thus (%, y) is the point at which the mass of the lamina can be concentrated without chang-
ing the moments of inertia with respect to the coordinate axes. (Note the analogy with the
center of mass.)

i EXAMPLE 5 Find the radius of gyration about the x-axis of the disk in Example 4.

SOLUTION As noted, the mass of the disk is m = pma®, so from Equations 10 we have

1
, _ L _ampat _ 2’
m pma’ 4

<l

Therefore the radius of gyration about the x-axis is y = 3 a, which is half the radius of
the disk. u
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PROBABILITY

In Section 8.5 we considered the probability density function f of a continuous random
variable X. This means that f(x) = 0 for all x, [*, f(x) dx = 1, and the probability that X
lies between a and b is found by integrating f from a to b:

Pa<X<bh = ["f(x) dx

Now we consider a pair of continuous random variables X and Y, such as the lifetimes
of two components of a machine or the height and weight of an adult female chosen at ran-
dom. The joint density function of X'and Y'is a function f of two variables such that the
probability that (X, ¥) lies in a region D is

AKX V)€ D) = (| fixp aa

D

In particular, if the region is a rectangle, the probability that Xlies between a and b and ¥
lies between c and dis

PasX<sb csY<sd= Lbf:f(x,y) dy dx

(See Figure 7.)

FIGURE 7

The probability that Xlies between
aand band Ylies between cand d
is the volume that lies above the
rectangle D = [a, b] X [¢, d] and
below the graph of the joint
density function.

Because probabilities aren’t negative and are measured on a scale from 0 to 1, the joint
density function has the following properties:

fx ) =0 ﬂf(x,y)dA=1

R?

As in Exercise 36 in Section 15.4, the double integral over R” is an improper integral
defined as the limit of double integrals over expanding circles or squares and we can write

ﬂ f(x, y) dA = j; [: fx.y) dxdy =1
)
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EXAMPLE 6 If the joint density function for X'and Yis given by

Ox+2y if0=<x=<10, 0<y=<10
flx,y) =
(x.) {0 otherwise
find the value of the constant C. Then find PX< 17, Y= 2).

SOLUTION We find the value of C by ensuring that the double integral of fis equal to 1.
Because f(x, y) = 0 outside the rectangle [0, 10] X [0, 10], we have

1

[ Ay ayar= [ [ Qe+ 29 dyax= [ [y + I ax
- CJ;IO (10x + 100) dx = 1500C

Therefore 1500C = 1 and so C = 1a;.
Now we can compute the probability that Xis at most 7 and Yis at least 2:

(7 o 7 (10
AX<T, Y=2) =J_wL (x, y) dydx=f0 L o (x + 2y) dy dx

7 - 7
=ﬁ100f0 [Xy+y2y};;0dx=ﬁf0 (8x + 96) dx

— 58 05787 -

Suppose Xis a random variable with probability density function fi(x) and Yis a ran-
dom variable with density function £(y). Then Xand Y are called independent random
variables if their joint density function is the product of their individual density functions:

f(x,y) = £(x) £(y)

In Section 8.5 we modeled waiting times by using exponential density functions

0 if t<0
(1) =
0 {,u,_le_’/" if =0

where w is the mean waiting time. In the next example we consider a situation with two
independent waiting times.

EXAMPLE 7 The manager of a movie theater determines that the average time movie-
goers wait in line to buy a ticket for this week'’s film is 10 minutes and the average time
they wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent,
find the probability that a moviegoer waits a total of less than 20 minutes before taking
his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the waiting
time Yin the refreshment line are modeled by exponential probability density functions,
we can write the individual density functions as

0 if x<0 0 if y<0
h(x) = By =
i(x) {1106—;{/10 if x=0 287 {ée‘yﬁ' if y=0
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Since X 'and Yare independent, the joint density function is the product:

1 —=x/10 —y/5 if x=0 =0
flx, ) = £ B(y) =42 ¢ 1 4
() = £() &) {0 otherwise
We are asked for the probability that X + ¥ < 20:
PX+Y<200=RPX Y)eED

where D is the triangular region shown in Figure 8. Thus

(20

PX + Y<20) = JJ f(x, ) dA = | Jj”‘%e‘x/we—ﬂf* dy dx
D

0

1 20 _ _ =20—
=4 [ [eo=5)e 7 ax

20 _ oM/
_ % , e X/lO(l _ e(X 20)/b)dX

1 (20, _ _
0 , (6’ x/10 __ e 4ex/10)dX

=1+ e"'—2e%~0.7476

This means that about 75% of the moviegoers wait less than 20 minutes before taking
their seats. |

EXPECTED VALUES

Recall from Section 8.5 that if X'is a random variable with probability density function £
then its mean is

n= E@ xf(x) dx

Now if X'and Yare random variables with joint density function £, we define the X-mean
and Y-mean, also called the expected values of X'and Y, to be

1] = f f xf(x, y) dA pe = ﬂ yf(x, y) dA
o

R?

Notice how closely the expressions for w; and u; in (11) resemble the moments M, and M,
of a lamina with density function p in Equations 3 and 4. In fact, we can think of proba-
bility as being like continuously distributed mass. We calculate probability the way we cal-
culate mass—by integrating a density function. And because the total “probability mass”
is 1, the expressions for x and yin (5) show that we can think of the expected values of X
and Y, w1 and w2, as the coordinates of the “center of mass” of the probability distribution.

In the next example we deal with normal distributions. As in Section 8.5, a single ran-
dom variable is normally distributed if its probability density function is of the form

f(x) = e~ w2o?)

(o w

where u is the mean and o is the standard deviation.
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FIGURE 9

Graph of the bivariate normal joint
density function in Example 8
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EXERCISES

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X'and Yare
independent, write the joint density function and graph it. Find the probability that a
bearing randomly chosen from the production line has either length or diameter that
differs from the mean by more than 0.02 cm.

SOLUTION We are given that Xand Y are normally distributed with u; = 4.0, w2 = 6.0, and
o1 = o, = 0.01. So the individual density functions for X'and Yare

—(x—4)%/0.0002 o (7=67/0.0002

1 1
) = —— () = ———
0= Gorven © ‘W) = o1z

Since X'and Yare independent, the joint density function is the product:

]. YA —(v—R)2
f(X, }/) — [I‘(X) fé(}’) — 0 000277 e (x—4) /0'00026' (y—6)/0.0002
= w 6—5000[(X—4)Z+(.)’—6)Z]
m

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X'and Y differ from their means by less
than 0.02 cm. Using a calculator or computer to estimate the integral, we have

[6.02

P3.98 < X< 402,598 < Y<602) =" [0 fx p) dy dx

3.98

_ 5000 Jnmz [6.02 = SO00Lx 7 (-67] dy dx

T J398 Js08

~ (.91

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately

1 —-091=0.09 [

[1.] Electric charge is distributed over the rectangle 1 < x < 3, 4. D={(x»]|0=<x=<a0<y<hb} pxy) =cxy
0 < y < 2 so that the charge density at (x, ) is

o(x, y) = 2xy + y* (measured in coulombs per square meter).
Find the total charge on the rectangle.

2. Electric charge is distributed over the disk x* + y* < 4 so

[5] Dis the triangular region with vertices (0, 0), (2, 1), (0, 3);
pxy)=x+y

6. Dis the triangular region enclosed by the lines x = 0, y = x,
and 2x + y = 6; p(x,y) = x*

that the charge density at (x, y) is o°(x, y) = x + y + x* + y* ' .
(measured in coulombs per square meter). Find the total charge 7. Disbounded by y = €% y=0,x=0,and x = 1; p(x, ) = y
on the disk.

3-10 Find the mass and center of mass of the lamina that occupies

8. Disbounded by y=+/x, y=0,and x = 1: p(x,y) = x
9. D={(x,p)|0<y<sin(wx/L),0<x<1I}; p(x,y) =y

the region D and has the given density function p. 10. Dis bounded by the parabolas y = x* and x = y*

3. D={(xy|0=x=<2 -1=<y<1} p(xy =x/"

CuuDuongThanCong.com
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I1. A lamina occupies the part of the disk x* + y* < 1 in the
first quadrant. Find its center of mass if the density at any
point is proportional to its distance from the x-axis.

12. Find the center of mass of the lamina in Exercise 11 if the
density at any point is proportional to the square of its
distance from the origin.

13. The boundary of a lamina consists of the semicircles
y=+/1—x*and y = /4 — x” together with the portions
of the x-axis that join them. Find the center of mass of the
lamina if the density at any point is proportional to its dis-
tance from the origin.

14. Find the center of mass of the lamina in Exercise 13 if the
density at any point is inversely proportional to its distance
from the origin.

[I5] Find the center of mass of a lamina in the shape of an isos-

celes right triangle with equal sides of length a if the density
at any point is proportional to the square of the distance from

the vertex opposite the hypotenuse.

16. A lamina occupies the region inside the circle x* + y* = 2y

but outside the circle x* + y* = 1. Find the center of mass

if the density at any point is inversely proportional to its dis-

tance from the origin.

17. Find the moments of inertia /., /,, /y for the lamina of
Exercise 7.

18. Find the moments of inertia /,, /,, /o for the lamina of
Exercise 12.

19. Find the moments of inertia /,, /,, Iy for the lamina of
Exercise 15.

20. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the
blade is p(x, ) = 1 + 0.1x, is it more difficult to rotate the
blade about the x-axis or the y-axis?

21-22 Use a computer algebra system to find the mass, center

of mass, and moments of inertia of the lamina that occupies the

region D and has the given density function.
2. D={(xp|0<ys<sinx, 0<x<m}; pxy =xy

22. Dis enclosed by the cardioid r =1 + cos 6;

plx ) =7+

23-26 A lamina with constant density p(x, y) = p occupies the
given region. Find the moments of inertia 7, and /, and the radii

of gyration xand .

23. Therectangle 0 s x< b 0<y<#h

24. The triangle with vertices (0, 0), (b, 0), and (0, h)

25. The part of the disk x* + y* < a® in the first quadrant

26. The region under the curve y = sin x from x =0to x = 7
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The joint density function for a pair of random variables X

28,

and Yis
f(x.y) Cx(1+y if0sx<1,0sys<?2
X ) =
Y 0 otherwise
(a) Find the value of the constant C.
(b) Find AX<1,Y<1).
(c) Find AX+ Y<1).
. (a) Verify that

4xy if0<sx<1, 0<y=<1
f(&y)={0y s

is a joint density function.

(b) If X'and Y are random variables whose joint density func-
tion is the function £ in part (a), find
0 Plx=3) G Px=4r=<i)

(c) Find the expected values of Xand Y.

otherwise

Suppose X'and Y are random variables with joint density

30.

