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Models, Views, and Diagrams

A model is a complete
description of a system
from a particular
perspective
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Analysis & Design Model
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Deployment and Implementation
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Test Model
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Use case - functions of a system from the user's point of view

Sequence diagrams -illustrates object interactions arranged in a time sequence.
Class diagrams -static structure in terms of classes and relationships

Activity diagrams -behavior of an operation as a set of actions

State chart diagrams -behavior of a class in terms of states

Collaboration diagrams -spatial representation of objects, links, and interactions

Object diagrams -objects and their relationships and correspond to (simplified
collaboration diagrams that do not represent message broadcasts)

Component diagrams -physical components of an application

Deployment diagrams -deployment of components on particular pieces of hardware
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Actors

» An actor iIs someone or some thing that
must interact with the system under
development

%
Security system
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Use Cases

>

» A use case Is a pattern of behavior the system exhibits

- Each use case Is a sequence of related transactions
performed by an actor and the system in a dialogue

» Actors are examined to determine their needs
- Buyer — post an rfq

- seller — respond to rfg Principal actors

I I Secondary actors
- Data validator — validate External hardware
- Dep manager -- deploy Other systems

O >
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Use Cases

> A flow of events document Is created for
each use cases

- Written from an actor point of view

» Detalils what the system must provide to
the actor when the use cases Is executed

» Typical contents
- How the use case starts and ends
- Normal flow of events
- Alternate flow of events
- Exceptional flow of events
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Uses and Extends Use Case

Relationships
» As the use cases aﬁfe documented, other

use case relationships may be discovered

- A uses relationship shows behavior that is
common to one or more use cases

- An extends relationship shows optional
behavior

- Communicates shows specific functions

O
Post an rfg O

__
7/'Logon validation
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Use Case Realizations

» The use case diagram presents an outside
view of the system

» Interaction diagrams describe how use
cases are realized as interactions among

societies of objects

» Two types of interaction diagrams

- Sequence diagrams
- Collaboration diagrams
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Sequence Diagram

» A sequence diagram displays object
Interactions arranged in a time sequence
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Class Diagrams

» A class diagram shows the existence of
classes and their relationships in the logical
view of a system

» UML modeling elements in class diagrams
Classes and their structure and behavior

Association, aggregation, dependency, and
Inheritance relationships

Multiplicity and navigation indicators
Role names
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Classes

A class is a collection of objects with common
structure, common behavior, common
relationships and common semantics

Classes are found by examining the objects in
sequence and collaboration diagram

A class is drawn as a rectangle with three
compartments

Classes should be named using the vocabulary of
the domain
- Naming standards should be created

- e.g., all classes are singular nouns starting with a
capital letter
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Classes

+P uhblic attribute

2P rotected attribute
-Frivate attribute
i_lazs attribute

1. Attributes and Operations
2. Stereotype

3. Visibility of Attributes
and Operations

+Public operation ]

2P rotected operation() )
Priva e operstion )
_lass operation( )

«signal>» transaction within a state machine.
«interface> description of visible operations.
«metaclass>»The class of a class

«utility>»A class reduced to the concept of module
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Extensibility Mechanisms

> Stereotype

» Tagged value
» Constraint

«container» tEQQEEI value
ActionQueue /

{version = 3.2}
add(a : Action)
remove(n : Integer) )
«query> /

| length() : Integer constraint
«helper functions»
reorder()

/
A

{add runs in O(1) time}
.
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P ackage

0.1 0..*
Includes FHeferences
0.x 0..x

Elemenrt

PARRAN

Model elemert Yizual elemert

y Yoo
Frojection



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Common Mechanisms
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Data Types
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Extending the UML

» Stereotypes can be used to extend the
UML notational elements

» Stereotypes may be used to classify and
extend associations, inheritance
relationships, classes, and components

» Examples:

- Class stereotypes: boundary, control, entity,
utility, exception

- Inheritance stereotypes:. uses and extends
- Component stereotypes: subsystem
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Classes

