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Lp() SPACES

Theorem ( Lebesgue measure) There exists a positive 
measure m defined on a - algebra in n, with the 
following properties: 

(a) m((a1, b1) (ak, bn)) = (a1- b1) (ak- bn) 

(b) contains all open sets and closed sets in n; more 
precisely, E  if and only if there are  a sequence of 
closed sets  {Ak } and  a sequence of open subsets {Вk} 
in n such that 
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(c) m is translation-invariant, i.e., m(E + x) = m(E) for 
every E in  and every x in  n. 

(d) If  E is in and c is a positive real number then

m (cE) = cnm(E) ,

where  cE = {cx : x  E }.

The members of are called the Lebesgue measurable (or
simply “measurable”) sets in n and m is called the
Lebesgue measure (or simply “measurable”) on n.

Let f be a real function on a measurable subset A of
n . We say f is a measurable function on A if and only
if f -1((c,)) for every real number c . 4

Definition. A real function s is said to be a simple function 
if there are k measurable subsets A1, . . . , Ak  and k real 
numbers c1 , . . . , ck such that

where 
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SOBOLEV SPACES

Definition. Let f  be a  real function on an open subset D
of n , x = (x1, . . . , xn )  D and I  {1,. . .,n}. We define

provided the limit exists., and is called the partial

derivative of f at x with respect to the variable xi .
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If                 exits for any i in {1, . . .,n}, we say f is 

differentiable at x and has derivative 
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Definition. Let f  be a  real function on an open subset D

of  n . We say : 

 f is differentiable on D if f (x)  exists for any x in D, 

 f is of class C1(D) if   f is differentiable on D and  f is 

a continuous from D into n.

 f is of class Cc
1(D) if   f is of class C1(D) and  f (x) = 0  

for any x in D \ Kf , where Kf is a compact set contained 

in D. 

 f is of class if   f is of class C1(Df ), where Df 

is a open set containing D. 

1( )C D
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Definition. Let f  be a  real differentiable function on an 

open subset D of  n  and x  D . Put                   , then gj  

is  a real function on D  for any j in {1, . . ., n}. Let i be in 

{1, . . ., n} .   We say : 

 f  has the second-order partial derivative at 

x if  gj has the partial derivative              at x .

 f has the second-order partial derivative at x if        

exists for any i , j in {1, . . .,n).  In this case the second-

order derivative  D2f (x)  of  f at  x is the nn- matrix 
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Definition. Let f  be a  real function on an open subset D

of  n . We say : 

 f is differentiable 2-times on D if D2 f (x)  exists for 

any x in D, 

 f is of class C2(D) if   f is differentiable 2-times on D

and  D2f is a continuous from D into            .

 f is of class Cc
2(D) if   f is of class C2(D) and  f (x) = 0  

for any x in D \ Kf , where Kf is a compact set contained 

in D. 

 f is of class if   f is of class C2(Df ), where Df 

is a open set containing D. 
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Similarly  we  can  define  the classes  Cr(D),  Cc
r(D)  and

for any integer r > 2. We put  ( )rC D
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Theorem. Let D be an open subset of  n ,  p  [1,) and 
f be in Lp(D). Assume

Then   f = 0  a.e. on D.

0 ( ).cfgdx g C D
D

  

Theorem. Let D be an open subset of  n with smooth 

boundary D ,  i  {1, . . ., n} and f  be in                . Then

where ds is the measure on  the boundary D .
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We see that                                                          are normed 

linear spaces. We denote by                                        their 

completions respectively. These Banach spaces are called  

Sobolev spaces.                                                                  
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We see that 
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Let p  [1,) and u  W1,p(D). There is a Cauchy sequence

{um} in such that {um} “converges” to u

in following sense : {um} converges to u in Lp(D) ,

is a Cauchy sequence in Lp(D) for any i  {1,…,n}
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Let p  [1,) and u  W1,p(D). There is a Cauchy sequence

