

$L^p(\Omega)$ SPACES

Theorem (Lebesgue measure) There exists a positive measure *m* defined on a σ - algebra \mathfrak{M} in \mathfrak{P}^n , with the following properties:

(a) $m((a_1, b_1) \times ... \times (a_k, b_n)) = (a_1 - b_1) \times ... \times (a_k - b_n)$

(b) 𝔅 contains all open sets and closed sets in 𝔅ⁿ; more precisely, E ∈ 𝔅 if and only if there are a sequence of closed sets {A_k} and a sequence of open subsets {B_k} in 𝔅ⁿ such that

 $\bigcup_{k=1}^{\infty} A_k \subset E \subset \bigcap_{k=1}^{\infty} B_k \quad \text{and} \quad m(\bigcap_{k=1}^{\infty} B_k \setminus \bigcup_{k=1}^{\infty} A_k) = 0$

(c) *m* is translation-invariant, i.e., m(E + x) = m(E) for every *E* in \mathfrak{M} and every *x* in \mathfrak{Q}^n .

(d) If E is in \mathfrak{M} and c is a positive real number then

 $m(cE) = c^n m(E),$

where $cE = \{cx : x \in E\}$.

The members of \mathfrak{M} are called the Lebesgue measurable (or simply "measurable") sets in \mathfrak{P}^n and *m* is called the Lebesgue measure (or simply "measurable") on \mathfrak{P}^n .

Let *f* be a real function on a measurable subset *A* of \mathfrak{S}^n . We say *f* is a measurable function on *A* if and only if $f^{-1}((c,\infty)) \in \mathfrak{M}$ for every real number *c*.

Definition. A real function *s* is said to be a simple function if there are *k* measurable subsets A_1, \ldots, A_k and *k* real numbers c_1, \ldots, c_k such that

$$s = \sum_{i=1}^{k} c_i \chi_{A_i} \quad ,$$

$$\chi_{A_i}(x) =$$

where

$$\forall x \in A_i ,$$

$$\forall x \in \mathbb{R}^n \setminus A_i.$$

4

Lecture 2 SOBOLEV SPACES

Definition. Let f be a real function on an open subset D of \mathfrak{S}^n . We say :

- f is differentiable on D if $\nabla f(x)$ exists for any x in D,
- f is of class $C^{1}(D)$ if f is differentiable on D and ∇f is a continuous from D into \mathfrak{S}^{n} .
- f is of class $C_c^{-1}(D)$ if f is of class $C^1(D)$ and f(x) = 0 for any x in $D \setminus K_f$, where K_f is a compact set contained in D.
- f is of class $C^1(\overline{D})$ if f is of class $C^1(D_f)$, where D_f is a open set containing D.

SOBOLEV SPACES

Definition. Let f be a real function on an open subset Dof \mathfrak{P}^n , $x = (x_1, \ldots, x_n) \in D$ and $I \in \{1, \ldots, n\}$. We define $\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x_1, \ldots, x_{i-1}, x_i + t, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)}{derivative of <math>f$ at x with respect to the variable x_i . If $\frac{\partial f}{\partial x_i}(x)$ exits for any i in $\{1, \ldots, n\}$, we say f is differentiable at x and has derivative $Df(x) = \nabla f(x) = (\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \cdots, \frac{\partial f}{\partial x_n}(x))$

Definition. Let *f* be a real differentiable function on an open subset *D* of \Leftrightarrow^n and $x \in D$. Put $g_j = \frac{\partial f}{\partial x_j}$, then g_j is a real function on *D* for any *j* in $\{1, \ldots, n\}$. Let *i* be in $\{1, \ldots, n\}$. We say : • *f* has the second-order partial derivative $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$ at *x* if g_j has the partial derivative $\frac{\partial g_j}{\partial x_i}(x)$ at x. • *f* has the second-order partial derivative at *x* if $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$ exists for any *i*, *j* in $\{1, \ldots, n\}$. In this case the secondorder derivative $D^2 f(x)$ of *f* at *x* is the *n*×*n*-matrix $[\frac{\partial^2 f}{\partial x_i \partial x_j}(x)]_{i,j=1,2,...,n}$ **Definition**. Let f be a real function on an open subset D of \mathfrak{Q}^n . We say :

• f is differentiable 2-times on D if $D^2 f(x)$ exists for any x in D,

• f is of class $C^2(D)$ if f is differentiable 2-times on Dand $D^2 f$ is a continuous from D into $\mathbb{R}^{n \times n}$.

• f is of class $C_c^2(D)$ if f is of class $C^2(D)$ and f(x) = 0for any x in $D \setminus K_f$, where K_f is a compact set contained in D.

• f is of class $C^2(\overline{D})$ if f is of class $C^2(D_f)$, where D_f is a open set containing D.

