Lecture 1

LP(Q) SPACES

LP(Q) SPACES

Theorem ( Lebesgue measure) There exists a positive
measure m defined on a - algebra 9 in £3", with the
following properties:

(a) m((ay;, by)x...x(ay, b,)) = (a;- b))x...x (a- b,)

(b) 91 contains all open sets and closed sets in £¥™ more
precisely, £ € 9 if and only if there are a sequence of

closed sets {A, } and a sequence of open subsets {B, }
in £3" such that

UAcEcB  and m()B, \ |Ja)=0
k=1 k=1 k=1 k=1

(c) m 1is translation-invariant, i.e., m(E + x) = m(E) for
every E in 9and every x in £ ™,

() If Eisin9n and ¢ is a positive real number then

m (cE) = c"'m(E)
where cE = {cx:x € E }.

The members of 9 are called the Lebesgue measurable (or
simply “measurable”) sets in #¥" and m is called the
Lebesgue measure (or simply “measurable”) on 3™,

Let f be a real function on a measurable subset A of
131 We say f is a measurable function on 4 if and only
if f((c,©)) € M for every real number c .

Definition. A real function s is said to be a simple function

if there are k measurable subsets 4, . . . , 4, and k real
numbers ¢, . . ., ¢; such that
k
=267y

i=1 1

1 VxeA ,

where 7, (¥)= {0 VxeR"\A.




Lecture 2

SOBOLEV SPACES

SOBOLEV SPACES

Definition. Let / be a real function on an open subset D
of fa" ,x =(x,...,x,)e Dand/ € {1,...,n}. Wedefine

i(x)—lim S aeeis X X F X e X)) = (X s XX X s X))

ox t—0 t

i

provided the limit exists., and a(x ) is called the partial

derivative of /" at x with respect to the variable 3h

If al(x) exits for any i in {1, .. .,n}, we say f is

diffe?gﬁtiable at x and has derivative

Df(x) = Vi(x) = (%(xxa—f(x),---, 2

ox, 8_xn

(x))

Definition. Let / be a real function on an open subset D
of £¥". We say :

e f is differentiable on D if Vf(x) exists for any x in D,

e fisofclass C'(D)if f is differentiable on D and Vfis
a continuous from D into £¥™,

e fisofclass C.(D)if f isofclass C'(D)and f(x)=0
forany x in D\ K, where K, is a compact set contained
in D.

e f isof class Cl( 5) if f is of class C'(Dy), where D,
is a open set containing D.

Definition. Let / be a real differentiable funaction on an

open subset D of ¥ andx € D.Put §; = , then g;

ox,
is areal function on D for anyjin {I1,.. ., n}.JLeti be in
{1,...,n}. Wesay:
2
e f has the second-order partial derivative o
. . ... 08, Ox,0x ;
xif g; has the partial derivative—=*(x) atx.’

(x)

xi . . .
e f has the second-order partial derivative at x if P
X,0X .
exists for any i, jin {1, .. .,n). In this case the second-’

order derivative D?f(x) of f at x is the nxn- matrix
[ (x)][,j:I,Z,“.,n

Ox,0x;




Definition. Let /' be a real function on an open subset D
of £¥". We say :

e f is differentiable 2-times on D if D?f(x) exists for
any x in D,

e fisofclass C3(D)if f is differentiable 2-times on D
and D?fis a continuous from D into R™" .

e fisofclass CA(D)if f isof class CA(D)and f(x) =0
forany x in D\ K, where K, is a compact set contained
in D.

e fisofclass C*( 5) if f is of class C*(Dy), where D,

is a open set containing D.

Similarly we can define the classes C'(D), C.[(D) and
c’ (5 ) for any integer > 2. We put

c*(D)=(\C" (D).
Cz(D)=(\C/(D).

C*(D)=()C"(D).

Theorem. Let D be an open subset of £, p € [1,00) and
/be in LP(D). Assume

ID fedx =0 VgeC (D).
Then f =0 a.e.onD.