{um} in such that {um} “converges” to u

in following sense : {um} converges to u in Lp(D) ,

is a Cauchy sequence in Lp(D) for any i  {1, … , n}.
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We can choose {um} and v1, . . . , vn in Lp(D) such that
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We say vi is the generalized partial derivative of u with 

respect to xi and denote it by             .
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Thus, let u be in W1,p(D), then u has its generalized partial 

derivatives             Lp(D) such that    
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Thus, let u be in W1,p(D), then u has its generalized partial 

derivatives             Lp(D) such that    
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Let   be in               . We can choose a sequence {m} in

, which converges to  in                   . Arguing as 
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Let D = (-1 , 1) and u(x) = |x|  for any x in D.  Put 
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By the Lebesgue dominated convergence theorem,   u is 

in                  and its generalized derivative is u’(x) = sign x.  1,2 ( )W D

15

Let D = (-1 , 1).  Put

We see that u  L2(D). 
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Now assume there is v  L2(D) such that
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Now assume there is v  L2(D) such that
1( ) (1)cu dx v dx C D

D D
       

We have
0

1

1
(0) ( 1) (0) ( ) (2),cu dx dx C D

D
     


        

By (1) and (2), we see that

which implies v = 0  a.e. on D \ {0}. Thus v = 0  a.e. on D 

or 

10 ( \ {0}),cv dx C D
D

   

10 ( ) (3)cv dx C D
D

   

By (2) and (3),   (0) = 0 for any   ! 1( )cC D



5

17

Therefore  W1,2(D)  L2(D) , but W1,2(D)  L2(D) .

The following properties of generalized derivatives are 
proved in Chapter 7 of the book “ D. Gilbarg and N. 
Trudinger, Elliptic partial differential equations of second 
order”.

Theorem. Let D be an open subset of  n, p and q be in 
(1,) such that p-1+q -1 = 1. Let u  W1,p(D) and v 
W1,q(D) . Then uv belongs to u  W1,1(D) and
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Theorem. Let a1 <  a2  < . . . <  ak be  k real numbers, D be 
an open subset of  n. Put B = {a1, a2 , . . . , ak }. Let  f be 
a real function on  of class  C() C1(\ B) such that f ’ 
is discontinuous at every point of B, and f ’  L(\ B). Let
u  W1,p(D) with p  [1 , ). Then v = f o u belongs to 
W1,p(D)  and
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( )

0 if ( ) .

i

i

u
f u x x u x Bv

xx
x

u x B


  

 
  



19

Theorem. Let D be an open subset of  n and u 
W1,p(D) with p  [1 , ). Put u+ = max {0, u} and u - = max 
{0, -u}. Then u+ , u – and  |u| belong to W1,p(D)  and
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We see that 
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Theorem (Sobolev imbedding). Let D be an open subset 
with smooth boundary in n, and u  W1,p(D) with p 
[1,).  Then

(i)  u is in Lq(D) where                       if  p < n,

(ii)  u is of class               if  0  r < 1 - n-1p.
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Theorem (Sobolev imbedding). Let D be an open subset
with smooth boundary in n, and u  Wk,p(D) with p 
[1,). Then

(i)  u is in Lq(D) where                       if  kp < n,

(ii)  u is of class               if  0  r < k - n-1p.

np
q

n kp



( )rC D

Theorem (Sobolev imbedding). Let D be an open subset

with smooth boundary in n, and u  Wk,p(D) with p 

[1,). Then u is in Lq(D) if and kp < n.[ , ]
np

q p
n kp




The proof of this theorem is in the book of Adams.
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Theorem (Sobolev imbedding). Let D be a bounded open

subset with smooth boundary in n, and u  W k,p(D) with

p  [1,). Then u is in Lq(D) if and kp < n.[1, ]
np

q
n kp




Theorem (Sobolev inequality). Let D be a bounded open

subset with smooth boundary in n, n and k be positive

integers and p  [1,) such that kp < n.

Then for any there is a positive real number

C such that

||u||q  C ||u||k,p  u  Wk,p(D) .

[1, ]
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q
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
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Theorem (Poincare inequality). Let D be a bounded open

subset with smooth boundary in n, n be a positive

integer, p  [1,) such that p < n.