Theorem. Let *D* be an open subset of \mathfrak{P}^n , $p \in [1,\infty)$ and *f* be in $L^p(D)$. Assume $\int_D fg dx = 0 \qquad \forall g \in C_c^{\infty}(D)$. Then f = 0 a.e. on *D*. **Theorem**. Let *D* be an open subset of \mathfrak{P}^n with smooth boundary ∂D , $i \in \{1, \ldots, n\}$ and *f* be in $C^1(\overline{D})$. Then (*i*) $\int_D f \frac{\partial g}{\partial x_i} dx = \int_{\partial D} fg ds - \int_D \frac{\partial f}{\partial x_i} g dx \qquad \forall g \in C^1(\overline{D}),$ (*ii*) $\int_D f \frac{\partial g}{\partial x_i} dx = -\int_D \frac{\partial f}{\partial x_i} g dx \qquad \forall g \in C_c^1(D),$ where *ds* is the measure on the boundary ∂D . Similarly we can define the classes $C^{r}(D)$, $C_{c}^{r}(D)$ and $C^{r}(\overline{D})$ for any integer r > 2. We put $C^{\infty}(D) = \bigcap_{r=1}^{\infty} C^{r}(D)$, $C_{C}^{\infty}(D) = \bigcap_{r=1}^{\infty} C_{c}^{r}(D)$, $\overline{C}^{\infty}(\overline{D}) = \bigcap_{r=1}^{\infty} C^{r}(\overline{D})$.

Put	
$ f _{1,p} = \{ \int_{D} (f ^{p} + \nabla f ^{p}) dx \}^{1/p} \qquad \forall f \in C^{1}(\overline{D}),$	
$ f _{2,p} = \{ \int_{D} (f ^{p} + \nabla f ^{p} + D^{2} f ^{p}) dx \}^{1/p} \forall f \in C^{2}(\overline{D}),$	
$ f _{k,p} = \{ \int_{D} (f ^{p} + \sum_{r=1}^{k} D^{r} f ^{p}) dx]^{1/p} \qquad \forall f \in C^{k}(\overline{D}).$	
We see that $(C_c^k(D), \ .\ _{1,p})$ and $(C^k(\overline{D}), \ .\ _{1,p})$ are normed	
linear spaces. We denote by $W_0^{k,p}(D)$ and $W^{k,p}(D)$ their	
completions respectively. These Banach spaces are called	
Sobolev spaces.	

We see that

- $W_0^{k,p}(D) \subset W^{k,p}(D) \quad \forall k \ge 1,$
- $W^{k,p}(D) \subset W^{k-1,p}(D) \subset L^p(D) \quad \forall k > 1.$

Let $p \in [1,\infty)$ and $u \in W^{1,p}(D)$. There is a Cauchy sequence $\{u_m\}$ in $(C^1(\overline{D}), \|.\|_{1,p})$ such that $\{u_m\}$ "converges" to uin following sense : $\{u_m\}$ converges to u in $L^p(D)$, $\{\frac{\partial u_m}{\partial x_i}\}$ is a Cauchy sequence in $L^p(D)$ for any $i \in \{1,...,n\}$

$\int_{D} u_{m} \frac{\partial \varphi}{\partial x_{i}} dx = -\int_{D} \frac{\partial u_{m}}{\partial x_{i}} \varphi dx \qquad \forall \varphi \in C_{\infty}^{1}(D), m \in \mathbb{N} $ (1)
$\left \int_{D} u_{n} \frac{\partial \varphi}{\partial x_{i}} dx - \int_{D} u \frac{\partial \varphi}{\partial x_{i}} dx\right = \left \int_{D} (u_{m} - u) \frac{\partial \varphi}{\partial x_{i}} dx\right \leq \int_{D} \left (u_{m} - u) \frac{\partial \varphi}{\partial x_{i}}\right dx$
$\leq \{\int_{D} u_m - u ^p dx\}^{1/p} \{\int_{D} \frac{\partial \varphi}{\partial x_i} ^{p/(p-1)} dx\}^{(p-1)/p} \to 0 \text{ as } m \to \infty $ (2)
$\left \int_{D} \frac{\partial u_{m}}{\partial x_{i}} \varphi dx - \int_{D} v_{i} \varphi dx\right = \left \int_{D} (\frac{\partial u_{m}}{\partial x_{i}} - v_{i}) \varphi dx\right \leq \int_{D} \left (\frac{\partial u_{m}}{\partial x_{i}} - v_{i}) \varphi\right dx$
$\leq \left\{ \int_{D} \left \frac{\partial u_m}{\partial x_i} - v_i \right ^p dx \right\}^{1/p} \left\{ \int_{D} \left \varphi \right ^{p/(p-1)} dx \right\}^{(p-1)/p} \to 0 \text{ as } m \to \infty (3).$
$(1),(2),(3) \Longrightarrow \int_D u \frac{\partial \varphi}{\partial x_i} dx = -\int_D v_i \varphi dx \qquad \forall \varphi \in C^1_{\infty}(D), i \in \{1,\dots,n\}$
11

Let $p \in [1,\infty)$ and $u \in W^{1,p}(D)$. There is a Cauchy sequence $\{u_m\}$ in $(C^1(\overline{D}), \|.\|_{1,p})$ such that $\{u_m\}$ "converges" to uin following sense : $\{u_m\}$ converges to u in $L^p(D)$, $\{\frac{\partial u_m}{\partial x_i}\}$ is a Cauchy sequence in $L^p(D)$ for any $i \in \{1, ..., n\}$. We can choose $\{u_m\}$ and $v_1, ..., v_n$ in $L^p(D)$ such that $\lim_{m \to \infty} \|\frac{\partial u_m}{\partial x_i} - v_i\|_p = 0 \quad \forall i \in \{1, ..., n\},$ $u(x) = \lim_{m \to \infty} u_m(x) \qquad \text{a.e. on } D,$ $v_i(x) = \lim_{m \to \infty} \frac{\partial u_m}{\partial x_i}(x) \qquad \text{a.e. on } D, \forall i \in \{1, ..., n\}.$