Theorem. Let D be an open subset of £ with smooth
boundary 0D, i € {1,...,n} andf be in Cl(lj) . Then

. g , 09 =
0 IDfa—Xidx—Iangds IDaXigdx Vge C'(D),

.. 0 0
(i) Ing_jdx:_IDg_)J:gdx VgeC\(D),

where ds is the measure on the boundary 0D .

Put
Il f ||l,p:{_[D(|f I+ I Vf 1”)dx]"" vf eC'(D),

IIfIlz,p:{J.D(IfIPHIVfII” +I D2 IIP)dx]"? Vf e C*(D),
IIfIlk’p:{jD(IfIp+zk:IID’fII”)dx]”” Vf e CX(D).

We see that (C (D), I.1l, ) and (C*(D),II.Il,,) are normed
linear spaces. We denote by W,*”(D) and W*?(D) their
completions respectively. These Banach spaces are called

Sobolev spaces.




We see that
e W'(D) cWH(D)  Vk>1,
o« W”(D) ¢ W'""(D) ¢ LI’(D) Vk>1.

Let p € [1,0) and u € W'P(D). There is a Cauchy sequence
{u,} in (CI(E),ll,lllp) such that {u,,} “converges” to u
in following sense : {u,,} converges to u in L?(D),

{%} is a Cauchy sequence in LP(D) forany i € {1,...,n}

i

Let p € [1,0) and u € W'P(D). There is a Cauchy sequence

{u,} in (Cl(ﬁ),ll,lllp) such that {u,} “converges” to u
in following sense : {u,,} converges to u in L?(D), {ZM’"}
X .

is a Cauchy sequence in LP(D) forany i € {1, ..., n}. l

We can choose {u,,} and v, . .., v, in L”(D) such that
ou :
lim II— - vll,=0 Viefl,...,n},
m—»o0 axi
u(x) = lim um(x) a.e.on D,

a.e.on D,Vie{l,...,n}.

m—»o0

vi(x) = hm U (x)

.[D - _-[D m(/)dx VopeC.(D),meN (1)

0P e[ ulP gy = — 022 41 < 22
|jDuna—Xidx jD u6Xide—IJD(um u)@xidxl\ jD|(um u)axildx

< {j lu, —ul’ dx}””{j |@|ﬂ’“’*‘> dx}"? 50 as m—> o (2)
|jD dx — jD vpdx | = |jD —v)(pdx| jD|( —v,.)(p|dx
< {jD v 1P dx}“"{j 177D g} 50 as m—> o (3).

op . i .
(1),(2),(3):>jDua—Xidx_ IDvi¢dx VopeC.(D),iell,...n)

11

(1)(2)(3):»[0 dx——jDvlgpdx VpeC.(D),iell,...n)

We say v; is the generalized partial derivative of u with

ou

respect to x; and denote it by ==
ox,

Thus, let u be in W''P(D), then u has its generalized partial
derivatives ﬂ € LP(D) such that

jDua% _—jD ¢)dx YoeCL(D),iell,...n).




Thus, let u be in W''P(D), then u has its generalized partial
ou

derivatives = € LP(D) such that
ox,
op _ 1 .
ID”axi dx = ID (pdx VopeC.(D),ie{l,...n}.

Let n be in W, (D)- We can choose a sequence {¢,,} in

C.(D) , which converges to 1 in W'(D) -Arguing as
in (1),(2) and (3), we get

7 Ly
jDu—dx = —ID—ndx Ve W' (D),ie(l,...n}.

Let D = (-1, 1) and u(x) = |x| for any x in D. Put
btm()c)=\/362+m*1 VxeDme{l2,..}.

We have
o lu (x)1 < V2 and limu, (x)=x* =u(x) VxeD,

X
o I (x)=l———1<1 VxeD\{0l
\/xz+m*1
o limu' (x)=—2e=si Vx e D\{0).

" — = Sign x
m—>0 X

By the Lebesgue dominated convergence theorem, u is

in W"*(D) and its generalized derivative is u '(x) = sign x.

Let D = (-1, 1). Put

{1 Vx e (-1,0],
u(x)=
0 Vx €(0,1).