(|31,

32.

function
0 1 e (0.5x+0.2y)

f(x, y) = {0

(a) Verify that £ is indeed a joint density function.
(b) Find the following probabilities.

G AY=1) (i) AX<2 Y<4
(c) Find the expected values of X and Y.

if x=0, y=0
otherwise

(@) A lamp has two bulbs of a type with an average lifetime
of 1000 hours. Assuming that we can model the proba-
bility of failure of these bulbs by an exponential density
function with mean p = 1000, find the probability that
both of the lamp’s bulbs fail within 1000 hours.

(b) Another lamp has just one bulb of the same type as in
part (a). If one bulb burns out and is replaced by a bulb
of the same type, find the probability that the two bulbs
fail within a total of 1000 hours.

Suppose that X and Y are independent random variables,
where X is normally distributed with mean 45 and standard
deviation 0.5 and Y is normally distributed with mean 20 and
standard deviation 0.1.

(a) Find P40 < X' < 50,20 < Y=< 25).

(b) Find P(4(X — 45)* + 100(Y — 20)* < 2).

Xavier and Yolanda both have classes that end at noon and
they agree to meet every day after class. They arrive at the
coffee shop independently. Xavier's arrival time is X and
Yolanda's arrival time is ¥, where X and Y are measured in
minutes after noon. The individual density functions are

fo e =0 sy if 0<y<10
1 0 ifx<0 ’ 0  otherwise

(Xavier arrives sometime after noon and is more likely to
arrive promptly than late. Yolanda always arrives by 12:10 PM
and is more likely to arrive late than promptly.) After Yolanda
arrives, she’ll wait for up to half an hour for Xavier, but he
won'’t wait for her. Find the probability that they meet.
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33. When studying the spread of an epidemic, we assume that the (a) Suppose the exposure of a person to the disease is the
probability that an infected individual will spread the disease to sum of the probabilities of catching the disease from all
an uninfected individual is a function of the distance between members of the population. Assume that the infected
them. Consider a circular city of radius 10 mi in which the people are uniformly distributed throughout the city, with
population is uniformly distributed. For an uninfected indi- k infected individuals per square mile. Find a double
vidual at a fixed point A(xo, yo), assume that the probability integral that represents the exposure of a person residing
function is given by at A.

_iron _ (b) Evaluate the integral for the case in which A is the center
) = ul20 = AP A)] of the city and for the case in which A is located on the
where d(P, A) denotes the distance between P and A. edge of the city. Where would you prefer to live?
15.6 | TRIPLE INTEGRALS

FIGURE |

CuuDuongThanCong.com

Just as we defined single integrals for functions of one variable and double integrals for
functions of two variables, so we can define triple integrals for functions of three variables.
Let’s first deal with the simplest case where f is defined on a rectangular box:

1] B={(X,}/,Z)|c’i$)($b,CS}/Sd,I‘SZSS}

The first step is to divide B into sub-boxes. We do this by dividing the interval [a, b] into
I'subintervals [x,—1, x;] of equal width Ax, dividing [ ¢, d] into m subintervals of width Ay,
and dividing [r, s] into n subintervals of width Az. The planes through the endpoints of
these subintervals parallel to the coordinate planes divide the box B into /mn sub-boxes

Bk = [xi1, ] X [yi-1, ] X [zi1, 2]

which are shown in Figure 1. Each sub-box has volume AV = AxAyAz.
Then we form the triple Riemann sum

B 3

=1

* %
f ijk, Yijks Zijk) AV

M=
-

<.
I
—_

where the sample point (x5, yi z.) is in By By analogy with the definition of a double
integral (15.1.5), we define the triple integral as the limit of the triple Riemann sums in (2).

[3] DEFINITION The triple integral of f over the box Bis

([ #(x y,2) av = e Vi ) AV
J‘gf(xyz)d lim EEEf(X z75%)

Lmn=>% | j-1 =1

if this limit exists.

Again, the triple integral always exists if f is continuous. We can choose the sample
point to be any point in the sub-box, but if we choose it to be the point (x; y;, zx) we get a
simpler-looking expression for the triple integral:

0 ] ] =1

(If 1x 32 av=  Jim S S S My ) AV

Just as for double integrals, the practical method for evaluating triple integrals is to
express them as iterated integrals as follows.
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E FUBINI’S THEOREM FOR TRIPLE INTEGRALS If fis continuous on the rectan-
gular box B = [a, b] X [¢, d]| X [r, s], then

ﬂJ f(x, y,2) dV = [: Ldj‘: f(x,y,2) dxdy dz
B

The iterated integral on the right side of Fubini’s Theorem means that we integrate first
with respect to x (keeping y and z fixed), then we integrate with respect to y (keeping z
fixed), and finally we integrate with respect to z. There are five other possible orders in
which we can integrate, all of which give the same value. For instance, if we integrate with
respect to y, then z, and then x, we have

HJ f(x, y,2) dV = Lb f: Ld f(x, y,z) dy dz dx
B

7 EXAMPLE | Evaluate the triple integral [[f, xyz* dV, where Bis the rectangular box
given by
B={(){,y,z)|0$x$l, —-l=s=y=<2, O$z$3}

SOLUTION We could use any of the six possible orders of integration. If we choose to
integrate with respect to x, then y, and then z, we obtain

”f xyz* dV = fos jzl {01 xyztdx dy dz = r r [XZ;ZZ ]"_1 dy dz
29, -1 L

0 x=0
2 2272
o3 2 _ 31 yz
_fo J—1 5 drd: J [ 1 ] dz

Now we define the triple integral over a general bounded region E in three-
dimensional space (a solid) by much the same procedure that we used for double integrals
(15.3.2). We enclose E in a box B of the type given by Equation 1. Then we define a
function /' so that it agrees with f on £ but is O for points in B that are outside £. By
definition,

(I o 3.2y av = [[[ Ax o) av

This integral exists if fis continuous and the boundary of E'is “reasonably smooth.” The
triple integral has essentially the same properties as the double integral (Properties 6-9 in
Section 15.3).

We restrict our attention to continuous functions fand to certain simple types of regions.
A solid region E'is said to be of type 1 if it lies between the graphs of two continuous func-
tions of x and y, that is,

[5] E= {(X, 720 |(x ) €D, wixy <z=<ux y)}
where D is the projection of £ onto the xy-plane as shown in Figure 2. Notice that the

upper boundary of the solid £ is the surface with equation z = u;(x, y), while the lower
boundary is the surface z = u(x, y).
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By the same sort of argument that led to Formula 15.3.3, it can be shown that if E'is a
type 1 region given by Equation 5, then

5 | rannglnen]a

The meaning of the inner integral on the right side of Equation 6 is that x and y are held

: 2= Uy, y) fixed, and therefore wi(x, y) and us(x, y) are regarded as constants, while £(x, y, z) is inte-
' grated with respect to z.
In particular, if the projection D of E onto the xy-plane is a type I plane region (as in
5 Figure 3), then
| z=uy(x, y)
o 11 | E={(xy2)a=x=b 90 =y=g0). ulx)=:=uwxy}
a
Wy= g,(,\ — g0) ¥ and Equation 6 becomes
FIGURE 3 . b (g (9 [uxy)
A type 1 solid region where the _Uf (% y,2) dV = L ng(x) Jul(w) (%, y, 2) d dy dx
projection D is a type I plane region £

If, on the other hand, Dis a type II plane region (as in Figure 4), then
E={xy2lc<y=d h() < x=< (), ulxy)<z=<ux )}

and Equation 6 becomes

h(y) Julxy)

([ e yezyav= """ [""" fx . 2) e dxy
L

FIGURE4 EXAMPLE 2 Evaluate ([[,z dV, where E is the solid tetrahedron bounded by the four
A type 1 solid region with a type II lanes x=0. v=0 =0 andx+ v+ z = 1
projection P Y ’ ' u '

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of
the solid region £ (see Figure 5) and one of its projection D on the xy-plane (see
Figure 6). The lower boundary of the tetrahedron is the plane z = 0 and the upper

FIGURE 5 FIGURE 6
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boundary is the plane x + y + z=1(orz =1 — x — y), so we use u(x, y) = 0 and
uy(x, y) = 1 — x — yin Formula 7. Notice that the planes x + y+ z=1landz =0
intersect in the line x + y =1 (or y = 1 — x) in the xy-plane. So the projection of E'is
the triangular region shown in Figure 6, and we have

[9] E={(X,}/,Z)|0§X§1,0S}/SI—X,OSZSI—X—}/}

This description of E as a type 1 region enables us to evaluate the integral as follows:

z=l-x—y
N (U [lex [lexmy o R Z2
fJszV— jo JO fo zdzdydx= ’0 {0 |:?i| dy dx
E vo v z=0
y=l-x
i :l'l _(1—)(—}/)3
Zjo Jo (I —x—yp°dydx ZJO [ — - dx
1
N m e L oA=L
i), (1= ax 6 [ 4|, -

A solid region E'is of type 2 if it is of the form
E={x 32| (52 €D u(y2) = x< uly 2}

where, this time, D is the projection of £ onto the yz-plane (see Figure 7). The back sur-
face is x = w(y, z), the front surface is x = wu,(y, z), and we have

(. 2)

JJJ f(x, y,2) dV= Jj |:JIUM 7 flxy,2) dX] dA

E D

X=(y,2)

FIGURE 7 A type 2 region FIGURE 8 A type 3 region
Finally, a type 3 region is of the form
E= {(x y2) | (x2) €ED wxz)<y< wlx z)}

where D is the projection of E onto the xz-plane, y = wi(x, z) is the left surface, and
y = uy(x, z) is the right surface (see Figure 8). For this type of region we have

1] Jﬂ f(x,y,2) dV = jj [IIUZ(“) f(x, ¥, 2) dy] dA
¥ D

(X, 2)
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m Visual 15.6 illustrates how solid
regions (including the one in Figure 9)
project onto coordinate planes.

FIGURE 9
Region of integration

FIGURE 10
Projection on xy-plane

z
xX’+z2=4

D,

FIGURE 11
Projection on xz-plane

[@] The most difficult step in evaluating a triple
integral is setting up an expression for the region
of integration (such as Equation 9 in Example 2).
Remember that the limits of integration in the
inner integral contain at most two variables, the
limits of integration in the middle integral con-
tain at most one variable, and the limits of inte-
gration in the outer integral must be constants.

CuuDuongThanCong.com

In each of Equations 10 and 11 there may be two possible expressions for the integral
depending on whether D is a type I or type II plane region (and corresponding to Equa-
tions 7 and 8).