$(1),(2),(3) \Rightarrow \int_D u \frac{\partial \varphi}{\partial x_i} dx = -\int_D v_i \varphi dx$	$\forall \varphi \in C^1_{\infty}(D), i \in \{1, \dots, n\}$		
We say v_i is the generalized partial derivative of u with respect to x_i and denote it by $\frac{\partial u}{\partial x_i}$.			
Thus, let u be in $W^{1,p}(D)$, then u led derivatives $\frac{\partial u}{\partial x_i} \in L^p(D)$ such the $\int_D u \frac{\partial \varphi}{\partial x_i} dx = -\int_D \frac{\partial u}{\partial x_i} \varphi dx \forall \varphi$	has its generalized partial hat $\in C^1_{\infty}(D), i \in \{1, \dots, n\}.$		
	12		

Thus, let u be in $W^{1,p}(D)$, then u has its generalized partial derivatives $\frac{\partial u}{\partial x_i} \in L^p(D)$ such that $\int_D u \frac{\partial \varphi}{\partial x_i} dx = -\int_D \frac{\partial u}{\partial x_i} \varphi dx \qquad \forall \varphi \in C_c^1(D), i \in \{1, \dots n\}.$ Let η be in $W_0^{1,p}(D)$. We can choose a sequence $\{\varphi_m\}$ in $C_c^1(D)$, which converges to η in $W_0^{1,p}(D)$. Arguing as in (1),(2) and (3), we get $\int_D u \frac{\partial \eta}{\partial x_i} dx = -\int_D \frac{\partial u}{\partial x_i} \eta dx \qquad \forall \eta \in W_0^{1,p}(D), i \in \{1, \dots n\}.$

Let
$$D = (-1, 1)$$
. Put

$$u(x) = \begin{cases} 1 & \forall x \in (-1, 0], \\ 0 & \forall x \in (0, 1). \end{cases}$$
We see that $u \in L^2(D)$.
Now assume there is $v \in L^2(D)$ such that

$$\int_D u\varphi' dx = -\int_D v\varphi dx \qquad \forall \varphi \in C_c^1(D) \quad (1)$$
We have

$$\int_D u\varphi' dx = \int_{-1}^0 \varphi' dx = \varphi(0) - \varphi(-1) = \varphi(0) \qquad \forall \varphi \in C_c^1(D) \quad (2)$$

Let
$$D = (-1, 1)$$
 and $u(x) = |x|$ for any x in D . Put
 $u_m(x) = \sqrt{x^2 + m^{-1}}$ $\forall x \in D, m \in \{1, 2, ...\}.$
We have
• $|u_m(x)| \leq \sqrt{2}$ and $\lim_{m \to \infty} u_m(x) = \sqrt{x^2} = u(x)$ $\forall x \in D,$
• $|u'_m(x)| = |\frac{x}{\sqrt{x^2 + m^{-1}}}| \leq 1$ $\forall x \in D \setminus \{0\},$
• $\lim_{m \to \infty} u'_m(x) = \frac{x}{\sqrt{x^2}} = sign \ x$ $\forall x \in D \setminus \{0\}.$
By the Lebesgue dominated convergence theorem, u is
in $W^{1,2}(D)$ and its generalized derivative is $u'(x) = sign x.$

Now assume there is
$$v \in L^2(D)$$
 such that

$$\int_D u\varphi' dx = -\int_D v\varphi dx \quad \forall \varphi \in C_c^1(D) \quad (1)$$
We have

$$\int_D u\varphi' dx = \int_{-1}^0 \varphi' dx = \varphi(0) - \varphi(-1) = \varphi(0) \quad \forall \varphi \in C_c^1(D) \quad (2),$$
By (1) and (2), we see that

$$\int_D v\varphi dx = 0 \quad \forall \varphi \in C_c^1(D \setminus \{0\}),$$
which implies $v = 0$ a.e. on $D \setminus \{0\}$. Thus $v = 0$ a.e. on D
or

$$\int_D v\varphi dx = 0 \quad \forall \varphi \in C_c^1(D) \quad (3)$$
By (2) and (3), $\varphi(0) = 0$ for any $\varphi \in C_c^1(D)$

Therefore $W^{1,2}(D) \subset L^2(D)$, but $W^{1,2}(D) \neq L^2(D)$.

The following properties of generalized derivatives are proved in Chapter 7 of the book " D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order".

Theorem. Let *D* be an open subset of \mathfrak{P}^n , *p* and *q* be in $(1,\infty)$ such that $p^{-1}+q^{-1} = 1$. Let $u \in W^{1,p}(D)$ and $v \in W^{1,q}(D)$. Then *uv* belongs to $u \in W^{1,1}(D)$ and

 $\frac{\partial(uv)}{\partial x_i} = \frac{\partial u}{\partial x_i}v + u\frac{\partial v}{\partial x_i} \qquad \forall i \in \{1, \dots, n\}.$