We see that u € L*(D).
Now assume there is v € L?(D) such that

jDugp'dx =—jDvgpdx VoeC(D) ()

We have

[yudx=[" pdr=pO)-p(-D=p0) VpeCD) @)

15

Now assume there is v € L?(D) such that
' _ 1
jDugpdx = jDvgpdx VoeC(D) ()

We have .
[updx=[ pdr=00)-p(-1)=p(0) VeCiD) ()

By (1) and (2), we see that
prdx =0 Ve C\(D\{0}),

which implies v=0 a.e.on D\ {0}. Thusv=0 a.e.on D
o Jpvedc =0 VpeCiD) ()

By (2)and (3), ¢ (0)=0 forany p € C!(D) !




Therefore W'2(D) < L*(D), but W'-*(D)# L*(D).

The following properties of generalized derivatives are
proved in Chapter 7 of the book ““ D. Gilbarg and N.
Trudinger, Elliptic partial differential equations of second
order”.

Theorem. Let D be an open subset of ", p and ¢ be in
(1,0) such that p'+¢g ‘' = 1. Let u € W'»(D)and v
WD) . Then uv belongs to u € WH(D) and

Ouv)  Ou ov

VvV +u— Viell,...,n}.
Ox, Ox, Ox,

1 1 1

Theorem. Let a, < a, <...< a,be k real numbers, D be
an open subset of £t Put B ={a,,a,,...,a; }.Let f be
a real function on £¥ of class C(¥¥) NC'(%¥\ B) such that f~
is discontinuous at every point of B, and f” € L*(£:\ B). Let
u € W»(D)withp € [1, ). Then v=f,u belongs to
Whp(D) and
: ou :
ov S (u(x))—(x) if u(x) e R\B,
—(x) = ox,
ox, .
0 if u(x) e B.

Theorem. Let D be an open subset of ft"and u €
Wip(D) with p € [1, ©). Put u"=max {0, u} and u - = max
{0, -u}. Then u™, u —and |u| belong to W'-P(D) and

Bu? KL )=,
P (x) = 0x
i 0 if u(x)<0.
ou .
ou —(x) if u(x)<0,
a_(x) = ax[
i 0 if u(x)>0.
@(x) if u(x)>0,
Oox,
B = 0 if u(x)=0,
Oox,
ou

——(x) if u(x)<O0.

We see that

e W"(D) cW*"(D)  Vk=1,
o« W(D) ¢ W"'""(D) c L’(D) Vk>1,
e W”(D) cW"(D) c L"(D).

Theorem (Sobolev imbedding). Let D be an open subset

with smooth boundary in £:", and u € WP(D) with p €

[1,0). Then

n
(1) uisin LY(D) where ¢ =ﬁ if p<n,

(i) uis of class C'(D) if 0<r<1-n'p.




Theorem (Sobolev imbedding). Let D be an open subset
with smooth boundary in £3", and u € WP(D) with p €
[1,0). Then

. .. __np .

(1) wuisin L9(D) where 9= n—kp if kp <n,
(i) uis of class C'(D) if 0<r<k-n'p.

The proof of this theorem is in the book of Adams.

Theorem (Sobolev imbedding). Let D be an open subset
with smooth boundary in £3", and u € WP(D) with p €

[1,00). Then uis in LY(D) if qe<[p, ”‘; ] and kp < .
n—kp

Theorem (Sobolev imbedding). Let D be a bounded open

subset with smooth boundary in £¥" and u € W *P(D) with

p € [1,0). Thenuis in LY(D) if ge[1,—P ] and kp <n.
n—kp

Theorem (Sobolev inequality). Let D be a bounded open
subset with smooth boundary in ¥¥" n and k be positive
integers and p € [1,00) such that kp < n.

np

Then for any ge[l,
n—kp

C such that

] there is a positive real number

lully < C lally Vue W(D).

Theorem (Poincare inequality). Let D be a bounded open
subset with smooth boundary in ¥ n be a positive
integer, p € [1,) such that p < n.