Then for any there is a positive real number

C such that

[1, ]
np

q
n p


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q pu C u u W D   

24

Theorem. is a Hilbert space with the
following inner product

Theorem . Let D be a bounded open subset with smooth 
boundary in n, n be a positive integer, p  [1,) such 
that p < n. Put

Then there are a positive real number c such that

1/ 1,
1, 0||| ||| { || || } ( ).p p p
p D

u u dx u W D   

1,
1, 1, 1, 0|| || ||| ||| || || ( ).p
p p pc u u u u W D   

1,2
0( ( ),||| . |||)W D

1,2
0, , ( ).

D
u v u vdx u v W D      
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Theorem. W1,2 (D) is a Hilbert space with the following
inner product

1,2
0, ( ) , ( ).

D
u v uv u v dx u v W D      

Theorem(Rellich-Kondrachov). Let D be a bounded open

subset with smooth boundary in n, k be positive integer,

and p  [1,) such that kp < n. Let and put

T(u) = u  u  Wk,p(D) .

Then T is a bounded linear mapping from Wk,p(D) into

Lq(D), and the closure T(A) in Lq(D) is compact in Lq(D)

for any bounded subset A in Wk,p(D) .

[1, )
np

q
n kp


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Theorem (Sobolev imbedding). Let D be a bounded open

subset with smooth boundary in , and u  W 1,p(D) with

p  (1,). Then u is in Lq(D) for any q  [1,).

Theorem (Sobolev inequality). Let D be a bounded open

subset with smooth boundary in , and p  (1,). Then

for any q  [1,), there is a positive real number C such

that

||u||q  C ||u||1,p  u  W1,p(D) .

27

Theorem(Rellich-Kondrachov). Let D be a bounded

open subset with smooth boundary in , p  (1,) and

q  [1,) . Put

T(u) = u  u  W1,p(D) .

Then T is a bounded linear mapping from W1,p(D) into

Lq(D), and the closure T(A) in Lq(D) is compact in Lq(D)

for any bounded subset A in W1,p(D) .

28

Theorem. Let D be a bounded open subset with smooth

boundary in n, p  (1,), and T be a linear mapping

from W 1,p(D) into . Then T is continuous on W 1,p(D) if

and only if there are g, g1, . . ., gn in Lp/(p-1)(D) such that

1,
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Theorem. Let D be a bounded open subset with smooth

boundary in n, and T be a linear mapping from

into . Then T is continuous on if and only if

there is g in such that

1,2
0

1 1

( ) [ ] ( ).
D

n n

u g u g
T u dx u W D

x x x x

   
    

    

1,2
0 ( )W D

1,2
0 ( )W D

1,2
0 ( )W D

30

Definition. Let D be a bounded open subset with smooth

boundary in n, p  (1,), v in W 1,p(D) and {vm} be a

sequence in W 1,p(D). Then we say {vm} weakly converges

to v in W 1,p(D) if {T(vm)} converges to T(u) for any

bounded linear mapping T from W 1,p(D) into .

Theorem. Let D be a bounded open subset with smooth

boundary in n, p  (1,), and {um} be a bounded

sequence in W 1,p(D). Then there are u in W 1,p(D) and a

subsequence such that weakly converges to u{ }
km

u { }
km

u
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Lecture 3 

Variational calculus 

2

Variational calculus

Definition. Let f be a mapping from an open subset U of
a normed space (E,||.||E ) into another normed space
(G,||.||G), and x  U. We say f has the directional derivative
at x if and only if there is a bounded linear mapping T from
E into G such that

In this case, we call T the directional derivative at x of f
and denote it by Df (x) .

0

( ) ( )
( ) lim .

t

f x th f x
T h h E

t

 
  

If Df (x) exits for any x in U, we say f is directional

differentiable on U.

3

Denote by L(E,G) the set of all bounded linear mappings
from (E,||.||E) into (G,||.||G) , then L(E,G) is a normed space
with the following norm

|| || sup || ( ) || .
|| || 1

G

E

T T h h E
h

  


Let f be a directionally differentiable mapping from an
open subset U of a normed space (E,||.||E ) into another
normed space (G,||.||G). We say f is of class C1(U) if and
only if Df is a continuous mapping from U into (L(E,G),||.||)

If  Df is of class C1(U), then we say f is of class C2(U)  
and has the second order derivative D2f (x) = D(Df )(x)  for 
any x in U . 4

Let  be a bounded open subset of  n. Put

Then  f is of class C1().