Theorem. Let *D* be an open subset of \Leftrightarrow^n and $u \in W^{1,p}(D)$ with $p \in [1, \infty)$. Put $u^+ = \max \{0, u\}$ and $u^- = \max \{0, -u\}$. Then u^+ , u^- and |u| belong to $W^{1,p}(D)$ and $\frac{\partial u^+}{\partial x_i}(x) = \begin{cases} \frac{\partial u}{\partial x_i}(x) & \text{if } u(x) > 0, \\ 0 & \text{if } u(x) \le 0. \end{cases}$ $\frac{\partial u^-}{\partial x_i}(x) = \begin{cases} \frac{\partial u}{\partial x_i}(x) & \text{if } u(x) < 0, \\ 0 & \text{if } u(x) \ge 0. \end{cases}$ $\frac{\partial |u|}{\partial x_i}(x) = \begin{cases} \frac{\partial u}{\partial x_i}(x) & \text{if } u(x) > 0, \\ 0 & \text{if } u(x) \ge 0. \end{cases}$ $\frac{\partial |u|}{\partial x_i}(x) = \begin{cases} \frac{\partial u}{\partial x_i}(x) & \text{if } u(x) > 0, \\ 0 & \text{if } u(x) \ge 0, \\ -\frac{\partial u}{\partial x_i}(x) & \text{if } u(x) < 0. \end{cases}$ **Theorem**. Let $a_1 < a_2 < ... < a_k$ be k real numbers, D be an open subset of \mathfrak{P}^n . Put $B = \{a_1, a_2, ..., a_k\}$. Let f be a real function on \mathfrak{P} of class $C(\mathfrak{P}) \cap C^1(\mathfrak{P} \setminus B)$ such that f'is discontinuous at every point of B, and $f' \in L^{\infty}(\mathfrak{P} \setminus B)$. Let $u \in W^{1,p}(D)$ with $p \in [1, \infty)$. Then $v = f \circ u$ belongs to $W^{1,p}(D)$ and

$$\frac{\partial v}{\partial x_i}(x) = \begin{cases} f'(u(x))\frac{\partial u}{\partial x_i}(x) & \text{if } u(x) \in \mathbb{R} \setminus B, \\ 0 & \text{if } u(x) \in B. \end{cases}$$

We see that • $W_0^{k,p}(D) \subset W^{k,p}(D) \quad \forall k \ge 1,$ • $W^{k,p}(D) \subset W^{k-1,p}(D) \subset L^p(D) \quad \forall k > 1,$ • $W_0^{1,p}(D) \subset W^{1,p}(D) \subset L^p(D).$ Theorem (Sobolev imbedding). Let D be an open subset with smooth boundary in \mathfrak{S}^n , and $u \in W^{1,p}(D)$ with $p \in [1,\infty)$. Then (i) u is in $L^q(D)$ where $q = \frac{np}{n-p}$ if p < n, (ii) u is of class $C^r(\overline{D})$ if $0 \le r \le 1 - n^{-1}p$. **Theorem (Sobolev imbedding).** Let *D* be an open subset with smooth boundary in \mathfrak{S}^n , and $u \in W^{k,p}(D)$ with $p \in [1,\infty)$. Then (i) *u* is in $L^q(D)$ where $q = \frac{np}{n-kp}$ if kp < n, (ii) *u* is of class $C^r(\overline{D})$ if $0 \le r < k - n^{-1}p$. The proof of this theorem is in the book of Adams. **Theorem (Sobolev imbedding).** Let *D* be an open subset with smooth boundary in \mathfrak{S}^n , and $u \in W^{k,p}(D)$ with $p \in [1,\infty)$. Then *u* is in $L^q(D)$ if $q \in [p, \frac{np}{n-kp}]$ and kp < n.

Theorem (Poincare inequality). Let *D* be a bounded open subset with smooth boundary in \mathfrak{P}^n , *n* be a positive integer, $p \in [1,\infty)$ such that p < n. Then for any $q \in [1, \frac{np}{n-p}]$ there is a positive real number *C* such that $\| u \|_q \leq C \| \nabla u \|_p$ $\forall u \in W_0^{1,p}(D).$ **Theorem (Sobolev imbedding).** Let *D* be a bounded open subset with smooth boundary in \mathfrak{S}^n , and $u \in W^{k,p}(D)$ with $p \in [1,\infty)$. Then *u* is in $L^q(D)$ if $q \in [1, \frac{np}{n-kp}]$ and kp < n.

Theorem (Sobolev inequality). Let *D* be a bounded open subset with smooth boundary in \mathfrak{Q}^n , *n* and *k* be positive integers and $p \in [1,\infty)$ such that kp < n.

Then for any $q \in [1, \frac{np}{n-kp}]$ there is a positive real number *C* such that

 $\|u\|_{q} \leq C \|u\|_{k,p} \qquad \forall u \in W^{k,p}(D).$

Theorem. Let *D* be a bounded open subset with smooth boundary in \mathfrak{S}^n , *n* be a positive integer, $p \in [1,\infty)$ such that p < n. Put $\|\| u \|\|_{1,p} = \{\int_D \|\nabla u \|^p dx\}^{1/p}$ $\forall u \in W_0^{1,p}(D)$. Then there are a positive real number *c* such that $c \| u \|_{1,p} \leq \|\| u \|\|_{1,p} \leq \| u \|_{1,p}$ $\forall u \in W_0^{1,p}(D)$. **Theorem**. $(W_0^{1,2}(D), \|\| . \||)$ is a Hilbert space with the following inner product $< u, v > = \int_D \nabla u \nabla v dx$ $\forall u, v \in W_0^{1,2}(D)$. **Theorem**. $W^{1,2}(D)$ is a Hilbert space with the following inner product

 $\langle u,v \rangle = \int_D (uv + \nabla u \nabla v) dx \qquad \forall u,v \in W^{1,2}_0(D).$

Theorem(Rellich-Kondrachov). Let *D* be a bounded open subset with smooth boundary in \mathfrak{P}^n , *k* be positive integer, and $p \in [1,\infty)$ such that kp < n. Let $q \in [1, \frac{np}{n-kp})$ and put $T(u) = u \qquad \forall u \in W^{k,p}(D)$.