7 EXAMPLE 3 Evaluate [[[,+/x* + z? dV where E'is the region bounded by the parabo-
loid y = x* + z% and the plane y = 4.

SOLUTION The solid E'is shown in Figure 9. If we regard it as a type 1 region, then we
need to consider its projection D, onto the xy-plane, which is the parabolic region in
Figure 10. (The trace of y = x* + z in the plane z = 0 is the parabola y = x%)

z

From y = x* + z? we obtain z = *./y — x?, so the lower boundary surface of £ is
z = —4/y — x* and the upper surface is z = /y — x?. Therefore the description of F as

a type 1 region is
E={(X,y,z)|—2$x$ 2, X*<y<4, —Jy—x* $z$«/y—xz}

and so we obtain

—-Jy—x

([[veFzav=" [ |7 e+ 2 ddyar
E

Although this expression is correct, it is extremely difficult to evaluate. So let’s
instead consider £ as a type 3 region. As such, its projection [ onto the xz-plane is the
disk x* + z? < 4 shown in Figure 11.

Then the left boundary of £ is the paraboloid y = x* + z” and the right boundary is
the plane y = 4, so taking wu(x, z) = x* + z? and u(x, z) = 4 in Equation 11, we have

[Jf JxE 4 z2 dV = JJ |:j42+ ) Jxt 4z dy] dA = ﬂ 4—x*—z2)xt+ 22 dA
‘E D, Xtz D,
Although this integral could be written as
f_zz j_\\ﬁ (4 — x* — 2%)Jx? + 22 dz dx

it's easier to convert to polar coordinates in the xz-plane: x = rcos 6, z = rsin 6. This
gives

fJJ VX242 dV= ﬂ 4—x*—z2)Jxt + 22 dA
Dy

E

= [OZW JOZ 4 - rrrdrde= foh de foz 4r® — r*ydr

J

¢ S 128n
— o - | =22 m
”[ 3 5 ]0 15
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APPLICATIONS OF TRIPLE INTEGRALS

Recall that if f(x) = 0, then the single integral |” f(x) dx represents the area under the
curve y = f(x) from ato b, and if f(x, y) = 0, then the double integral ||, f(x, y) dA rep-
resents the volume under the surface z = f(x, y) and above D. The corresponding inter-
pretation of a triple integral [[f, f(x, y,z) dV, where f(x, y,z) =0, is not very useful
because it would be the “hypervolume” of a four-dimensional object and, of course, that
is very difficult to visualize. (Remember that £ is just the domain of the function f; the
graph of f lies in four-dimensional space.) Nonetheless, the triple integral ||, f(x, y, z) dV
can be interpreted in different ways in different physical situations, depending on the phys-
ical interpretations of x, y, z and f(x, y, z).

Let’s begin with the special case where f(x, y, z) = 1 for all points in £. Then the triple
integral does represent the volume of E:

V(E)=gf dv

For example, you can see this in the case of a type 1 region by putting f(x, y,z) = 1 in
Formula 6:

Jﬂ 1dV= ‘Q‘ |:J-,,z(x,y) dZ] dA = L[ [uo(x, y) — w(x, y)] dA

w(x. y)

and from Section 15.3 we know this represents the volume that lies between the surfaces
z = w(x, y) and 7 = wx, y).

EXAMPLE 4 Use a triple integral to find the volume of the tetrahedron 7"bounded by the
planes x + 2y + z =2, x= 2y, x= 0, and z = 0.

SOLUTION The tetrahedron 7" and its projection D on the xy-plane are shown in Figures 12
and 13. The lower boundary of 7is the plane z = 0 and the upper boundary is the plane
x+ 2y+z=2,thatis,z=2 — x— 2y.

0,0,2)
y
x+2y=2
x=2y xX+2y+z=2 1 (ory=1—x/2)
D 1,1
0 0
y=x/2
0 i X
X
FIGURE 12 FIGURE 13

Therefore we have

= [ [ [ e
T

x/2

=f1 [I_X/Z(Z—x—Zy)dydx=%

0 Jx/2

by the same calculation as in Example 4 in Section 15.3.

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

996

CuuDuongThanCong.com

CHAPTER I5 MULTIPLE INTEGRALS

(Notice that it is not necessary to use triple integrals to compute volumes. They
simply give an alternative method for setting up the calculation.) |

All the applications of double integrals in Section 15.5 can be immediately extended to
triple integrals. For example, if the density function of a solid object that occupies the

region E'is p(x, y, z), in units of mass per unit volume, at any given point (x, y, z), then its
mass is

[13] m= Jﬂ p(x, y,2) dV
E

and its moments about the three coordinate planes are

M. = fﬁ xp(x, y, z) dV M. = fﬁyp(x,y, 2)dV
I I

My = ([[ zp(x y,2) aV

E

The center of mass is located at the point (X, y, z), where

m

y= 7=
m m

) % -

If the density is constant, the center of mass of the solid is called the centroid of £. The
moments of inertia about the three coordinate axes are

L= Jﬁ (v + 2H)plx, y, z) AV I, = J” (x* + 2H)p(x, y, z) dV
7 b

fz=jL[J’ (X + y)p(x, 3, 2) dV

As in Section 15.5, the total electric charge on a solid object occupying a region £ and
having charge density o(x, y, z) is

0= ||| otxy.2 av

If we have three continuous random variables X, ¥, and Z, their joint density function
is a function of three variables such that the probability that (X, ¥, 2) lies in E'is

AKX Y.2) € B = ([[ fx 5.2 av
E
In particular,

Pa<X<b c<Y<d r<Z<s) =fbjdfsf(x,y,z) dz dy dx
The joint density function satisfies

flx,y,2)=0 fi Ji J: f(x, y,z) dz dydx =1
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i1 EXAMPLE 5 Find the center of mass of a solid of constant density that is bounded by
the parabolic cylinder x = y* and the planes x =z, z = 0, and x = 1.

SOLUTION The solid £ and its projection onto the xy-plane are shown in Figure 14. The
lower and upper surfaces of £ are the planes z = 0 and z = x, so we describe F as a
type 1 region:

E={(x,y,z)|—1s}/s1,yzs;(s1, OSZSX}

Then, if the density is p(x, y, z) = p, the mass is

m= jﬁpdV= [_11 lefo"p & dx dy

11 1| X -
= pJ J xdxdy=p f - dy
=1 Jy? Joq 2 =y

p [l 1
=S = ydy=pf 1 -yay

51
_ |, _r| _Ae
-] -

Because of the symmetry of £ and p about the xz-plane, we can immediately say that
M,. = 0 and therefore y = 0. The other moments are

= (fawar=[" e ove
E

x=1
L, _ 1 La
—pJ_lLZX dx dy pj [3] dy

-1 e
1
_ 2P [V _ s _2p _i _4p
_3Jo(1 ydy=-3 71, 7
" ! X
M, = ﬂgj zp dV = J—]j fo zp dz dx dy
1 r1 N p )
_pJ_IJ}x > It dxdy—EJ_ [ x“dxdy
3 Jo 7
Therefore the center of mass is
__ M, M. M,
(X,y,2)=(7v, — m))=(§y0,154) g
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|15.6| EXERCISES

1. Evaluate the integral in Example 1, integrating first with
respect to y, then z, and then x.

2. Evaluate the integral [[[, (xz — y°) dV, where
={(X,y,z)|—1€XS1, 0<sy<2, Oszsl}
using three different orders of integration.

3-8 Evaluate the iterated integral.

3. H 6xz dy dx dz

X
NN
7

4. ‘01 szfoyZXyz dz dy dx

w

ze’ dx dz dy 6. ‘[01 J; ‘[;ze—f'z dx dy dz

w/

~

. ‘ cos(x + y + z) dz dxdy

8. [Oﬁ[ | x*sin y dy dz dx

9-18 Evaluate the triple integral.
9. ([I,2x dV, where
E={(xy2]0<y<2 0<sx</i—j2 0=
10. [[f, yz cos(x®) dV, where
E={(xy2|0sx<1,0sys<x xs:z<2x}

)

(L] [[, 6xy dV. where E lies under the plane z =1 + x + y
and above the region in the xy-plane bounded by the curves
y=+x y=0and x =1

12. ([[, ¥ dV, where F is bounded by the planes x = 0, y = 0,
z=0,and 2x + 2y + z =14

13. [[[,x*¢’ dV. where E is bounded by the parabolic cylinder
z=1—y’andthe planesz = 0, x= 1, and x = —1

14. [[f,xy dV, where Eis bounded by the parabolic cylinders
y = x*and x = y* and the planes z = O and z = x + y

15. ||, x* dV, where T'is the solid tetrahedron with vertices
(000) (1,0,0), (0,1,0), and (0, 0, 1)

16. ||[, xyz dV, where T'is the solid tetrahedron with vertices
(0,0,0),(1,0,0),(1,1,0),and (1,0, 1)

17. [[f, x dV, where E'is bounded by the paraboloid
x = 4y* + 4z% and the plane x = 4

18. |[[,z dV, where £ is bounded by the cylinder y* + z* = 9
and the planes x = 0, y = 3x, and z = 0 in the first octant

19-22 Use a triple integral to find the volume of the given solid.

The tetrahedron enclosed by the coordinate planes and the
plane2x + y+ z =4

CuuDuongThanCong.com
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20. The solid bounded by the cylinder y = x* and the planes
z=0,z=4,andy=9

21. The solid enclosed by the cylinder x* + y* = 9 and the
planes y + z =5andz =1

22. The solid enclosed by the paraboloid x = y* + z? and the
plane x = 16

(@) Express the volume of the wedge in the first octant that is
cut from the cylinder y* + z* = 1 by the planes y = x and
x =1 as a triple integral.
(b) Use either the Table of Integrals (on Reference Pages 6-10)
or a computer algebra system to find the exact value of the
triple integral in part (a).

24. (a) In the Midpoint Rule for triple integrals we use a triple
Riemann sum to approximate a triple integral over a box
B, where £(x, y, z) is evaluated at the center (x;, yj, Z«)
of the box By. Use the Midpoint Rule to estimate
JJ[5/x% + y?+ z% dV, where Bis the cube defined by
0<x<4 0=<y=<4, 0=<:z=<4 Divide Binto eight
cubes of equal size.

(b) Use a computer algebra system to approximate the integral

in part (a) correct to the nearest integer. Compare with the
answer to part (a).

25-26 Use the Midpoint Rule for triple integrals (Exercise 24) to
estimate the value of the integral. Divide 5 into eight sub-boxes of
equal size.