Then for any g [1,-22_) there is a positive real number

C such that B

lull, <CIIVull, Yue W, (D).

23

Theorem . Let D be a bounded open subset with smooth
boundary in £¥" n be a positive integer, p € [1,00) such
that p < n. Put
Waelll, , = {IDIIVM > dx}'” Yue Wol”’(D).
Then there are a positive real number ¢ such that
cllull , < Meelll, ) < lell, YueW,” (D).

Theorem. (W,*(D),lI.Il) is a Hilbert space with the
following inner product

<u,v> = JD VuVvdx Yu,ve WOI’2 (D).

24




Theorem. #'2 (D) is a Hilbert space with the following
inner product

<u,v>= | (uv+VuVv)dx Yu,v e W (D).
Jo o

Theorem(Rellich-Kondrachov). Let D be a bounded open

subset with smooth boundary in £¥", k be positive integer,
np

n—kp

T(u)=u YV u e Wee(D) .

and p € [1,0) such that kip < n. Let ge[l, ) and put

Then T is a bounded linear mapping from W%P(D) into
L4(D), and the closure 7(4) in L4(D) is compact in L4(D)
for any bounded subset A in W*P(D) .

Theorem (Sobolev imbedding). Let D be a bounded open
subset with smooth boundary in %, and u € W .P(D) with
p € (1,0). Then u is in LI(D) for any g € [1,0).

Theorem (Sobolev inequality). Let D be a bounded open
subset with smooth boundary in ¥, and p € (1,0). Then
for any g € [1,), there is a positive real number C such
that

lully < C lelly VueWeD).

Theorem(Rellich-Kondrachov). Let D be a bounded
open subset with smooth boundary in %%, p € (1,00) and
q € [1,0). Put

T(u)=u YV ue W»(D).
Then T is a bounded linear mapping from W'P(D) into
L4(D), and the closure 7(4) in L4(D) is compact in L4(D)
for any bounded subset 4 in W-P(D) .

27

Theorem. Let D be a bounded open subset with smooth
boundary in ¥, p € (1,0), and 7 be a linear mapping
from W 'P(D) into ¥*. Then T is continuous on W Lp(D) if]
and only if there are g, g4, . . ., g, in LP'®-)(D) such that

ou ou
T(u) = JD[ug+a—)qgl+---+§gn]dx Yue W' (D).

n

28




Theorem. Let D be a bounded open subset with smooth
boundary in %", and 7' be a linear mapping from W,*(D)
into ¥*. Then 7 is continuous on W,*(D) if and only if]
thereis g in W,?(D) such that

T(l/t) = J.D ﬂﬁﬁ--ﬁ-ﬂ%

ldx VYuce WOI’Z(D).
Ox, Ox, ox, Ox,

29

Definition. Let D be a bounded open subset with smooth
boundary in £, p € (1,00), v in W LP(D) and {v,} be a
sequence in W 'P(D). Then we say {v,,} weakly converges
to v in W (D) if {T(v,)} converges to T(u) for any
bounded linear mapping 7 from W -P(D) into .

Theorem. Let D be a bounded open subset with smooth
boundary in %", p € (1,0), and {u,} be a bounded
sequence in W 'P(D). Then there are u in W 'P(D) and a
subsequence {u,, }such that {u, } weakly converges to u

30




Lecture 3

Variational calculus

Variational calculus

Definition. Let /' be a mapping from an open subset U of]
a normed space (E,|.||; ) into another normed space
(G|l.llg), and x € U. We say f has the directional derivative
at x if and only if there is a bounded linear mapping 7" from

E into G such that
T(h) = limf(xﬂh)—f(X)

t—0 t

Y hekE.

In this case, we call T the directional derivative at x of f]
and denote it by Df'(x) .

If Df (x) exits for any x in U, we say f is directional
differentiable on U.