Then *T* is a bounded linear mapping from $W^{k,p}(D)$ into $L^{q}(D)$, and the closure T(A) in $L^{q}(D)$ is compact in $L^{q}(D)$ for any bounded subset *A* in $W^{k,p}(D)$.

Theorem(Rellich-Kondrachov). Let D be a bounded open subset with smooth boundary in $\mathfrak{D}, p \in (1,\infty)$ and $q \in [1,\infty)$. Put

 $T(u) = u \qquad \forall \ u \in W^{1,p}(D) \ .$

Then *T* is a bounded linear mapping from $W^{1,p}(D)$ into $L^q(D)$, and the closure T(A) in $L^q(D)$ is compact in $L^q(D)$ for any bounded subset *A* in $W^{1,p}(D)$.

Theorem (Sobolev imbedding). Let *D* be a bounded open subset with smooth boundary in \Leftrightarrow , and $u \in W^{1,p}(D)$ with $p \in (1,\infty)$. Then *u* is in $L^q(D)$ for any $q \in [1,\infty)$.

Theorem (Sobolev inequality). Let *D* be a bounded open subset with smooth boundary in \Leftrightarrow , and $p \in (1,\infty)$. Then for any $q \in [1,\infty)$, there is a positive real number *C* such that

$$u\|_{q} \leq C \|u\|_{1,p} \qquad \forall u \in W^{1,p}(D).$$

Theorem. Let *D* be a bounded open subset with smooth boundary in \mathfrak{P}^n , $p \in (1,\infty)$, and *T* be a linear mapping from $W^{1,p}(D)$ into \mathfrak{P} . Then *T* is continuous on $W^{1,p}(D)$ if and only if there are g, g_1, \ldots, g_n in $L^{p/(p-1)}(D)$ such that

$$T(u) = \int_{D} [ug + \frac{\partial u}{\partial x_{1}}g_{1} + \dots + \frac{\partial u}{\partial x_{n}}g_{n}]dx \quad \forall u \in W^{1,p}(D).$$

Theorem. Let *D* be a bounded open subset with smooth boundary in \mathfrak{P}^n , and *T* be a linear mapping from $W_0^{1,2}(D)$ into \mathfrak{P} . Then *T* is continuous on $W_0^{1,2}(D)$ if and only if there is *g* in $W_0^{1,2}(D)$ such that $T(u) = \int_D \left[\frac{\partial u}{\partial x_1}\frac{\partial g}{\partial x_1} + \dots + \frac{\partial u}{\partial x_n}\frac{\partial g}{\partial x_n}\right]dx \quad \forall u \in W_0^{1,2}(D).$

29

Definition. Let *D* be a bounded open subset with smooth boundary in \mathfrak{P}^n , $p \in (1,\infty)$, v in $W^{1,p}(D)$ and $\{v_m\}$ be a sequence in $W^{1,p}(D)$. Then we say $\{v_m\}$ weakly converges to v in $W^{1,p}(D)$ if $\{T(v_m)\}$ converges to T(u) for any bounded linear mapping *T* from $W^{1,p}(D)$ into \mathfrak{P} .

Theorem. Let *D* be a bounded open subset with smooth boundary in \mathfrak{P}^n , $p \in (1,\infty)$, and $\{u_m\}$ be a bounded sequence in $W^{1,p}(D)$. Then there are *u* in $W^{1,p}(D)$ and a subsequence $\{u_{m_k}\}$ such that $\{u_{m_k}\}$ weakly converges to *u*

Denote by L(E,G) the set of all bounded linear mappings from $(E, \|.\|_E)$ into $(G, \|.\|_G)$, then L(E,G) is a normed space with the following norm

 $||T|| = \sup_{\|h\|_{E} \leq 1} ||T(h)||_{G} \qquad \forall h \in E.$

Let f be a directionally differentiable mapping from an open subset U of a normed space (E, ||.||E) into another normed space (G, ||.||G). We say f is of class $C^1(U)$ if and only if Df is a continuous mapping from U into (L(E, G), ||.||)

If Df is of class $C^{1}(U)$, then we say f is of class $C^{2}(U)$ and has the second order derivative $D^{2}f(x) = D(Df)(x)$ for any x in U.

Variational calculus

Definition. Let f be a mapping from an open subset U of a normed space $(E, \|.\|_E)$ into another normed space $(G, \|.\|_G)$ and $x \in U$. We say f has the directional derivative at x if and only if there is a bounded linear mapping T from E into G such that

$$T(h) = \lim_{t \to 0} \frac{f(x+th) - f(x)}{t} \qquad \forall h \in E$$

In this case, we call T the directional derivative at x of f and denote it by Df(x).

If Df(x) exits for any x in U, we say f is directional differentiable on U.

Let Ω be a bounded open subset of \mathfrak{Q}^n . Put	
$f(u) = \int_{\Omega} \nabla u ^2 dx \qquad \forall u \in W^{1,2}(\Omega).$ Then f is of class $C^1(\Omega)$.	
Let Ω be a bounded open subset of \mathfrak{S}^n and g be a real function of class C^2 on $\Omega \times \mathfrak{S}$ such that there are a positive real number c and a real function v in $L^{(2n+1)/2n}(\Omega)$ such that $ g(x,s) + \frac{\partial g}{\partial s}(x,s) \leq cv(x) \qquad \forall (x,s) \in \Omega \times \mathbb{R}^n$.	
Put $f(u) = \int_{\Omega} g(x, u(x)) dx \forall u \in W^{1,2}(\Omega).$ Then <i>f</i> is directionally differentiable on W ^{1,2} (Ω).	