1

25. ‘U“B In(l + x+ y+2)
B={(xy2]|0sx<40sy<8 0sz=<4}

dV, where

26. ([, sin(xy’z®) dV, where
B={(xy2]|0sx<40<y<2 0<:zs<1}

27-28 Sketch the solid whose volume is given by the iterated

integral.
jol W[OI_XA‘:_ZZ dy dz dx 28. joz joz yJ dX dz dy

29-32 Express the integral [[[, f(x, y, z) dV as an iterated integral
in six different ways, where £ is the solid bounded by the given
surfaces.

29. y=4—x*—4z° y=0
30.y2+zz=9, x=-2, x=2
3l.y=x% z=0, y+2:=14

3. x=2, y=2, z=0, x+ty—2:=2
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33. The figure shows the region of integration for the integral

J,l j‘lﬁjl_y (x, y, z) dz dy dx

0 Jyx Jo

Rewrite this integral as an equivalent iterated integral in the

five other orders.

34. The figure shows the region of integration for the integral

I-x

o 7 ez dy e

Rewrite this integral as an equivalent iterated integral in the
five other orders.

35-36 Write five other iterated integrals that are equal to the
given iterated integral.

35 .[01 jyl J‘oy f(x, y, 2) dz dx dy

36. ‘[0' fo [0 f(x y, 2) & dy dx

37-40 Find the mass and center of mass of the solid £ with the
given density function p.

37. FEis the solid of Exercise 11; p(x, y,z) = 2

38. F is bounded by the parabolic cylinder z = 1 — y* and the
planes x + z=1,x=0,andz = 0; p(x y,z) =4

39 Eis the cube givenby 0 < x<a, 0 < y<a, 0<:z< a;
p(x y,2) = x* + y* + 2

CuuDuongThanCong.com
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40. [ is the tetrahedron bounded by the planes x = 0, y = 0,
z=0x+ty+tz=1 pxyz)=y

41-44 Assume that the solid has constant density 4.

41. Find the moments of inertia for a cube with side length L if
one vertex is located at the origin and three edges lie along the
coordinate axes.

42. Find the moments of inertia for a rectangular brick with dimen-
sions a, b, and c and mass M if the center of the brick is situ-
ated at the origin and the edges are parallel to the coordinate
axes.

43. Find the moment of inertia about the z-axis of the solid cylin-
derx* + y’<a’, 0<z<nh

44. Find the moment of inertia about the z-axis of the solid cone

VXt +yP<zs<h

45-46 Set up, but do not evaluate, integral expressions for
(a) the mass, (b) the center of mass, and (c) the moment of inertia
about the z-axis.

45. The solid of Exercise 21; p(x, y, z) = «/x* + y?
46. The hemisphere x* + y* + 22 <1, z = 0;

p(x, y,z) =/x2+ y? + 2?2

(45]47. Let E be the solid in the first octant bounded by the cylinder

x* 4+ y* = 1 and the planes y = z, x = 0, and z = 0 with the
density function p(x, y,z) = 1 + x + y + z. Use a computer
algebra system to find the exact values of the following quan-
tities for £.

(@) The mass

(b) The center of mass

(¢) The moment of inertia about the z-axis

(As/48. If E'is the solid of Exercise 18 with density function

p(x, y,z) = x* + y% find the following quantities, correct
to three decimal places.

(@) The mass

(b) The center of mass

(c) The moment of inertia about the z-axis

49. The joint density function for random variables X, ¥, and Z is
f(x,y,2) = Cxzif 0= x<2, 0<y<2, 0<:z<2 and
f(x, y, z) = 0 otherwise.

(a) Find the value of the constant C.
(b) Find PAX< 1, Y=< 1,7<1).
(¢) Find AX + Y+ Z<1).

50. Suppose X, Y, and Z are random variables with joint density
function £(x, y, z) = Ce” ¥ 00 4f x>0 y= 0,2 =0,
and f(x, y, z) = 0 otherwise.

(a) Find the value of the constant C.
(b) Find AX<1,Y=<1).
(¢ FindPX<1, Y=< 1,27<1).
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51-52 The average value of a function f(x, y, z) over a solid 52. Find the average value of the function f(x, y,z) = X’z + yzz
region 7 is defined to be

foe = ﬁm f(x y,2) dV
E

over the region enclosed by the paraboloid z = 1 — x* — y*
and the plane z = 0.

where V(F) is the volume of F. For instance, if p is a density 53. Find the region £ for which the triple integral
function, then p... is the average density of £.

[51.] Find the average value of the function £(x, y, z) = xyz over the
cube with side length L that lies in the first octant with one

W(l — X% = 2y% — 32%) dV

E

vertex at the origin and edges parallel to the coordinate axes. is a maximum.
DISCOVERY VOLUMES OF HYPERSPHERES
PROIJECT
In this project we find formulas for the volume enclosed by a hypersphere in z-dimensional

space.

1. Use a double integral and trigonometric substitution, together with Formula 64 in the Table
of Integrals, to find the area of a circle with radius r:

2. Use a triple integral and trigonometric substitution to find the volume of a sphere with

radius r.

3. Use a quadruple integral to find the hypervolume enclosed by the hypersphere

X+ y* + 22 + w? = r*in R". (Use only trigonometric substitution and the reduction
formulas for | sin"x dx or | cos"x dx.)

4. Use an n-tuple integral to find the volume enclosed by a hypersphere of radius r in

n-dimensional space R”.  [Hint: The formulas are different for n even and n odd.]

15.7

TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

’\0

P(r,0)=P(x,y)

o

FIGURE 1

CuuDuongThanCong.com

In plane geometry the polar coordinate system is used to give a convenient description of
certain curves and regions. (See Section 10.3.) Figure 1 enables us to recall the connection
between polar and Cartesian coordinates. If the point P has Cartesian coordinates (x, y)
and polar coordinates (r, ), then, from the figure,

Xx=rcosf y=rsinf
Y

2 2 2
rr=x -+ tan f = =
Y X

In three dimensions there is a coordinate system, called cylindrical coordinates, that is
similar to polar coordinates and gives convenient descriptions of some commonly occur-
ring surfaces and solids. As we will see, some triple integrals are much easier to evaluate
in cylindrical coordinates.
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P(r,6,z)
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y

(r,6.0)

FIGURE 2
The cylindrical coordinates of a point

FIGURE 3
i T
-
|
,—I —
1 0,,15\: _(0.c,0)
/ \
(¢,0,0) | y
)L‘A/ /’_-:_—‘\
<«
FIGURE 4

r=c, a cylinder
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CYLINDRICAL COORDINATES

In the cylindrical coordinate system, a point P in three-dimensional space is represented

by the ordered triple (r, 6, z), where r and 6 are polar coordinates of the projection of P

onto the xy-plane and z is the directed distance from the xy-plane to P (See Figure 2.)
To convert from cylindrical to rectangular coordinates, we use the equations

1] x=rcos y=rsinf z=:

whereas to convert from rectangular to cylindrical coordinates, we use

rf=x"+y tanf=

> <

EXAMPLE 1

(a) Plot the point with cylindrical coordinates (2, 277/3, 1) and find its rectangular
coordinates.

(b) Find cylindrical coordinates of the point with rectangular coordinates (3, —3, —7).

SOLUTION
(a) The point with cylindrical coordinates (2, 27/3, 1) is plotted in Figure 3. From
Equations 1, its rectangular coordinates are

2 1
-9 2ol =)= 1
X cos 3 < 2)

y=2sin o = 2(£> =3

3 2
z=1

Thus the point is (— 1,3, 1) in rectangular coordinates.
(b) From Equations 2 we have

r= AT =342

Therefore one set of cylindrical coordinates is (3 V2, 17/4, —7). Another is
(3 V2, —m/a, —7). As with polar coordinates, there are infinitely many choices. [

Cylindrical coordinates are useful in problems that involve symmetry about an axis, and
the z-axis is chosen to coincide with this axis of symmetry. For instance, the axis of the
circular cylinder with Cartesian equation x* + y* = ¢’ is the z-axis. In cylindrical coordi-
nates this cylinder has the very simple equation r = c¢. (See Figure 4.) This is the reason
for the name “cylindrical” coordinates.
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FIGURE 5
z=r,acone

FIGURE 6

‘:E\’_
r7 dr

rdé

FIGURE 7
Volume element in cylindrical
coordinates: dV =rdzdrdf
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CHAPTER I5 MULTIPLE INTEGRALS

i1 EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is z = r.

SOLUTION The equation says that the z-value, or height, of each point on the surface is the
same as r, the distance from the point to the z-axis. Because 6 doesn’t appear, it can
vary. So any horizontal trace in the plane z = k (k > 0) is a circle of radius & These
traces suggest that the surface is a cone. This prediction can be confirmed by converting
the equation into rectangular coordinates. From the first equation in (2) we have

zz=r2=xz+y2

We recognize the equation z = x* + y” (by comparison with Table 1 in Section 12.6) as
being a circular cone whose axis is the z-axis. (See Figure 5.) |

EVALUATING TRIPLE INTEGRALS WITH CYLINDRICAL COORDINATES

Suppose that E is a type 1 region whose projection D on the xy-plane is conveniently
described in polar coordinates (see Figure 6). In particular, suppose that f is continuous
and

E={xy.2|(xy) €D, uwlxy <z<wlxy}
where D is given in polar coordinates by

D={r0)|a<0<p ho) <r=h6)

We know from Equation 15.6.6 that

2 IR dV:g [ [ ) dz] dA

u(x.
E

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.4.3, we obtain

a Jh(0) Ju(rcos 6, rsin )

(4] ﬂj f(x, y,z) dV= J‘B fhzw) fuz{rm ) f(rcos 0, rsin 0, z) r dz dr d6
F

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that
we convert a triple integral from rectangular to cylindrical coordinates by writing
x = rcos 6, y = rsin 6, leaving z as it is, using the appropriate limits of integration for z,
r, and 6, and replacing dV by r dz dr d6. (Figure 7 shows how to remember this.) It is
worthwhile to use this formula when E is a solid region easily described in cylindrical
coordinates, and especially when the function f(x, y, z) involves the expression x* + y*.

i1 EXAMPLE 3 A solid E lies within the cylinder x* + y* = 1, below the plane z = 4,
and above the paraboloid z = 1 — x* — y% (See Figure 8.) The density at any point is
proportional to its distance from the axis of the cylinder. Find the mass of E.
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FIGURE 9
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SOLUTION In cylindrical coordinates the cylinder is r = 1 and the paraboloid is z = 1 — r?,
SO we can write