Registration Form

Tranc coord

Registration

payment

Service
manager

/
/

Service Offering
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Operations

>

» The behavior of a class Is represented by
Its operations

» Operations may be found by examining
Interaction diagrams

RegistrationManager

: add member count =count +1
Add member()
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Attributes

» The structure of a class Is represented by
Its attributes

» Attributes may be found by examining
class definitions, the problem
requirements, and by applying domain
knowledge
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Relationships

» Relationships provide a pathway for
communication between objects

» Sequence and/or collaboration diagrams are
examined to determine what links between
objects need to exist to accomplish the behavior -
- If two objects need to “talk” there must be a link

between them

» Three types of relationships are:
- Association
- Aggregation
- Dependency
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>

>

Relationships

An association Is a bi-directional connection
between classes

An aggregation is a stronger form of relationship
where the relationship is between a whole and its
parts

A dependency relationship is a weaker form of
relationship showing a relationship between a
client and a supplier where the client does not
have semantic knowledge of the supplier
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Relationships

Association

Role(instances)
*Multiplicity
*Navigability
*Aggregation
*Changeability

— — *Ordering
mubtiplicity : Multiplicity

nawvigable : Boolean
aggregate : Boolean
changeable : Boolean
ordered : Boolean

Farici 4= nt
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Relationships
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Finding Relationships

» Relationships are discovered by examining
Interaction diagrams

- If two objects must “talk” there must be a
pathway for communication

Reaqistration

- alle
| [Manager| |

3: add user
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Multiplicity and Navigation

» Multiplicity defines how many objects participate
In a relationships

- Multiplicity is the number of instances of one class
related to ONE instance of the other class

- For each association and aggregation, there are two

multiplicity decisions to make: one for each end of the
relationship

» Although associations and aggregations are bi-
directional by default, it is often desirable to
restrict navigation to one direction

» If navigation is restricted, an arrowhead is added
to indicate the direction of the navigation
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Multiplicity and Navigation
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Inheritance

» Inheritance Is a relationships between a
superclass and its subclasses

» There are two ways to find inheritance:
- Generalization
- Specialization

» Common attributes, operations, and/or
relationships are shown at the highest
applicable level in the hierarchy
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Inheritance
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The State of an class

» A state chart diagram shows
- The life history of a given class

- The events that cause a transition from one
state to another

- The actions that result from a state change

» State transition diagrams are created for
objects with significant dynamic behavior
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State Chart Diagram
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State Transition Diagram
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Collaboration Diagram

Collaboration diagrams

illustrate interactions
between objects, using a
static spatial structure that
facilitates the illustration of
the collaboration of a group
of objects

Extension of object diagrams.

context of a group of objects

interaction between these objects
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Activity Diagram

An activity diagram is
a variant of statechart
diagrams organized
according to actions, ;_ Inquire
and mainly targeted
towards representing
the internal behavior
of a method Order

Deliver
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Component Diagram

Component diagrams describe software components and their
relationships within the implementation environment

Components represent all kinds of elements that pertain to the piecing
together of software applications. Among other things, they may be simple
files, or libraries loaded dynamica
P rocesses 1 Specification
Processes are objects that -
have their own control flow
(or thread), and as such are
special kinds of active

objects. Processes may be
contained within components

Subsystems
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Deployment Diagram

Deployment diagrams show the physical layout of the various hardware
components (nodes) that compose a system, as well as the distribution of
executable programs on this hardware.
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Modeling Elements

» Structural elements

- class, interface, collaboration, use case,
active class, component, node

> Behavioral elements
- Interaction, state machine

Interface

» Grouping elements
- package, subsyste

objects are underlined
abstract elements are in italics.

» Other elements

+ resize(s : Scale)

uisiﬂility + display()
- no‘[e # invalidateRegion()

Responsibilities
-- manage shape
state -
-- handle basic shape| extra compartment
transformations
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