Theorem. Let *f* be a mapping from an open subset *U* of a normed space $(E, \|.\|_E)$ into \Leftrightarrow and $x \in U$ such that

(i) f has the directional derivative at x,

(ii) $f(x) \leq f(y)$ for any $y \in U$.

Then

 $Df(x)h = 0 \qquad \forall h \in E$.

Therefore if we can find x as in the foregoing theorem, we can solve the equation (1).

(1)

5

7

Let *D* be an open subset with smooth boundary in \mathfrak{S}^n , and *F* be a real function on $D \times \mathfrak{S} \times \mathfrak{S}^n$ such that $F(x,u(x), \nabla u(x))$ is integrable on *D* for any *u* in $W^{1,p}(D)$. Assume (i) F(x,s,.) is convex on \mathfrak{S}^n for every $(x,s) \in D \times \mathfrak{S}$,

(ii) There is an integrable function g on D such that

$$g(x) \leq F(x,s,z) \qquad \forall (x,s,z) \in D \times \mathfrak{Q}^n.$$

Put

$$f(u) = \int_D F(x, u(x), \nabla u(x) dx \qquad \forall \ u \in W^{1, p}(D).$$

Then f is weakly lower semi-continuous on $W^{1,p}(D)$.

Definition. Let *D* be an open subset with smooth boundary in \mathfrak{Q}^n , and *f* be a real function on a subset *M* of $W^{k,p}(D)$ with $k \in \{0,1,2,\ldots\}$, $p \in (1,\infty)$. Then we say *f* is weakly lower semi-continuous on *M* if and only if for any sequence $\{u_m\}$ weakly converging to *u* in *M*, we have

$$f(u) \leq \liminf_{m \to \infty} f(u_m)$$

Let *D* be an open subset with smooth boundary in \mathfrak{Q}^3 . Put

$$f(u) = \int_D u^6(x) dx \qquad \forall \ u \in W^{1,2}(D).$$

Then f is weakly lower semi-continuous on $W^{1,2}(D)$.

Definition. Let *D* be an open subset with smooth boundary in \mathfrak{P}^n , and *M* be a subset of $W^{k,p}(D)$ with $k \in \{0,1,2,\ldots\}$, $p \in (1,\infty)$. Then we say *M* is weakly closed in $W^{k,p}(D)$ if and only if for any sequence $\{u_m\}$ in *M* such that $\{u_m\}$ weakly converging to *u* in $W^{k,p}(D)$, we have $u \in M$.

Let $D = (0,2\pi)$. Put $S = \{u \in L^2(D) : ||u||_2 = 1\}$ and $B = \{u \in L^2(D) : ||u||_2 \le 1\}.$ Then *S* and *B* are closed in $L^2(D)$, *B* is weakly closed in $L^2(D)$, and *S* is not weakly closed in $L^2(D)$.

Theorem. Let *D* be an open subset with smooth boundary in \mathfrak{P}^n , and *M* be a closed convex subset of $W^{k,p}(D)$ with $k \in \{0,1,2,\ldots\}, p \in (1,\infty)$. Then *M* is weakly closed in $W^{k,p}(D)$.

Theorem. Let *D* be an open subset with smooth boundary in \mathfrak{Q}^n , and *M* be a weakly closed subset of $W^{k,p}(D)$ with $k \in \{0,1,2,\ldots\}, p \in (1,\infty)$. Let *f* be a real weakly lower semi-continuous function on *M*. Assume : $\{u_m\}$ is bounded in $W^{k,p}(D)$ if it is a sequence in *M* and $\{f(u_m)\}$ is bounded in \mathfrak{Q}^n . Then there is *u* in *M* such that

 $f(u) \leq f(v) \qquad \forall v \in M.$

Theorem.(Lagrange multiplier) Let f and g be real functions of class C^1 from an open subset U of a Banach space E, and $r \in \mathfrak{S}$. Let $x_0 \in M = \{x \in U : g(x) = r\}$ such that $Dg(x_0) \neq 0$ and $f(x_0) \leq f(x)$ for any x in M. Then there is a real number c such that

 $Df(x_0) = cDg(x_0)$

Using this theorem we can find weak solution u to the following eigenvalue problem

 $\Delta u = \lambda k(x, u)$

Let *k* be a nonnegative function in $L^{n/2}(D)$, Then there is a *u* in $W_0^{1,2}(D)$ such that

$$\int_{D} [\nabla u \nabla v + kuv + v \sin u^2] dx = 0 \quad \forall v \in W_0^{1,2}(D)$$

This *u* is called a weak solution $W_0^{1,2}(D)$ to the following equation

 $-\Delta u + ku + \cos u^2 = 0$

11

TOPOLOGICAL DEGREE

Definition. Let *T* be a continuous mapping from a subset *A* of a normed space $(E, ||.||_E)$ into *E*. We say *T* is a compact mapping on *A* if and only if the closure of *T*(*A*) in *E* is compact.

In this case, put

$$f(x) = x - T(x) \qquad \forall x \in A .$$

Then f is called a compact vector field on A.

Let T and S be compact mappings on a subset A of a normed space (E, ||.||E|). Then T + S also is compact on A.