E={(r,0,z)|0S0<27T, 0=r=l, 1—r2$z<4}
Since the density at (x, y, z) is proportional to the distance from the z-axis, the density

function is
f(x,5,2) = KJyx* + y> = Kr

where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass
of E'is

m= m KJx2 T 2 dv

L
= ["['[" Ko r ez drao

o Jo

- j:” J; Ke*[4 — (1 — %)) drd6

= KJ:W do JOI @2+ Mdr

5 1
— k| P+ L | = 12K -
5 |, 5
fi=x
EXAMPLE 4 Evaluate [22 le“ LZ . (x* + %) @ dy dx.
J=2 J-yi=x Jxty

SOLUTION This iterated integral is a triple integral over the solid region

E={(X,y,z)|—2$x$ 2, —JA—xt <y<.4—x, Jxt+ y? $z$2}
and the projection of £ onto the xy-plane is the disk x* + y* < 4. The lower surface of

E'is the cone z = /x? + y? and its upper surface is the plane z = 2. (See Figure 9.)
This region has a much simpler description in cylindrical coordinates:

E={(r,9,z)|0s0s2m 0sr=<2, rsZsz}

Therefore, we have

f_zz Jjjé[jm (x? +y2)dz dy dx = Jg (x? +}/2)dV

= || r*ra drdo

= J;zv de JOZ r’2 - pdr

_ 14_ 1 s]z_lj
_277'[2f 500 =57 [ |
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| 15.7| EXERCISES

1-2 Plot the point whose cylindrical coordinates are given. Then 20. Evaluate [[[, x dV where Eis enclosed by the planes z = 0
find the rectangular coordinates of the point. and z = x + y + 5 and by the cylinders x* + y* = 4 and
I (@ (2. 7/4.1) (b) (4, /3, 5) X+ yt=09
2 (@) (1, m o M) (1,37/2,2) 21.] Evaluate [[f, x* dV, where £ is the solid that lies within the

cylinder x* + y? = 1, above the plane z = 0, and below the
cone z* = 4x* + 4y°

3-4 Change from rectangular to cylindrical coordinates.
22. Find the volume of the solid that lies within both the cylinder

3@ (1, -1.4) (b) (_1’ -V3, 2) x* 4+ y* = 1 and the sphere x* + y* + 2% = 4.

4. @ (2 V3.2, _1) (b) (4. -3.2) 23. (a) Find the volume of the region £ bounded by the parabo-
loids z = x* + y*and z = 36 — 3x* — 3y%.

5-6 Describe in words the surface whose equation is given. (b) Find the centroid of £ (the center of mass in the case

5. 0= /4 6. r—5 where the density is constant).

24. (a) Find the volume of the solid that the cylinder r = acos 6

. L cuts out of the sphere of radius a centered at the origin.
7-8 Identify the surface whose equation is given. P &

A (b) Illustrate the solid of part (a) by graphing the sphere and
7.2=4-1* 8 2r'+z75=1 the cylinder on the same screen.
25. Find the mass and center of mass of the solid S bounded by
9-10 Write the equations in cylindrical coordinates. the paraboloid z = 4x* + 4y” and the plane z = a (a > 0) if
@z=x+ ) 2+ 2 =2y S has constant density K
_ y oo 26. Find the mass of a ball Bgiven by x* + y* + z* < a’if the
10. (@) 3x+ 2y +z=6 b) —x" —y" + 2 =1 density at any point is proportional to its distance from the
z-axis.
11-12 Sketch the solid described by the given inequalities.
InN.0sr<2 —-w/2<O6<w/2, 0sz<1 27-28 Evaluate the integral by changing to cylindrical coordinates.
2 [V
12.0<0<m/2 r<:z<2 27. J-zJ—W‘m xz dz dx dy
(3 [VOF [9-x—y
13. A cylindrical shell is 20 cm long, with inner radius 6 cm and 28. J_3 JO JO vat + yt dz dy dx
outer radius 7 cm. Write inequalities that describe the shell
in an appropriate coordinate system. Explain how you have
positioned the coordinate system with respect to the shell. 29. When studying the formation of mountain ranges, geologists
— estimate the amount of work required to lift a mountain from
14. Use a graphing de;nce t‘; draw the solid Zenclosed by the sea level. Consider a mountain that is essentially in the shape
paraboloids z = x* + y*and z = 5 — x* — y*. of a right circular cone. Suppose that the weight density of
the material in the vicinity of a point Pis g(P) and the height
15-16 Sketch the solid whose volume is given by the integral is H(P).

and evaluate the integral. (@) Find a definite integral that represents the total work done

in forming the mountain.

(b) Assume that Mount Fuji in Japan is in the shape of a right
circular cone with radius 62,000 ft, height 12,400 ft, and
density a constant 200 Ib/ft*. How much work was done

17-26 Use cylindrical coordinates. in forming Mount Fuji if the land was initially at sea level?

Evaluate [[f,+/x? + y? dV where E is the region that lies
inside the cylinder x* + y* = 16 and between the planes
z=—=5andz = 4.

15 [ [ raz a0 ar 16 [ (7 [ v drdo

18. Evaluate [[f, (x* + xy?) dV, where F is the solid in the first ‘s

octant that lies beneath the paraboloid z = 1 — x* — y*

19. Evaluate [[f, e* dV, where E'is enclosed by the paraboloid
z =1+ x* + y? the cylinder x* + y* = 5, and the xy-plane.
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THE INTERSECTION OF THREE CYLINDERS

The figure shows the solid enclosed by three circular cylinders with the same diameter that inter-
sect at right angles. In this project we compute its volume and determine how its shape changes if
the cylinders have different diameters.

I. Sketch carefully the solid enclosed by the three cylinders x* + y* = 1, x* + z? = 1, and
y? + z? = 1. Indicate the positions of the coordinate axes and label the faces with the equa-
tions of the corresponding cylinders.

2. Find the volume of the solid in Problem 1.

3. Use a computer algebra system to draw the edges of the solid.

4. What happens to the solid in Problem 1 if the radius of the first cylinder is different from 1?

[Nlustrate with a hand-drawn sketch or a computer graph.

5. If the first cylinder is x* + y* = a?, where a < 1, set up, but do not evaluate, a double inte-
gral for the volume of the solid. What if a > 17

158

TRIPLE INTEGRALS IN SPHERICAL COORDINATES

FIGURE 1
The spherical coordinates of a point

CuuDuongThanCong.com

Another useful coordinate system in three dimensions is the spherical coordinate system.
It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

SPHERICAL COORDINATES

The spherical coordinates (p, 6, ¢) of a point P in space are shown in Figure 1, where
p = | OP| is the distance from the origin to P, § is the same angle as in cylindrical coor-
dinates, and ¢ is the angle between the positive z-axis and the line segment OF Note that

https://fb.com/tailieudientucntt
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P'(x,y,0)

FIGURE 5

(2, /4, 7/3)

FIGURE 6

CuuDuongThanCong.com

The spherical coordinate system is especially useful in problems where there is symmetry
about a point, and the origin is placed at this point. For example, the sphere with center the
origin and radius c¢ has the simple equation p = ¢ (see Figure 2); this is the reason for the
name “spherical” coordinates. The graph of the equation 6 = cis a vertical half-plane (see
Figure 3), and the equation ¢» = c represents a half-cone with the z-axis as its axis (see
Figure 4).

V4 V4
0 —
= 0
c \; y
X X
0<c<m/2 m2<c<m
FIGURE 3 6=, ahalf-plane FIGURE 4 ¢ = c, a half-cone

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles OPQ and OPP’ we have

z=pcos ¢ r= psin ¢

But x = rcos 6 and y = rsin 6, so to convert from spherical to rectangular coordinates,
we use the equations

1] X = psin ¢ cos 0 y = psin ¢ sin 6 z = pcos ¢

Also, the distance formula shows that

2] pl=x + )+ 2

We use this equation in converting from rectangular to spherical coordinates.

i EXAMPLE | The point (2, /4, 7/3) is given in spherical coordinates. Plot the point
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 6. From Equations 1 we have

. e T =B (L) [
x—psm¢c050—25m3 cos - —2( > )<ﬂ>_ \/2

b sing —2sin T sin T — o3\ (L)_ /3
y—psm¢sm9—231n351n4 2<2>< 2) \/:

z=pcos¢ = 2cosg= 2(%) =1

Thus the point (2, /4, 7/3) is (\/3/2, V3/2, 1) in rectangular coordinates. [ |

https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

[@) WARNING There is not universal agree-
ment on the notation for spherical coordinates.
Most books on physics reverse the meanings

of @ and ¢ and use rin place of p.

T4 1n Module 158 you can investigate
families of surfaces in cylindrical and spheri-
cal coordinates.

N
~
TIPS NS \

ri A= p;sin ¢, AO

FIGURE 7
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i1 EXAMPLE 2 The point (O, 2./3, —2) is given in rectangular coordinates. Find spheri-
cal coordinates for this point.

SOLUTION From Equation 2 we have

p=Jx+y+z22=0+12+4=4

and so Equations 1 give

z -2 1 2
wse==m=y  b-p
X T
cosO—pSin¢—0 9—?

(Note that 6 % 37/2 because y = 24/3 > O.) Therefore spherical coordinates of the
given point are (4, 7/2, 27/3). [ |

EVALUATING TRIPLE INTEGRALS WITH SPHERICAL COORDINATES

In the spherical coordinate system the counterpart of a rectangular box is a spherical
wedge

E={(p.0.¢)|a<p=<b a<6<p c<¢=d

where 2= 0, 8 — a < 27, and d — ¢ < 7. Although we defined triple integrals by divid-
ing solids into small boxes, it can be shown that dividing a solid into small spherical
wedges always gives the same result. So we divide E into smaller spherical wedges E;; by
means of equally spaced spheres p = p,, half-planes 6 = 6;, and half-cones ¢ = ¢,.
Figure 7 shows that E; is approximately a rectangular box with dimensions Ap, p, A ¢ (arc
of a circle with radius p,, angle A¢), and p; sin ¢, A6 (arc of a circle with radius p; sin ¢y,
angle A6). So an approximation to the volume of Ej is given by

AV = (Ap)(p:Ad)(p;sin i AB) = pisin i Ap AGAD

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 45), that the
volume of Ej; is given exactly by