Denote by L(E,G) the set of all bounded linear mappings
from (£,||.||z) into (G,||.||s) , then L(E,G) is a normed space
with the following norm
WTH= sup [T(h)I; VheE.
Al <1

Let /' be a directionally differentiable mapping from an
open subset U of a normed space (E,||.||[E ) into another
normed space (G,||.]|G). We say f'is of class C!(U) if and
only if Df'is a continuous mapping from U into (L(E, G),||.||)

If Df is of class C'(U), then we say f'is of class C*(U)
and has the second order derivative D?*f (x) = D(Df)(x) for
any x in U .

Let Q be a bounded open subset of 3", Put
f(u) = jQ| Vu Pdx Vue W2(Q).
Then £ is of class C1(Q).

Let Q be a bounded open subset of #¥" and g be a real
function of class C? on Qx ¥ such that there are a positive
real number ¢ and a real function v in L&™D20(Q)) such that

Ig(x,s)l+|%(x,s)l < cv(x) V(x,s)e QxR".
S

Put

fa) = | gtouxdx  Vue W (Q).

Then f is directionally differentiable on W!2(Q).




Theorem. Let / be a mapping from an open subset U of a
normed space (E,||.||z ) into ¥¥ and x € U such that

(1) f has the directional derivative at x ,
(1) fix) < ly) foranyye U.
Then
Df (x)h =0 VhekE. (1)

Therefore if we can find x as in the foregoing theorem, we
can solve the equation (1).

Definition. Let D be an open subset with smooth boundary
in £3", and f/ be a real function on a subset M of W%P(D)
with £ €{0,1,2, ...}, p € (1,0). Then we say f is weakly
lower semi-continuous on M if and only if for any
sequence {u,,} weakly converging to u in M, we have

f(u) < lim_glf Sf(u,)

Let D be an open subset with smooth boundary in £%3. Put

f) = | u®Codx

Then fis weakly lower semi-continuous on W-2(D) .

Y ueW"(D).

Let D be an open subset with smooth boundary in ",
and F' be a real function on Dx%¥x%¥" such that F(x,u(x),
Vu(x)) is integrable on D for any u in W'P(D). Assume
(1) F(x,s,.) is convex on ¥ for every (x,s) € Dx{¥,

(i1) There is an integrable function g on D such that
g(x) < F(x,s,2) V (x,8,z) € Dx%an,
Put

f(u) = jDF(x,u(x),Vu(x)dx

Then f is weakly lower semi-continuous on W'-P(D).

vV ueW"(D).

Definition. Let D be an open subset with smooth boundary
in £3" and M be a subset of W&P(D) with k €{0,1,2, ...},
p € (1,0). Then we say M is weakly closed in W*P(D) if
and only if for any sequence {u,,} in M such that {u,}
weakly converging to u in W&P(D), we have u € M.

Let D = (0,2m). Put
S={u el?(D):|ull, =1} and
B={uel*D):|u|, <1}.

Then S and B are closed in L*(D), B is weakly closed in
L*(D), and S is not weakly closed in L?(D).




Theorem. Let D be an open subset with smooth boundary
in 22" and M be a closed convex subset of WXP(D) with ki
€{0,1,2, . . .}, p € (1,0). Then M is weakly closed in
Wp(D).

Theorem. Let D be an open subset with smooth boundary
in 237, and M be a weakly closed subset of W&P(D) with k
€{0,1,2, . ..}, p € (1,0). Letf be areal weakly lower
semi-continuous function on M . Assume : {u,,} is bounded
in W&p(D) if it is a sequence in M and {f (u,,)} is bounded
in %% . Then there is u in M such that

f(u) < f(v) YveM.

Let k be a nonnegative function in L”?(D), Then there is a
uin WOL2 (D) such that

ID[Vqu+kuv+vsinu2]dx =0 ‘v’veWOl’z(D)

This u is called a weak solution W,”*(D) to the following
equation

~Au+ku+cosu’> = 0

Theorem.(Lagrange multiplier) Let f and g be real

functions of class C! from an open subset U of a Banach
space E, andr € & Letxye M= {x e U:g(x)=r}
such that Dg(x,) # 0 and fix,) < f(x) for anyx in M.
Then there is a real number ¢ such that

Dfixy) = eDg(x)

Using this theorem we can find weak solution « to the
following eigenvalue problem

Au = Ak(x,u)




Lecture 4

TOPOLOGICAL
DEGREE

TOPOLOGICAL DEGREE

Definition. Let 7 be a continuous mapping from a subset
A of a normed space (E,|.||z ) into E. We say T is a
compact mapping on 4 if and only if the closure of 7(4) in
E is compact.