2 1,2( ) | | ( ).f u u dx u W


    

Let  be a bounded open subset of n and g be a real
function of class C2 on   such that there are a positive
real number c and a real function v in L(2n+1)/2n() such that

Put

Then  f is  directionally differentiable on W1,2().

1,2( ) ( , ( )) ( ).f u g x u x dx u W


   

| ( , ) | | ( , ) | ( ) ( , ) .n
g

g x s x s cv x x s
s


   



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Theorem. Let f be a mapping from an open subset U of a
normed space (E,||.||E ) into  and x  U such that

(i) f has the directional derivative at x ,

(ii) f(x)  f(y) for any y  U .

Then

Df (x)h = 0  h  E . (1)

Therefore if we can find x as in the foregoing theorem, we 
can solve the equation (1). 

6

Definition. Let D be an open subset with smooth boundary 
in n, and f  be a real function on a subset  M of Wk,p(D) 
with k {0,1,2, . . .}, p  (1,).  Then we say f  is weakly 
lower semi-continuous on M if and only if for any 
sequence {um} weakly converging to u in M , we have

( ) lim inf ( )m
m

f u f u




Let D be an open subset with smooth boundary in 3. Put

Then  f is weakly lower semi-continuous on W1,2(D) .

6 1,2( ) ( ) ( ).
D

f u u x dx u W D  

7

Let D be an open subset with smooth boundary in n,
and F be a real function on Dn such that F(x,u(x),
u(x)) is integrable on D for any u in W1,p(D). Assume
(i) F(x,s,.) is convex on n for every (x,s)  D,

(ii) There is an integrable function g on D such that

g(x)  F(x,s,z)  (x,s,z)  Dn.

Put

Then f  is weakly lower semi-continuous on W1,p(D). 

1,( ) ( , ( ), ( ) ( ).p

D
f u F x u x u x dx u W D   

8

Let D = (0,2). Put 

S = {u L2(D) : ||u||2  = 1}   and 

B = {u L2(D) : ||u||2  1}.

Then  S and B are closed in L2(D), B is weakly closed in 
L2(D),  and S is not weakly closed in L2(D). 

Definition. Let D  be an open subset with smooth boundary 
in n, and M be a subset  of Wk,p(D) with k {0,1,2, . . .}, 
p  (1,).  Then we say M is weakly closed in Wk,p(D) if 
and only if for any sequence {um} in M such that {um} 
weakly converging to u in Wk,p(D) , we have u  M. 
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Theorem. Let D be an open subset with smooth boundary
in n, and M be a weakly closed subset of Wk,p(D) with k
{0,1,2, . . .}, p  (1,). Let f be a real weakly lower
semi-continuous function on M . Assume : {um} is bounded
in Wk,p(D) if it is a sequence in M and {f (um)} is bounded
in  . Then there is u in M such that

f (u)  f (v)  v  M.

Theorem. Let D be an open subset with smooth boundary
in n, and M be a closed convex subset of Wk,p(D) with k
{0,1,2, . . .}, p  (1,). Then M is weakly closed in
Wk,p(D).

10

Let k be a nonnegative function in Ln/2(D), Then there is a 
u in                 such that 1,2

0 ( )W D

2 1,2
0[ sin ] 0 ( )u v kuv v u dx v W D

D
      

This u is called a weak solution                 to the following 
equation

1,2
0 ( )W D

2cos 0u ku u   

11

Theorem.(Lagrange multiplier) Let f  and g be real
functions of class C1 from an open subset U of a Banach 

space E, and r . Let x0  M = { x  U : g(x) = r} 
such that Dg(x0)  0 and f(x0)   f (x)  for any x in M. 
Then there is a real number c such that 

Df(x0) = cDg(x0)

Using this theorem we can find weak solution u to the 
following eigenvalue problem

( , )u k x u 
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Lecture 4 

TOPOLOGICAL 
DEGREE 

2

TOPOLOGICAL DEGREE

Definition. Let T be a continuous mapping from a subset
A of a normed space (E,||.||E ) into E. We say T is a
compact mapping on A if and only if the closure of T(A) in
E is compact.

