Architecture and the UML

End-user Programmests
Functionaliby aoftware management

Development
View

Logical View —w=

—_— —_—

10 | o34
l chenarlni) l

e —
[——]

Process View —®=| Physical View

Integralors System engineers
Fetformance Topology

acalabiliny Communications

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Models, Views, and Diagrams

A model is a complete
description of a system
from a particular
perspective

Class
Diagrams
Use Case :
Diagrams Object

Sequence Diagrams

Diagrams

Collaboration Component

Diagrams Diagrams

Statechart Deployment

iaqar o Diagrams
Diagrams Activity 9

Diagrams

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Use Case Model

>
Use Case
I / Diagrams
Use Case
Views |§ Class Object
Diagrams Diagrams

Component
Diagrams

1

Analysis
Views

1

Design
Views

Deployment
Diagrams

1

DepI
Views

[

Impl.
Views

Sequence
Diagrams

ollaboratio
Diagrams

Statechart
Diagrams

Activity
Diagrams

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Analysis & Design Model

Use Case
Views
E— /
Analysis
Views

Use Case
Diagrams

Class Object
Diagrams Diagrams
Component
Diagrams
Deployment
Diagrams
. Diagrams

ollaboratio
Diagrams

Statechart
Diagrams
Diagrams

Design
Views

1
Depl.
Views
[

Impl.
Views
]

Test
Views

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Deployment and Implementation

Use Case
Diagrams

Model :

Use Case
Views Class Object
P Diagrams Diagrams
Analysis C
Views omponent
Diagrams
]
Design Deployment
Views Diagrams
]
Sequence
Depl. Diagrams
Views

Impl.
Views
]

Test
Views

ollaboratio
Diagrams

Statechart
Diagrams

Activity
Diagrams

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Test Model

1

Use Case
Views

1

Analysis
Views

1

Design
Views

1

DepI
Views

[

Impl.
Views

[

Use Case
Diagrams

Class
Diagrams

Component
Diagrams

Deployment
Diagrams

Sequence
Diagrams

ollaboratio
Diagrams

Statechart
Diagrams

Activity
Diagrams

Object
Diagrams

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Use case - functions of a system from the user's point of view

Sequence diagrams -illustrates object interactions arranged in a time sequence.
Class diagrams -static structure in terms of classes and relationships

Activity diagrams -behavior of an operation as a set of actions

State chart diagrams -behavior of a class in terms of states

Collaboration diagrams -spatial representation of objects, links, and interactions

Object diagrams -objects and their relationships and correspond to (simplified
collaboration diagrams that do not represent message broadcasts)

Component diagrams -physical components of an application

Deployment diagrams -deployment of components on particular pieces of hardware

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Actors

» An actor iIs someone or some thing that
must interact with the system under
development

%
Security system

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Use Cases

>

» A use case Is a pattern of behavior the system exhibits

- Each use case Is a sequence of related transactions
performed by an actor and the system in a dialogue

» Actors are examined to determine their needs
- Buyer — post an rfq

- seller — respond to rfg Principal actors

I I Secondary actors
- Data validator — validate External hardware
- Dep manager -- deploy Other systems

O >

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Use Cases

> A flow of events document Is created for
each use cases

- Written from an actor point of view

» Detalils what the system must provide to
the actor when the use cases Is executed

» Typical contents
- How the use case starts and ends
- Normal flow of events
- Alternate flow of events
- Exceptional flow of events

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Uses and Extends Use Case

Relationships
» As the use cases aﬁfe documented, other

use case relationships may be discovered

- A uses relationship shows behavior that is
common to one or more use cases

- An extends relationship shows optional
behavior

- Communicates shows specific functions

O
Post an rfg O

__
7/'Logon validation

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Use Case Realizations

» The use case diagram presents an outside
view of the system

» Interaction diagrams describe how use
cases are realized as interactions among

societies of objects

» Two types of interaction diagrams

- Sequence diagrams
- Collaboration diagrams

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Sequence Diagram

» A sequence diagram displays object
Interactions arranged in a time sequence

re

tion

1: fill in Info

2: submif]

egistratio profile

- add user]

manadget |

4: add interests

section 1

5: save inforrg

htion

6: add info

7: add

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class Diagrams

» A class diagram shows the existence of
classes and their relationships in the logical
view of a system

» UML modeling elements in class diagrams
Classes and their structure and behavior

Association, aggregation, dependency, and
Inheritance relationships

Multiplicity and navigation indicators
Role names

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Classes

A class is a collection of objects with common
structure, common behavior, common
relationships and common semantics

Classes are found by examining the objects in
sequence and collaboration diagram

A class is drawn as a rectangle with three
compartments

Classes should be named using the vocabulary of
the domain
- Naming standards should be created

- e.g., all classes are singular nouns starting with a
capital letter

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Classes

+P uhblic attribute

2P rotected attribute
-Frivate attribute
i_lazs attribute

1. Attributes and Operations
2. Stereotype

3. Visibility of Attributes
and Operations

+Public operation]

2P rotected operation())
Priva e operstion)
_lass operation()

«signal>» transaction within a state machine.
«interface> description of visible operations.
«metaclass>»The class of a class

«utility>»A class reduced to the concept of module

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Extensibility Mechanisms

> Stereotype

» Tagged value
» Constraint

«container» tEQQEEI value
ActionQueue /

{version = 3.2}
add(a : Action)
remove(n : Integer))
«query> /

| length() : Integer constraint
«helper functions»
reorder()