AV = pisindApAGAD

where (p;, 6, ¢4 is some point in Ej. Let (x7i, yiji, zii) be the rectangular coordinates of
this point. Then

m n

1
[ 1 yzrav=tim 33 3 flxhic yin 250 AViu
E

> =] j=1 k=1

/I m n
= lim D > > f(p;sindycos B p;sindsin b, p; cos ¢y) p? sin p ApAOAD
1 i1

1, m n—>®° =1

But this sum is a Riemann sum for the function

Fp, 6, ¢) = f(psing cos b, psing sinh, p cos ¢) p’sin ¢

Consequently, we have arrived at the following formula for triple integration in spherical
coordinates.
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Bl ([ fer 2 av
E
= J‘Cd LB Lb f(p sin¢ cos 6, p sing sin 6, p cos ¢) p’sin ¢ dp dO dep

where E'is a spherical wedge given by

E={(p.6.¢)|a<p=b a=6=p c=¢=d

Formula 3 says that we convert a triple integral from rectangular coordinates to spher-
ical coordinates by writing

x = psin¢ cos 0 y = psing sin 0 z=pcos ¢
FIGURE 8
Volume element in spherical using the appropriate limits of integration, and replacing dV by p”sin ¢ dp df d¢. This is
coordinates: dV = p*sin ¢ dpdfde illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

E={(p.0.¢)|a=<0=<B c=d=d a0 ¢) =<p=gu0 ¢)}

In this case the formula is the same as in (3) except that the limits of integration for p are

91(6, ¢) and g2(6, ).
Usually, spherical coordinates are used in triple integrals when surfaces such as cones
and spheres form the boundary of the region of integration.

i EXAMPLE 3 Evaluate [[f, e =" @V, where Bis the unit ball:
B={(X,y,z)|x2+y2+zzsl}
SOLUTION Since the boundary of Bis a sphere, we use spherical coordinates:
B={(p,0,¢)|0$p$1, 0<6<2m, 0s¢><rr}
In addition, spherical coordinates are appropriate because
X+ y? + 2= pt
Thus (3) gives

J[J et av= [T [T [ & ot sind dp o
B

= JO” sin ¢ db joz” do JOI ple” dp
= [~cos ¢l 2m) [1er']s = 4mr(e - 1)
n

NOTE | Tt would have been extremely awkward to evaluate the integral in Example 3
without spherical coordinates. In rectangular coordinates the iterated integral would have
been

[‘1 V1=x? [\/l—xz—yZ

(XZ+}Z+ZZ)3/Z
e dz dy dx
J-1J —V1-x* J=y1-%—y*
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FIGURE 9

Figure 10 gives another look (this time
drawn by Maple) at the solid of Example 4.

FIGURE 10

A4 Visual 15.8 shows an animation
of Figure I1.

X

p varies from 0 to cos ¢
while ¢ and 6 are constant.

FIGURE 11
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i1 EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above
the cone z = v/x2 + y? and below the sphere x* + y* 4+ z* = z. (See Figure 9.)

SOLUTION Notice that the sphere passes through the origin and has center (0, 0, %) We

write the equation of the sphere in spherical coordinates as
pi=pcos¢p or p=coso

The equation of the cone can be written as

pcos ¢ = /p?sine cos?h + p?sin’ep sin2f = psin ¢

This gives sin ¢ = cos ¢, or ¢ = /4. Therefore the description of the solid E in
spherical coordinates is

E={(p,9,¢)|0S0s277, 0<¢=<m/4, OsPscosqb}

Figure 11 shows how F'is swept out if we integrate first with respect to p, then ¢, and
then 6. The volume of £ is

B = [ = [ smo oo
E

) " ps p=cos ¢
= jo do jo smd)[?] ddp

p=0

2

4 /4
=3 fom sin ¢ cos’p dp = 2—377 [—M] -2

4 z

y X y X y

¢ varies from 0 to 7r/4 0 varies from 0 to 2.
while 6 is constant. |
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|15.8| EXERCISES

I-2 Plot the point whose spherical coordinates are given. Then 19-20 Set up the triple integral of an arbitrary continuous function
find the rectangular coordinates of the point. f(x, y, z) in cylindrical or spherical coordinates over the solid
(] @) (1,0,0) (b) (2, 7/3, 7/4) shown.

19.
2. (@ (5, m w/2) (b) (4,3m/4, w/3)

3-4 Change from rectangular to spherical coordinates.
3. @ (1.v3.2y3) (b) (0, —1,—1)
4. @ (0.v3,1) ) (-1, 1,46)

5-6 Describe in words the surface whose equation is given. 21-34 Use spherical coordinates.

[5] ¢ =m/3 6. p=3 21 Evaluate [ff, (x* + y* + z%)*dV, where Bis the ball with
center the origin and radius 5.

7-8 Identify the surface whose equation is given. 22. Bvaluate [ff, (9 — x* — y*) dV, where H is the solid
s , , hemisphere x* + y* + z2 < 9,z = 0.
7. p =sinfsin ¢ 8. p’(sin“¢ sin’6 + cos’p) =9

23. Evaluate ([[,z dV, where E'lies between the spheres

X'+ y* 4+ 22 = 1land x* + y* + z% = 4 in the first octant.
9-10 Write the equation in spherical coordinates.

9. (a) P=x*+j* b) x*+2z2=9
10. (@ xX*—2x+y*+2z2=0 (b) x+2y+3z=1 25

24. Evaluate [[[, e¥""""*" dV, where E'is enclosed by the sphere
x* + y* 4+ z* = 9 in the first octant.

. Evaluate [|[, x* dV, where £ is bounded by the xz-plane

and the hemispheres y = /9 — x? — z2 and

y=+16 — x* — z2.

11-14 Sketch the solid described by the given inequalities.
. p=<2 0<¢=mu/2, 0=0<m/2 26. Evaluate [[f, xyz dV, where E lies between the spheres
p = 2 and p = 4 and above the cone ¢ = 7/3.

12.2<p<3, m/2<d=m 27. Find the volume of the part of the ball p < a that lies between

13. p<1, 3m/d<d=<m the cones ¢ = 7/6 and ¢ = /3.

28. Find the average distance from a point in a ball of radius a to

14. p<2, p<csco its center.

29. (a) Find the volume of the solid that lies above the cone

I5. A solid lies above the cone z = /x? + y? and below the ¢ = /3 and below the sphere p = 4 cos ¢.
sphere x* + y* + z* = z. Write a description of the solid in (b) Find the centroid of the solid in part (a).

terms of inequalities involving spherical coordinates.
Inequatitics Involving sphert ! Find the volume of the solid that lies within the sphere

16. (a) Find inequalities that describe a hollow ball with diameter x* + y* + 2 = 4, above the xy-plane, and below the cone
30 cm and thickness 0.5 cm. Explain how you have z=xt+
positioned the coordinate system that you have chosen. 31. Find the centroid of the solid in Exercise 25.
(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves. 32. Let H be a solid hemisphere of radius a whose density at any

point is proportional to its distance from the center of the base.

17-18 Sketch the solid whose volume is given by the integral and (a) Find the mass of /1.

evaluate the integral. (b) Find the center of mass of H.
P, (¢) Find the moment of inertia of /{ about its axis.
) k 2 .
Jo fo jo pisind dp df dg 33. (a) Find the centroid of a solid homogeneous hemisphere of
o P 2 radius a.
18. jo [ . {1 p?sin ¢ dp dp db (b) Find the moment of inertia of the solid in part (a) about a

diameter of its base.
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34. Find the mass and center of mass of a solid hemisphere of

SECTION 15.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES |||

radius a if the density at any point is proportional to its

distance from the base.

35-38 Use cylindrical or spherical coordinates, whichever seems

more appropriate.

[35. Find the volume and centroid of the solid £ that lies
above the cone z = v/x? + y* and below the sphere
X+ +=1.

36. Find the volume of the smaller wedge cut from a sphere of
radius a by two planes that intersect along a diameter at an

angle of 7/6.
37. Evaluate [f[, z dV, where F lies above the paraboloid

43,

A

A4

z = x* + y* and below the plane z = 2y. Use either the
Table of Integrals (on Reference Pages 6-10) or a computer
algebra system to evaluate the integral.

38. (a) Find the volume enclosed by the torus p = sin ¢.

(b) Use a computer to draw the torus.

39. J

40. j

39-40 Evaluate the integral by changing to spherical coordinates.

1
xy dz dy dx
0 Jo

—a J=Va=y J=Va =y =y

Ca

(x%z + y*z + 2°%) e dx dy

. Use a graphing device to draw a silo consisting of a cylinder

with radius 3 and height 10 surmounted by a hemisphere.

42. The latitude and longitude of a point P in the Northern Hemi-

sphere are related to spherical coordinates p, 6, ¢ as follows.
We take the origin to be the center of the earth and the posi-
tive z-axis to pass through the North Pole. The positive x-axis
passes through the point where the prime meridian (the
meridian through Greenwich, England) intersects the equator.
Then the latitude of Pis a = 90° — ¢° and the longitude is
B = 360° — 6°. Find the great-circle distance from Los
Angeles (lat. 34.06° N, long. 118.25° W) to Montréal (lat.
45.50° N, long. 73.60° W). Take the radius of the earth to be
3960 mi. (A great circle is the circle of intersection of a
sphere and a plane through the center of the sphere.)

CuuDuongThanCong.com
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The surfaces p = 1 + £ sin m6 sin n¢ have been used as
models for tumors. The “bumpy sphere” with m = 6 and
n =5 is shown. Use a computer algebra system to find the
volume it encloses.

O ~
W=t

5
N
N

5
%

9

S

n““

L]l
i
i

LT
I

Show that

‘: ‘: ‘: m U g dyde = 2

(The improper triple integral is defined as the limit of a
triple integral over a solid sphere as the radius of the sphere
increases indefinitely.)

(a) Use cylindrical coordinates to show that the volume of
the solid bounded above by the sphere r* + z* = a* and
below by the cone z = rcot ¢ (or ¢ = o), where
0< ¢0 < 7T/2, is

2 3
V= £ma (1 — cosdoyp)
3

(b) Deduce that the volume of the spherical wedge given by

pL<p<py O<O0<0, p1<d=<dyis

p? — pt
AV = T(cos ¢1 — cos ¢2)(0, — 61)

(c) Use the Mean Value Theorem to show that the volume in
part (b) can be written as

AV=p*sing ApAOAQD

where p lies between p; and p», ¢ lies between ¢, and
b2, Ap=p; — p1, A0 =0, — 61, and Ap = P, — 1.
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15.9

ROLLER DERBY

Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel bar),
and a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches the bottom
first? (Make a guess before proceeding.)

To answer this question, we consider a ball or cylinder with mass m, radius r, and moment of
inertia / (about the axis of rotation). If the vertical drop is 4, then the potential energy at the top
is mgh. Suppose the object reaches the bottom with velocity » and angular velocity w, so v = wr.
The kinetic energy at the bottom consists of two parts: 3 im? from translation (moving down the
slope) and 3 Jw? from rotation. If we assume that energy loss from rolling friction is negligible,
then conservation of energy gives

mgh = %II]UZ + %]wZ

I. Show that

. _ _29h where [* = L

P =
1+ I* mr?