Let *D* be an open bounded subset with smooth boundary in \mathfrak{P}^3 and *g* be in $L^3(D)$. Put

$$\int_{D} \nabla(S(u)) \cdot \nabla v dx \equiv \langle S(u), v \rangle$$
$$= \int_{D} g(x) v(x) dx \quad \forall \ u \in W_{0}^{1,2}(D).$$

Then S is a compact mapping on every bounded subset A of $W^{1,2}(D)$.

Let *D* be an open bonded subset with smooth boundary in \Leftrightarrow^3 . Put $\int_D \nabla(T(u)) \cdot \nabla v dx \equiv \langle T(u), v \rangle$ $= -\int_D u^3(x) v(x) dx \quad \forall \ u \in W_0^{1,2}(D)$

Then T is a compact mapping on every bounded subset A of $W^{1,2}(D)$.

4

1

Put f(w) = w - S(w) - T(w) for any w in $W_0^{1,2}(D)$. Let u be in $W_0^{1,2}(D)$ such that f(u) = 0. Then u is a weak solution in $W_0^{1,2}(D)$ to the following equation

5

$$-\Delta u + \frac{1}{4}u^4 = g$$

(D1) If $a \in E \setminus f(\partial U)$ and $\deg(f, U, a) \neq 0$. Then there is x in U such that f(x) = a. (D2) $\deg(Id, U, a) = 1$ if $a \in U$ and $\deg(Id, U, a) = 0$ if $a \in E \setminus \overline{U}$. (D2) If there are a compact mapping H from $[0,1] \times \overline{U}$ into E and $a \in E \setminus H([0,1] \times \partial U)$. Then $\deg(f_1, U, a) = \deg(f_0, U, a)$ where $f_i(x) = x - H(i,x)$ for any (i,x) in $\{0,1\} \times \overline{U}$. Theorem. Let U be và open subset in a Banach space Ewith closure \overline{U} and boundary ∂U , and f be a compact vector field on \overline{U} . Then $f(\partial U)$ is closed in E. Theorem. Let U be và open subset in a Banach space Ewith closure \overline{U} and boundary ∂U , and f be a compact vector field on \overline{U} . Then there is a continuous mapping deg(f, U, .) from $E \setminus f(\partial U)$ into \mathbb{Z} having the following properties : (D1) If $a \in E \setminus f(\partial U)$ and deg $(f, U, a) \neq 0$. Then there is x in U such that f(x) = a.

Let f be a compact vector field on a closed B'(0,r) in a Hilbert space H such that

$$\langle f(x), x \rangle > 0$$
 $\forall x, ||x|| = r$.

Then there is u in B(0,r) such that f(u) = 0.

Let *D* be an open bounded subset with smooth boundary in \mathfrak{S}^3 and *g* be in $L^3(D)$. Then there is a weak solution in $W_0^{1,2}(D)$ to the following equation

$$-\Delta u + \frac{1}{4}u^4 = g$$

Definition . Let *E* be a measurable subset and *s* be a simple function such that $s = \sum_{i=1}^{k} c_i \chi_{A_i}$

We define the integral of s on E as follows

$$\int_E s dx = \sum_{i=1}^k c_i m(E \cap A_i)$$

Definition . Let *E* be a measurable subset and *f* be a positive measurable function on *E* . Put *F*(*f*) is the set of all nonnegative simple function $s \le f$. Then the integral of *f* on *E* is defined as follows $\int_E f dx = \sup_{s \in F(f)} \int_E s dx$

Definition. Let *E* be a measurable subset and *f* be a measurable function on *E*. We say *f* is integrable on *E* if and only if $\int_{E} |f| dx < \infty$

In this case we put

Т

$$\int_E f dx = \int_E f^+ dx - \int_E f^- dx \quad ,$$

where $f^+ = \max\{f, 0\}$ and $f^- = \max\{-f, 0\}$.

We have following results (see the proofs in the book " Real and complex analysis" of W. Rudin)

Theorem (Lebesgue's Monotone Convergence theorem) Let $\{f_m\}$ be a sequence of measurable functions on E, and suppose that (a) $0 \le f_1(x) \le f_2(x) \le \ldots \le f_m(x) \le \ldots$ for every $x \in E$, (b) $f_m(x) \to f(x)$ as $n \to \infty$, for every $x \in E$. Then f is measurable on E, and $\int_E f dx = \lim_{m \to \infty} \int_E f_m dx$ **Fatou's Lemma:** If $f_m : E \to [0, \infty)$ is measurable, for each positive integer m, then $\int_E (\liminf_{m \to \infty} f_m) dx \le \liminf_{m \to \infty} \int_E f_m dx$.

Lebesgue's Dominated Convergence Theorem

Suppose $\{f_m\}$ is a sequence of real measurable functions on *E* such that there is a real function *f* and an integrable real function *g* on *E* having the following propreties

$$f(x) = \lim_{m \to \infty} f_m(x) \qquad \forall \ x \in E,$$

$$|f_m(x)| \leq g(x) \qquad \forall \ x \in E, m = 1, 2, \dots$$

Then f is integrable on E,

$$\lim_{m \to \infty} \int_E |f_m - f| \, dx = 0 \qquad \text{and}$$

$$\int_E f \, dx = \lim_{m \to \infty} \int_E f_m \, dx$$

Let *E* be a measurable subset of \mathfrak{S}^n with m(E) > 0. Denote by $\mathfrak{M}(E)$ the set of all real measurable functions on *E*. If *f* and *g* are in $\mathfrak{M}(E)$ and if $m(\{x : f(x) \neq g(x)\}) = 0$, we say that f = g a.e. (almost everywhere) on *E*, and we may write $f \sim g$. This is easily seen to be an equivalence relation. The transitivity ($f \sim g$ and $g \sim h$ implies $f \sim h$) is a consequence of the fact that the union of two sets of measure 0 has measure 0.