In this case, put

f (x) = x - T(x)  x  A .

Then f is called a compact vector field on A.

Let T and S be compact mappings on a subset A of a
normed space (E,||.||E ) . Then T + S also is compact on A.

3

Let D be an open bounded subset with smooth boundary in 
3 and g be in L3(D) . Put

Then  S is a compact mapping on every bounded subset A
of  W1,2(D) .

1,2
0

( ( )). ( ),

( ) ( ) ( ).

S u vdx S u v
D

g x v x dx u W D
D

    

  





4

Let D be an open bonded subset with smooth boundary in 
3. Put

Then  T is a compact mapping on every bounded subset A
of  W1,2(D) .

3 1,2
0

( ( )). ( ),

( ) ( ) ( ).

T u vdx T u v
D

u x v x dx u W D
D

    

   




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5

Put f (w) = w - S(w) - T(w) for any w in . Let u

be in such that f(u) = 0 . Then u is a weak

solution in to the following equation1,2
0 ( )W D

1,2
0 ( )W D

41
4u u g  

1,2
0 ( )W D

6

Theorem. Let U be và open subset in a Banach space E

with closure       and boundary          , and f be a compact 

vector field on        .   Then                 is closed in E.                 

U U

U ( )f U

Theorem. Let U be và open subset in a Banach space E

with closure and boundary , and f be a compact

vector field on . Then there is a continuous mapping

deg(f , U , . ) from into having the

following properties :

(D1) If a  and deg(f , U , a )  0. Then

there is x in U such that f(x) = a.

U U
U

\ ( )E f U 

\ ( )E f U

7

(D1) If a  and deg(f , U , a )  0. Then

there is x in U such that f(x) = a.

(D2) deg(Id , U , a ) = 1 if a  U and deg(Id , U , a ) = 0 if

a  E \ .

(D2) If there are a compact mapping H from

into E and . Then

deg(f1 , U , a ) = deg(f0 , U , a )

where f i(x) = x – H(i,x) for any (i,x) in .

\ ( )E f U

U

[0,1] U

\ ([0,1] )a E H U 

{0,1} U

8

Let f be a compact vector field on a closed B’(0,r) in a 
Hilbert space H such that 

< f(x) , x>  > 0                           x , ||x|| = r .        

Then there is u in B(0,r)  such that f (u) = 0 .

Let D be an open bounded subset with smooth boundary in 

3 and g be in  L3(D). Then there is a weak solution in 

to the following equation1,2
0 ( )W D

41
4u u g  
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Definition . Let E be a measurable subset and s be a simple 
function such that 

We define the integral of s on E as follows 
1

.
k

i
ii

s c
A






1

( )
k

i i
i

sdx c m E A
E



  

Definition . Let E be a measurable subset and  f be a 
positive measurable function on E . Put F(f ) is the set of all 
nonnegative simple function s  f . Then the integral of  f
on E is defined as follows

sup ,
( )

fdx sdx
E E

s F f



 

6

Definition . Let E be a measurable subset and  f be a 
measurable function on E . We say f is integrable on E if 
and only if 

In this case  we put 

| | .f dx
E

 

,fdx f dx f dx
E E E

    

where max{ ,0} and max{ ,0}.f f f f   

We have following results (see the proofs  in the book “ 
Real and complex analysis” of W. Rudin)

7

Theorem (Lebesgue’s Monotone Convergence theorem)    

Let {f m} be a sequence of measurable functions on E, 
and suppose that 

(a)  0  f 1(х)  f 2(х)  . . .  f m(х)  . . . for every x  E, 

(b)     fm(x)  f(x) as n ,    for every x  E. 