2. If y(1) is the vertical distance traveled at time ¢, then the same reasoning as used in
Problem 1 shows that »* = 2gy/(1 + I*) at any time ¢ Use this result to show that y
satisfies the differential equation

d 2
7};= 1 +gl* (sin @) vy

where « is the angle of inclination of the plane.

3. By solving the differential equation in Problem 2, show that the total travel time is

[201 + 1)
T: ‘—Z
gsin“a

This shows that the object with the smallest value of /* wins the race.
4. Show that I* = } for a solid cylinder and 7* = 1 for a hollow cylinder.

5. Calculate /* for a partly hollow ball with inner radius a and outer radius r. Express your
answer in terms of b = a/r. What happens as a — 0 and as a — r?

6. Show that 7* = £ for a solid ball and * = 5 for a hollow ball. Thus the objects finish in the
following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

CuuDuongThanCong.com

In one-dimensional calculus we often use a change of variable (a substitution) to simplify
an integral. By reversing the roles of xand u, we can write the Substitution Rule (5.5.6) as

[ |7 #00 dx = |7 Fg(u)g'(u) ctu

where x = g(u) and a = ¢(c), b = g(d). Another way of writing Formula 1 is as follows:

7 L” Ax) dx = f f(x(u)) % du
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A change of variables can also be useful in double integrals. We have already seen one
example of this: conversion to polar coordinates. The new variables r and 6 are related to
the old variables x and y by the equations

x = rcosf y=rsinf
and the change of variables formula (15.4.2) can be written as
( J fx y) dA = | J f(rcos . rsin 6) rdr do
R K

where Sis the region in the ré-plane that corresponds to the region K in the xy-plane.
More generally, we consider a change of variables that is given by a transformation 7’
from the wv-plane to the xy-plane:

I(u,v) = (x, )
where x and y are related to u and v by the equations
(3] x=g(u,v)  y= hluv)

or, as we sometimes write,
x = x(u, v) y= y(u, v)

We usually assume that 7'is a C' transformation, which means that g and 4 have contin-
uous first-order partial derivatives.

A transformation 7 is really just a function whose domain and range are both subsets
of R If (w1, v1) = (x1, 1), then the point (xi, y1) is called the image of the point (i1, v:).
If no two points have the same image, 7"is called one-to-one. Figure 1 shows the effect of
a transformation 7 on a region S in the wv-plane. T transforms S into a region K in the
xy-plane called the image of S, consisting of the images of all points in S.

v y
(uy, 1) T
.\4—// ® (X, 1)
0 u 0 X

If T'is a one-to-one transformation, then it has an inverse transformation 7! from the
xy-plane to the uv-plane and it may be possible to solve Equations 3 for v and v in terms
of xand y:

u=Gxy v=Hxy)

I EXAMPLE | A transformation is defined by the equations
x=u’ — v* y=2uw

Find the image of the square S = {(,v) |0 < u<1, 0 <v < 1}.

SOLUTION The transformation maps the boundary of §Sinto the boundary of the image. So
we begin by finding the images of the sides of S. The first side, S, is given by v = 0

https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

1014 |||| CHAPTER I5 MULTIPLE INTEGRALS

v
S;

O, 1)t 1,1
st s 1s,
of s, 1,0) "

T

=10 0 TLo «x

FIGURE 2

FIGURE 3
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(0 < u=<1). (See Figure 2.) From the given equations we have x = v, y = 0, and so

0 < x < 1. Thus S is mapped into the line segment from (0, 0) to (1, 0) in the xy-plane.
The second side, S;, is u =1 (0 < v < 1) and, putting v = 1 in the given equations, we
get

=
=

x=1-1° y=2v
Eliminating v, we obtain

E X=l—% 0sx=<1

which is part of a parabola. Similarly, S; is given by v = 1 (0 < v < 1), whose image is
the parabolic arc

yZ

[5] x=- -1=x<0

Finally, S, is given by u = 0 (0 < v < 1) whose image is x = —v?, y = 0, that is,

—1 < x=< 0. (Notice that as we move around the square in the counterclockwise direc-
tion, we also move around the parabolic region in the counterclockwise direction.) The
image of S'is the region R (shown in Figure 2) bounded by the x-axis and the parabolas
given by Equations 4 and 5. L

Now let’s see how a change of variables affects a double integral. We start with a small
rectangle Sin the uv-plane whose lower left corner is the point (up, v9) and whose dimen-
sions are Au and Av. (See Figure 3.)

& y
u=1u,
/ r(u,, L‘)\
Av S T
—_— (X0 Yo)
PN ,
=10y T (1, 0y)
0 u 0 X

The image of S is a region R in the xy-plane, one of whose boundary points is
(x0, o) = T(w, vo). The vector

r(u,v) = g(u, v)i + h(u, v)j

is the position vector of the image of the point (4, v). The equation of the lower side of S
is v = vy, whose image curve is given by the vector function r(u, v9). The tangent vector
at (xo, yp) to this image curve is

Similarly, the tangent vector at (xp, y) to the image curve of the left side of S (namely,
u= ) is
ox. .

r, = gy, v9)i + h(w, vo)j = Tvl + TUJ
( (
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FIGURE 5

The Jacobian is named after the German
mathematician Carl Gustav Jacob Jacobi
(1804-1851). Although the French mathematician
Cauchy first used these special determinants ox Ox
involving partial derivatives, Jacobi developed -
them into a method for evaluating multiple

integrals.

T (Uy, 0y + AD)

A
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We can approximate the image region R = 7(S) by a parallelogram determined by the
secant vectors

a= I‘(Uo + Ay, 1)0) — I‘(Uo, l)()) b= I‘(Uo, v + Av) — I‘(LI(), l)())

a shown in Figure 4. But
T (1o + A, vg) r(u + Au, vo) — r(w, vo)
r,= 1
Au—0 ALI
and so r(u + Au, v0) — r(wp, vo) = Aur,
Similarly r(u, vy + Av) — r(w, vo) = Avr,

This means that we can approximate R by a parallelogram determined by the vectors
Aur, and Av r,. (See Figure 5.) Therefore we can approximate the area of R by the area
of this parallelogram, which, from Section 12.4, is

(6] [(Aur,) X (Avr,)| = |r, X r,| AuAv

Computing the cross product, we obtain

; .
| ,J ox dy Jx  0x
XY ol |\ o gy o

r, Xr,=|du du =y 4 k= ; , k
. . ox oy dy dy
ax 4 = = = =
LD o 150 e du v
v Jv

The determinant that arises in this calculation is called the Jacobian of the transformation
and is given a special notation.

DEFINITION The Jacobian of the transformation 7 given by x = g(u, v) and
y = hu,v) is

x,y) | du v
d(u, v) ay  dy
du Jv

_O0xdy 9xdy
du Jv Jv Jdu

With this notation we can use Equation 6 to give an approximation to the area AA
of R:

i(x )

AA =
(u, v)

Aulv

where the Jacobian is evaluated at (u, v).
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FIGURE 6
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Next we divide a region Sin the uv-plane into rectangles S;; and call their images in the
xy-plane R;. (See Figure 6.)

v y

(1, 0))

Applying the approximation (8) to each R, we approximate the double integral of
over R as follows:

m n

([ fxpda=3 S fxp)aa
R

=1 =1

a(x, y)

d(u, v)

where the Jacobian is evaluated at (u;, v;). Notice that this double sum is a Riemann sum
for the integral

=~ i i f(g(lli, Z)J'), h(Uj, Uj)) AUAU

=1 j=1

I gt o). 1w ) o

N

i(x, )
d(u, v)

The foregoing argument suggests that the following theorem is true. (A full proof is
given in books on advanced calculus.)

[9] CHANGE OF VARIABLES IN A DOUBLE INTEGRAL Suppose that T is a C' trans-
formation whose Jacobian is nonzero and that maps a region Sin the uv-plane onto
aregion Rin the xy-plane. Suppose that £ is continuous on K and that X and S are
type I or type II plane regions. Suppose also that 7 is one-to-one, except perhaps
on the boundary of S. Then

i(x )

du dv
oo | M

ﬂ f(x, y) dA = ﬂ f(X(u, v), fu, v))

Theorem 9 says that we change from an integral in x and y to an integral in v and v by
expressing x and yin terms of v and » and writing

i(x, )

A —
d d(u, v)

du dv

Notice the similarity between Theorem 9 and the one-dimensional formula in Equation 2.
Instead of the derivative dx/du, we have the absolute value of the Jacobian, that is,
[0(x, »)/3(u, v)|.
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0 B As a first illustration of Theorem 9, we show that the formula for integration in polar
Bt———— =8 coordinates is just a special case. Here the transformation 7" from the r6-plane to the
xy-plane is given by
r=a S r=>b
wt——— x = ¢(r,0) = rcos 6 y= h(r,0) = rsin 6
T e
! ' and the geometry of the transformation is shown in Figure 7. 7 maps an ordinary rectangle
0 a b T in the rf-plane to a polar rectangle in the xy-plane. The Jacobian of 7"is
E o x
a(x, y) _|ar a0 | _ C.OSH —rsinf| reost0 + rsintf — > 0
y a(r, 0) ay  ay sinf  rcos6
9 b Jar a6
Thus Theorem 9 gives
r=a 0=«
‘B * * o0k p)
/B a [ [ x ) axdy = j | #(rcos 6, rsin ) dr df
J a(r. 0)
0 X R S
FIGURE 7 = fﬁ [bf(rcos 0, rsin 0) r dr do

The polar coordinate transformation

which is the same as Formula 15.4.2.

1 EXAMPLE 2 Use the change of variables x = u® — v?, y = 2uv to evaluate the integral
{[.y dA, where Ris the region bounded by the x-axis and the parabolas y* = 4 — 4x
and y* =4 + 4x, y = 0.

SOLUTION The region R is pictured in Figure 2 (on page 1014). In Example 1 we discov-
ered that 7(S5) = R, where S'is the square [0, 1] X [0, 1]. Indeed, the reason for making
the change of variables to evaluate the integral is that S'is a much simpler region than X.
First we need to compute the Jacobian:

ox o
d(x, y) _|du dv | 2u —2v A 4 Ay > 0
d(u, v) dy ay 2v 2u

du v

Therefore, by Theorem 9,

[[yan= [

=38 fol fol (v + w®) dudv =8 [ [%u“v + %LIZUS]Z::) dv

1
JO

a(x, )

!
2 o) dA = jﬂ fﬂ Qu)4( + v?) du dv

~[Mev+ 0 = [0 + o], =2 m
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Example 2 was not a very difficult problem to solve because we were given a
suitable change of variables. If we are not supplied with a transformation, then the first step
is to think of an appropriate change of variables. If f(x, y) is difficult to integrate, then the
form of f(x, y) may suggest a transformation. If the region of integration R is awkward,
then the transformation should be chosen so that the corresponding region Sin the uv-plane
has a convenient description.