Note that if $f \sim g$ and $u \sim v$, then

• $f+u \sim g+v$,

•
$$f. u \sim g. v$$
 ,

• $c u \sim c v$ for any real number c.

Denote by M(E) be this vector space. An element of M(E) is a class of functions.

We can consider every element of M(E) as a real function on *E*, which belongs to it. We say:

- \tilde{f} is continuous if there is a continuous map g in \tilde{f} ,
- \tilde{f} is bounded if there is a bounded map g in \tilde{f} ,
- \tilde{f} is differentiable if there is a differentiable map g in \tilde{f} .

11

Let f be in $\mathfrak{M}(E)$, we put $\tilde{f} = \{g \in \mathfrak{M}(E) : g \sim f\}$

We see that \hat{f} is an equivalent class of $\mathfrak{M}(E)$ with respect to relation ~ . The set of these equivalent classes is a vector space with the following operations :

$$\begin{split} \tilde{f} + \tilde{g} &= \widetilde{f + g} & \forall f, g \in \mathfrak{M}(E), \\ \alpha \tilde{f} &= \widetilde{\alpha f} & \forall f \in \mathfrak{M}(E), \alpha \in \mathbb{R}, \\ \tilde{f} \cdot \tilde{g} &= \widetilde{f \cdot g} & \forall f, g \in \mathfrak{M}(E), \\ | \tilde{f} \mid = | \widetilde{f} | & \forall f \in \mathfrak{M}(E). \end{split}$$

Hereafter we consider every element u of M(E) as a real function f on E and apply the differential and integral calculus to f in order to get estimations about u.

For example, if we can prove that $|f(x)| \le 5$ for any x in *E*, then we say $|u| \le 5$ for almost everywhere on *E*, that is : for any g in the class u there is a subset A_g of *E* such that $m(A_g) = 0$ and $|g(x)| \le 5$ for any x in $E \setminus A_g$

Let *A* be a measurable subset of *E* with m(A) > 0, then we can define the restriction $u|_A$ in usual way. But $u|_A$ is nonsense if m(A) = 0.

Let *u* be in *M*(*E*). If there is an integrable function *f* in the class *u*, we say *u* is integrable on *E* and put $\int_A udx = \int_A fdx$ \forall measurable subset *A* of *E*. This notation is well-defined, because $\int_A fdx = \int_A gdx$ \forall measurable subset *A* of *E*, *f*, *g* \in *M*(*E*). (*m*({*x* \in *E* : *f*(*x*) \neq *g*(*x*)}) = 0) Let *p* be in the interval [1, ∞) and *E* be a measurable subset of \mathfrak{Q}^n with m(*E*) > 0, and *u* be in *M*(*E*). We say • $u \in L^p(E)$ if $|u|^p$ is integrable on *E*, • $u \in L^{\infty}(E)$ if there is a real number *K* such that $|u| \leq K$ almost everywhere on *E*.

Theorem. Let *p* be in $(1,\infty)$ and *T* be a continuous linear mapping from $L^p(E)$ into \mathfrak{P} . Then there exists a unique *g* in $L^q(E)$, $p^{-1} + q^{-1} = 1$ such that $||T|| = ||g||_q$ and $T(f) = \int_E fg dx \quad \forall f \in L^p(E).$

Theorem. $L^2(E)$ is a Hilbert space with respect to following inner-product

$$\langle u, v \rangle = \int_E uv dx$$
 $\forall u, v \in L^2(E).$

15

We put $\| u \|_{p} = \{ \int_{E} | u |^{p} \}^{1/p} \quad \forall u \in L^{p}(E), \ 1 \leq p < \infty, \\ \| u \|_{\infty} = \inf\{K > 0 : | u | \leq K \text{ a.e. on } E \} \quad \forall u \in L^{\infty}(E). \\ \text{We have following properties of } L^{p}(E) \text{ (see the proofs in the book " Real and complex analysis" of W. Rudin)} \\ \text{Theorem } . (L^{r}(E), \|.\|_{r}) \text{ is a Banach space for any } r \inf[1, \infty]. \\ \text{Theorem (Holder) Let } p \text{ and } q \text{ be in } (1, \infty), f \text{ be in } L^{p}(E) \\ \text{and } g \text{ be in } L^{q}(E) \text{ such that } p^{-1} + q^{-1} = 1. \text{ Then} \\ \qquad | \int_{E} fgdx | \leq \| f \|_{p} \| g \|_{q} \end{cases}$

Definition. Let *D* an open subset of \mathfrak{Q}^n and *f* be a continuous real function on *D*. We say *f* is of class $C_c(D)$ if and only if there is a compact subset *K* of \mathfrak{Q}^n such that $K \subset D$ and f(x) = 0 for any *x* in $D \setminus K$.

Theorem. Let *D* an open subset of \mathfrak{P}^n , $p \in [1,\infty)$ and *u* be in $L^p(D)$. Then there is a sequence $\{u_m\}$ in $C_c(D)$ such that $\lim_{m \to \infty} ||u - u_m||_p = 0.$