Then f   is measurable on E, and 

lim m
m

fdx f dx
E E

 

Fatou's Lemma: If  f m : E  [0, ) is measurable, for 
each positive integer m, then

m m
(liminf  ) liminf .m mf dx f dx
E E 

  8

Lebesgue's Dominated Convergence Theorem

Suppose {f m} is a sequence of real measurable functions 
on E such that there is a real function f and an integrable 
real function g on E  having the following propreties 

Then  f is  integrable on E , 

( ) lim ( ) ,

| ( ) | ( ) , 1,2,....

m
m

m

f x f x x E

f x g x x E m


  

   

lim | | 0 and

lim

m
m

m
m

f f dx
E

fdx f dx
E E





 





 
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Let E be a measurable subset of n with m(E) > 0. Denote
by (E) the set of all real measurable functions on E. If f
and g are in (E) and if m({х : f (х)  g(х)}) = 0, we say
that f = g a.e. (almost everywhere) on E , and we may
write f ~ g. This is easily seen to be an equivalence
relation. The transitivity (f ~ g and g ~ h implies f ~ h) is a
consequence of the fact that the union of two sets of
measure 0 has measure 0.

Note that  if   f ~ g and  u ~ v ,  then

 f + u ~ g + v  ,

 f . u ~ g . v    ,

 c u ~ c v   for any real number c  .
10

Let  f be in  (E) ,  we put

We see that          is an equivalent class of (E) with 
respect to relation ~ .  The set of these equivalent classes is 
a vector space with the following operations :

{ ( ) : }f g E g f  

f









, ( ),

( ), ,

. . , ( ),

| | | | ( ).

f g f g f g E

f f f E

f g f g f g E

f f f E

  

    

   

  

  

 

 

 



11

Denote by M(E) be this vector space. An element of M(E)  
is a class of functions. 

We can consider every element of M(E)  as a real function 
on E, which belongs to it. We say:

 is continuous if there is a continuous map g in     ,

 is bounded if there is a bounded map g in      ,  

 is differentiable  if  there is a differentiable map g

in        .

f f

f f

f

f

12

Hereafter we consider every element u of M(E) as a real
function f on E and apply the differential and integral
calculus to f in order to get estimations about u.

For example, if we can prove that  | f (x)|  5  for any x in 

E, then we say |u |  5  for almost everywhere on E, that is : 

for any g  in the class u there is a subset Ag of E such that 

m(Ag) = 0 and | g(x)|  5  for any x in E \Ag . 

Let A be a measurable subset of E with m(A) > 0 , then we 
can define the restriction u|A in usual way. But u|A is  
nonsense if  m(A) =  0 . 
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Let u be in M(E). If there is an integrable function f in the 
class u, we say u is integrable on E and put

This notation is well-defined, because 

( m({x  E : f (x)  g (x) }) = 0 )

measurable subset of .udx fdx A E
A A

  

measurable subset of , , ( ).f dx gdx A E f g M E
A A

   

Let p be in the interval [1, ) and E be a measurable
subset of n with m(E) > 0, and u be in M(E) . We say

 u  Lp(E) if |u|p is integrable on E ,

 u  L(E) if there is a real number K such that |u|  K
almost everywhere on E . 14

We put

1/|| || { | | } ( ), 1 ,

|| || inf{ 0 : | | a.e. on } ( ).

p p p
pu u u L E p

E

u K u K E u L E


     

    



We have following properties of Lp(E) (see the proofs  in 
the book “ Real and complex analysis” of W. Rudin)

Theorem . (Lr(E),||.||r) is a Banach space for any r in[1,].

Theorem (Holder) Let p and q be in (1, ),  f  be in Lp(E) 
and g  be in Lq(E) such that p-1 + q-1 = 1. Then

| | || || || ||p qfgdx f g
E



15

Theorem. Let p be in (1,) and T be a continuous linear
mapping from Lp(E) into . Then there exists a unique g in
Lq(E) , p-1 + q-1 = 1 such that ||T|| = ||g||q and

( ) ( ).pT f fgdx f L E
E

  

Theorem. L2(E) is a Hilbert space with respect to
following inner-product

2, , ( ).u v uvdx u v L E
E

    

16

Definition. Let D an open subset of n and f be a
continuous real function on D. We say f is of class
Cc(D) if and only if there is a compact subset K of n such
that K  D and f (x) = 0 for any x in D \ K .

Theorem. Let D an open subset of  n,  p  [1,) and u be 
in Lp(D) . Then there is a sequence {um} in Cc(D)  such that

lim || || 0.m p
m

u u


 
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