In this case, put
f(x)=x-T(x) Vxed.
Then f is called a compact vector field on 4.

Let 7 and S be compact mappings on a subset 4 of a
normed space (E,||.||E ) . Then T+ S also is compact on 4.

Let D be an open bounded subset with smooth boundary in
1¥3and g be in L3(D) . Put

j 5 V(S@).Vvdx = <Su),v>
= -[D gxv(x)dx NYue WOI’2 (D).

Then S is a compact mapping on every bounded subset 4
of WHA(D).

Let D be an open bonded subset with smooth boundary in
133, Put

j V@) Vvdx = <T(u),v>

= _ID w(xw(x)dx YV ueW,*(D

Then T isa compact mapping on every bounded subset 4
of WiA(D).




Put f(w)=w-Sw) - T(w) forany win W,*(D) .Letu
be in Wol’2 (D) such that flu) =0 . Then u is a weak

solution in VVO"2 (D) to the following equation

—Au+iut=g

Theorem. Let U be va open subset in a Banach space £
with closure U and boundary QU , and f be a compact
vector fieldon U . Then f(OU) isclosed in E.

Theorem. Let U be va open subset in a Banach space E
with closure U and boundary glJ , and f be a compact
vector field on U . Then there is a continuous mapping
deg(f, U, .) from E\ f(8U) into Z.  having the
following properties :

(DD If a eE\ f(0U) and deg(f', U, a ) # 0. Then

there is x in U such that f(x) = a.

DD If ae E\f(OU) anddeg(f,U, a)=0. Then
there is x in U such that f(x) = a.
(D2)deg(ld ,U,a)=1ifa € Uand deg(ld, U, a ) =0 if]
acE\U
(D2) If there are a compact mapping H from [0,1]xU
into Eanda € E\ H([0,1]x0U) .Then

deg(f,, U, a) =deg(f,, U, a)
where f(x)=x— H(i,x) for any (ix)in {0,1}xU .

Let / be a compact vector field on a closed B’(0,7) in a
Hilbert space H such that

<flx),x> >0 Vx,|x|=r.

Then there is u in B(0,) such that f(u) =0.

Let D be an open bounded subset with smooth boundary in
1¥3 and g be in L3(D). Then there is a weak solution in

VVOLZ (D) to the following equation

—Au+iut=g




Definition . Let £ be a measurable subset and s be a simple

function such that .
S = C Z
2xy

We define the integral of slf)n E as follows
k
IE sdx = ;cim(E NA)

Definition . Let £ be a measurable subset and f be a
positive measurable function on £ . Put F(f') is the set of all
nonnegative simple function s < /. Then the integral of f

E is defined as foll
on E is defined as follows jEfdx: sup jEsdx ,

seF(f)

Definition . Let £ be a measurable subset and f be a
measurable function on £. We say f is integrable on E if

and only if
g [ frax<e.

In this case we put

jEfdxszﬁdx—jEf-dx :

where f" =max{f,0} and f =max{-f,0}.

We have following results (see the proofs in the book *
Real and complex analysis” of W. Rudin)

Theorem (Lebesgue’s Monotone Convergence theorem)

Let {f,,} be a sequence of measurable functions on £,
and suppose that

(@ 0<f i) <fHL)<...<f,(x)<...foreveryx € E,
(b) f,(x)>fl(x)asn —> o, foreveryx e E.
Then f is measurable on E, and

IEfdx:iii?oIEfmdx

Fatou's Lemma: If /' : £ — [0, c) is measurable, for
each positive integer m, then

JE (llrrlp_}gf fidx < hrrnn_}gf JE f.dx .