EXAMPLE 3 Evaluate the integral ([, e/ dA, where Ris the trapezoidal region with
vertices (1, 0), (2, 0), (0, —2), and (0, —1).

SOLUTION Since it isn’t easy to integrate e'*'”/*») we make a change of variables sug-
gested by the form of this function:

u=x+y v=x—y

These equations define a transformation 7' from the xy-plane to the uw-plane.
Theorem 9 talks about a transformation 7 from the wv-plane to the xy-plane. It is
obtained by solving Equations 10 for x and y:

(] x=3u+v)  y=;(u—0v)
The Jacobian of T is
ax ix
oxy | ou oo ‘

o) | oy ay
du Jv

o= N

To find the region Sin the uv-plane corresponding to R, we note that the sides of R lie on
the lines

y=0 x—y=2 x=0 x—y=1
and, from either Equations 10 or Equations 11, the image lines in the wu-plane are
u=v v=2 u=—v v=1

Thus the region S is the trapezoidal region with vertices (1, 1), (2, 2), (=2, 2), and
(=1, 1) shown in Figure 8. Since

S={(u,v) [1=v=2, —ysugv}
Theorem 9 gives

a(x, y)

du di
ooy | Y

ﬂ‘ etIG=9) A = U e
R K

R

=J e and = [P, a

=%f12(e—e_l)vdv=%(e—e‘l) [
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TRIPLE INTEGRALS

There is a similar change of variables formula for triple integrals. Let 7T be a transfor-
mation that maps a region S in uvw-space onto a region R in xyz-space by means of the
equations

x=g(uv,w) y=Hhuv,w)  z=kuv w)

The Jacobian of T is the following 3 X 3 determinant:

ox ox ox

du Jdv Jw

x y.z) _|dy dy Ay

" Waow |ou w o
Jz Jz Oz

ou v ow

Under hypotheses similar to those in Theorem 9, we have the following formula for triple
integrals:

a(x, y, 2)

- du dv dw
d(u, v, w)

13] JH f(x, y,z) dV= ﬂ] f(X(u, v, w), fu, v, w), z(u, v, w))

i1 EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical
coordinates.

SOLUTION Here the change of variables is given by

N
I

x = psing¢ cos 6 y = psind¢ sin 0 p cos ¢

We compute the Jacobian as follows:

sin ¢ cos § —psin ¢ sin @ pcos ¢ cos 6
sin ¢ sin 6 psin ¢ cos 8 pcos ¢ sin 0
cos ¢ 0 —psin ¢

—psin ¢ sin @ pcos ¢ cos O

(x, ¥, 2) _
a(p, 6, &)

sin ¢ cos § —psin ¢ sin 6
sin¢ sin  psin ¢ cos O

= cos ¢

psin ¢ cos 6 pcos ¢ sin O
= cos ¢ (—p’sin ¢ cos ¢ sin’@ — p’sin ¢ cos ¢ cos’h)
— psin ¢ (psine cos’d + psin®¢p sin®6)
= —p’sin ¢ cos’p — p’sin ¢ sin’p = —p’sin ¢
Since 0 < ¢ < 7, we have sin ¢ = 0. Therefore

a(x, y, z)

= |—p?sind| = p’sin
0 0. | —p*sing| = p’sin

and Formula 13 gives

m f(x, y,2z) dV = m f(p sin ¢ cos 6, p sin ¢ sin 6, p cos ¢) p?sin ¢ dp dO dep
¥ 5

which is equivalent to Formula 15.8.3. [
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|15.9| EXERCISES

I-6 Find the Jacobian of the transformation.
Il. x=5u—v, y=u+ 3
. x=uw, y=ufv
x=¢ 'sinf, y=e'cosh
x=e"" y=¢"

. x=ufv, y=v/w, z=w/u

oov oA W

x=0v+ w? y=w+ u,

7-10 Find the image of the set S under the given transformation.

(7] S={(uv)|0su=<3 0sv=<2}
x=2u+ 3 y=u—v

8. Sis the square bounded by the lines u = 0, u= 1, v = 0,
v=1 x=v y=ul + v?)

9. S'is the triangular region with vertices (0, 0), (1, 1), (0, 1);
x=1 y=v

10. Sis the disk given by v* + v> < 1; x=au, y= bv

11-16 Use the given transformation to evaluate the integral.

Il [[,(x — 3y) dA, where Ris the triangular region with
vertices (0, 0), (2, 1), and (1,2); x=2u+v, y=u+ 20

12. ([, (4x + 8y) dA, where Ris the parallelogram with
vertices (—1, 3), (1, =3), (3, —1), and (1, 5);
X= %(u +), y= %(v — 3u)

3] {f [Jo x* dA, where Ris the region bounded by the ellipse
9x* + 4y =36; x=2u, y=3v

14. ([, (x* — xy + J %) dA, where R is the region bounded
by the ellipse x* — xy + y* = 2;

x=\2u-V2/30, y= fu+\/mv

I5. ([, xy dA, where Ris the region in the first quadrant bounded
by the lines y = xand y = 3xand the hyperbolas xy = 1,
xy=3, x=ufv, y=v

CuuDuongThanCong.com

16. [[,y” dA, where Ris the region bounded by the curves

xy=1,xy=2x"=1,x"=2, u=xy, v=xy"
[llustrate by using a graphing calculator or computer to
draw R.

17. (a) Evaluate [[[, dV, where E is the solid enclosed by the
ellipsoid x*/a® + y?/b? + z%/c* = 1. Use the transfor-
mation x = au, y= bv, z = cw.

(b) The earth is not a perfect sphere; rotation has resulted in
flattening at the poles. So the shape can be approximated
by an ellipsoid with a = b = 6378 km and ¢ = 6356 km.
Use part (a) to estimate the volume of the earth.

18. If the solid of Exercise 17(a) has constant density 4, find its
moment of inertia about the z-axis.

19-23 Evaluate the integral by making an appropriate change of
variables.

19. j 3 2y dA where R is the parallelogram enclosed by

thelmes x—2y=0,x—2y=43x—y=1,and
3x—y=28

20. ff,(x+ »e* ™ dA, where Ris the rectangle enclosed by the
linesx—y=0,x—y=2,x+y=0,andx+ y=3

21 JI;J‘COS<§; i

with vertices (1, 0), (2, 0), (0, 2), and (0, 1)

> dA, where Ris the trapezoidal region

22. [[,sin(9x* + 4y*) dA, where Ris the region in the first
quadrant bounded by the ellipse 9x* + 4y* = 1

23. [[,e*"VdA, where Ris given by the inequality | x| + |y| <1

24. Let £ be continuous on [0, 1] and let R be the triangular
region with vertices (0, 0), (1, 0), and (0, 1). Show that

U f(x+ y) dA= jol uf(u) du

R
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CONCEPT CHECK

Suppose £'is a continuous function defined on a rectangle
R=1a, b] X [c d].
(@) Write an expression for a double Riemann sum of f.

If f(x, y) = 0, what does the sum represent?
(b) Write the definition of [[, f(x, y) dA as a limit.
(c) What is the geometric interpretation of ||, £(x, y) dA if
f(x, y) = 0?7 What if f takes on both positive and negative
values?
How do you evaluate ||, f(x, y) dA?
What does the Midpoint Rule for double integrals say?
Write an expression for the average value of f£.

d
e
f

a,

—_ —= =

(
(
(
(

=

How do you define [f,, f(x, y) dA if D is a bounded region
that is not a rectangle?
(b) What is a type I region? How do you evaluate [f,, f(x, y) dA
if Dis a type I region?
(c) What is a type II region? How do you evaluate
|[, f(x. y) dAif Dis a type II region?
(d) What properties do double integrals have?

. How do you change from rectangular coordinates to polar coor-

dinates in a double integral? Why would you want to make the
change?

. If a lamina occupies a plane region D and has density function

p(x, y), write expressions for each of the following in terms of
double integrals.

(a) The mass

(b) The moments about the axes

(c) The center of mass

(d) The moments of inertia about the axes and the origin

. Let £ be a joint density function of a pair of continuous

random variables X and Y.
(a) Write a double integral for the probability that X lies
between a and b and Y lies between cand d.

(b) What properties does £ possess?
(c) What are the expected values of X and ¥?

. (a) Write the definition of the triple integral of f over a

rectangular box B.
(b) How do you evaluate ||, £(x, y, z) dV?
(c) How do you define [[f, f(x, y,z) dVif Eis a bounded solid
region that is not a box?
(d) What is a type 1 solid region? How do you evaluate
JI[; £(x, y, 2) dVif Eis such a region?
(e) What is a type 2 solid region? How do you evaluate
JIJ; £(x. y, 2) dVif E'is such a region?
(f) What is a type 3 solid region? How do you evaluate

|Jf; f(x, y. ) dVif Eis such a region?

. Suppose a solid object occupies the region £ and has density

function p(x, y, z). Write expressions for each of the following.
(@) The mass

(b) The moments about the coordinate planes

(c) The coordinates of the center of mass

(d) The moments of inertia about the axes

. (2) How do you change from rectangular coordinates to cylin-

drical coordinates in a triple integral?

(b) How do you change from rectangular coordinates to
spherical coordinates in a triple integral?

(c) In what situations would you change to cylindrical or
spherical coordinates?

. (a) If a transformation T is given by x = g(u, v),

y = h(u, v), what is the Jacobian of 77
(b) How do you change variables in a double integral?
(c) How do you change variables in a triple integral?

TRUE-FALSE QUIL

2.

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

J‘—Zl j: x sin(x — }/) s i |0 J: fj1 X sin(x — }/) dy dx

fol ‘[OX Vx+ ytdydx= 'OX‘OI Vx+ y* dxdy

3. ‘[12 f: x%e’ dy dx = flz x* d){L4 e’ dy

4. [_11 JOI e sinydxdy =0

CuuDuongThanCong.com

. If Dis the disk given by x* + y* < 4, then

[Vi— = at=%n

D

. J% jl (x2 + V/y) sin(x*y?) dx dy < 9

1Jo

. The integral

.fﬁfﬁww

represents the volume enclosed by the cone z = /x? + y?
and the plane z = 2.

. The integral |[{, kr*dz dr d§ represents the moment of

inertia about the z-axis of a solid £ with constant density 4.
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