Lebesgue's Dominated Convergence Theorem

Suppose {f,,} is a sequence of real measurable functions
on E such that there is a real function /* and an integrable
real function g on £ having the following propreties

f(x)zlirrgofm(x) V xeE,

I f (x)] < g(x) VxeEm=12,...
Then f is integrable on £,

lm| |f —fldc = 0 and
E m

m—»o0

jEfdx = limIEfmdx

m-—o0




Let E be a measurable subset of #¥"with m(E) > 0. Denote
by IM(E) the set of all real measurable functions on E. If f
and g are in 9(FE) and if m({x : f (x) # g(x)}) = 0, we say
that f = g a.e. (almost everywhere) on E , and we may
write f ~ g. This is easily seen to be an equivalence
relation. The transitivity (f ~ g and g ~ & implies f~ h) is a
consequence of the fact that the union of two sets off
measure 0 has measure 0.

Note that if f~g and u~v, then
o ftu~g+v,
e fu~g.v ,
e cu~cv foranyreal number c .

Let f bein 9YE), we put

f = {gem®): g~ f}
We see that ]? is an equivalent class of 9 E) with

respect to relation ~ . The set of these equivalent classes is
a vector space with the following operations :

f+é=f+g YV f,g € M(E),
05];:557 V feME),aeR,
fé=rg YV f,g € ME),

| fl=1f] V feME).

Denote by M(FE) be this vector space. An element of M(FE)
is a class of functions.

We can consider every element of M(E) as a real function
on E, which belongs to it. We say:

J f is continuous if there is a continuous map g in ]7 ,
. f is bounded if there is a bounded map g in f ,

o f is differentiable if there is a differentiable map g

in f .

Hereafter we consider every element u of M(E) as a real
function f/ on E and apply the differential and integral
calculus to /" in order to get estimations about u.

For example, if we can prove that |/ (x)|<5 foranyx in
E, then we say |u | <5 for almost everywhere on E, that is :
for any g in the class u there is a subset 4, of £ such that
m(4,) =0and [ g(x)| <5 foranyx in £ |4,

Let 4 be a measurable subset of £ with m(A4) > 0, then we
can define the restriction u|,in usual way. But u| ,is
nonsense if m(4)= 0.




Let u be in M(E). If there is an integrable function /" in the
class u, we say u is integrable on £ and put

jAudx = jAfdx V measurable subset A of E.

This notation is well-defined, because

'[Afdx ='[Agdx V measurable subset A of E, f,ge M(E).
(m({xeE:f(x)#g((x)})=0)

Let p be in the interval [1, o) and £ be a measurable
subset of 3" with m(E) > 0, and u be in M(E) . We say
oy € LP(E) if |ufP is integrable on £,

ey € L*(E) if there is a real number K such that |u| < K|
almost everywhere on E .

We put
lull, ={[ Jul}" Y uel’(E), 1<p<w,

lull =inf{K >0:lul <K a.e.on E} VY uel”(E).

We have following properties of LP(E) (see the proofs in
the book “ Real and complex analysis” of W. Rudin)

Theorem . (L'(E),||.||,) is a Banach space for any r in[1,].

Theorem (Holder) Let p and g be in (1, ©), f be in LP(E)
and g be in LI(E) such that p' + ¢! = 1. Then

|| o fedxl <IFILIgI,

Theorem. Let p be in (1,00) and T be a continuous linear
mapping from LP(E) into £*. Then there exists a unique g in
LYUE), p'+q'=1such that |T|| = [|g]|, and

T(f) =[gfedx V¥ fel/(B)

Theorem. L?*(E) is a Hilbert space with respect to
following inner-product

<u,y> :IEuvdx Y u,vel’(E).

Definition. Let D an open subset of " and f be a
continuous real function on D. We say fis of class
C.(D) if and only if there is a compact subset K of " such
that K< D and f(x) =0 foranyxin D\ K.

Theorem. Let D an open subset of 3", p € [1,00) and u be
in L2(D) . Then there is a sequence {u,,} in C (D) such that

limllu—u, Il =0.

m—>o0
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