/
A

{add runs in O(1) time}
.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Common Elements

P ackage

0.1 0..*
Includes FHeferences
0.x 0..x

Elemenrt

PARRAN

Model elemert Yizual elemert

y Yoo
Frojection

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Common Mechanisms

Model eemert =

il

Felation=hip

zis

Dependency

=OLUFCE Target
a.x 0.*

Sterectype |=1 Ssiﬂcating_ Eletment

name : Mame

T agged/alue Canstrairt

name : Mame

fn..*l

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Data Types

Boolean

Expression A Ldtiplicity

Irteger =tring

Mame ninterpreted

Packages]

] /
] i
=Upplier

[tL

Implementation

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Extending the UML

» Stereotypes can be used to extend the
UML notational elements

» Stereotypes may be used to classify and
extend associations, inheritance
relationships, classes, and components

» Examples:

- Class stereotypes: boundary, control, entity,
utility, exception

- Inheritance stereotypes:. uses and extends
- Component stereotypes: subsystem

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Classes

Registration Form

Tranc coord

Registration

payment

Service
manager

/
/

Service Offering

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operations

>

» The behavior of a class Is represented by
Its operations

» Operations may be found by examining
Interaction diagrams

RegistrationManager

: add member count =count +1
Add member()

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Attributes

» The structure of a class Is represented by
Its attributes

» Attributes may be found by examining
class definitions, the problem
requirements, and by applying domain
knowledge

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Relationships

» Relationships provide a pathway for
communication between objects

» Sequence and/or collaboration diagrams are
examined to determine what links between
objects need to exist to accomplish the behavior -
- If two objects need to “talk” there must be a link

between them

» Three types of relationships are:
- Association
- Aggregation
- Dependency

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

>

>

Relationships

An association Is a bi-directional connection
between classes

An aggregation is a stronger form of relationship
where the relationship is between a whole and its
parts

A dependency relationship is a weaker form of
relationship showing a relationship between a
client and a supplier where the client does not
have semantic knowledge of the supplier

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Relationships

Association

Role(instances)
*Multiplicity
*Navigability
*Aggregation
*Changeability

— — *Ordering
mubtiplicity : Multiplicity

nawvigable : Boolean
aggregate : Boolean
changeable : Boolean
ordered : Boolean

Farici 4= nt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Relationships

izereralization

sLpetye

slbtye

I:I..=

1

fordered]

izereralizable element

Phstract ; Boolean
Leaf : Boolean
Root ; Boaolean

1
11

£

F ackage

Dependency

o.F

Elemert |0.°
Targel SOURCE

=

The target and the
source belong to

the zame model

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Finding Relationships

» Relationships are discovered by examining
Interaction diagrams

- If two objects must “talk” there must be a
pathway for communication

Reaqistration

- alle
| [Manager| |

3: add user

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Registration Forn)

Tranc coord

alidate|

Registration

ladd(profile b/s/interests)|
1

Buyer

ajor|

MUrpose

payment

Service
manager

[name]
Rule setting

open()
service

/

Service Offering

lopeng]

[[category(product Info)|

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Multiplicity and Navigation

» Multiplicity defines how many objects participate
In a relationships

- Multiplicity is the number of instances of one class
related to ONE instance of the other class

- For each association and aggregation, there are two

multiplicity decisions to make: one for each end of the
relationship

» Although associations and aggregations are bi-
directional by default, it is often desirable to
restrict navigation to one direction

» If navigation is restricted, an arrowhead is added
to indicate the direction of the navigation

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Multiplicity and Navigation

Registration Forn)

Registration

Tranc coord

ladd(profile b/s/interests)|
1

Buyer

ajor|

alidate|

urpose

0..4

payment

Service
manager

[name]
."||Rule setting

open()
service

1

1.7

Service Offering

lopeng]

[[category(product Info)|

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

» Inheritance Is a relationships between a
superclass and its subclasses

» There are two ways to find inheritance:
- Generalization
- Specialization

» Common attributes, operations, and/or
relationships are shown at the highest
applicable level in the hierarchy

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Inheritance

Registration Forn)

payment

Registration

ladd(profile b/s/interests)|
1

User

<\| Buyer

Name
UAress

ajor|

Tranc coord

Service
manager

[name]
Rule setting

/

alidate|

Service Offering

MUrpose

lopeng]

[[category(product Info)|

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The State of an class

» A state chart diagram shows
- The life history of a given class

- The events that cause a transition from one
state to another

- The actions that result from a state change

» State transition diagrams are created for
objects with significant dynamic behavior

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

State Chart Diagram

Action associated to the state entry
transition (Opl)

State entry action (Op2)

Activity within the state (Op3)

erntry £ Op2

Action associated to internal events (Op4) da / Up3
AnBwvent ¥ Opd
exit f Ops

State exit action (Op5)

Action associated to the state exit
transition

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

State Transition Diagram

Q

\

Initialization

Add document
change flag
Set count = N

Add document

l ldo: Initialize document]
J

Cancel

_—

f Canceled

l ldo: Notify registered users]

\

O

validated

exit: change flag]

Closed

]

L ldo: Finalize course] J

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Collaboration Diagram

Collaboration diagrams

illustrate interactions
between objects, using a
static spatial structure that
facilitates the illustration of
the collaboration of a group
of objects

Extension of object diagrams.

context of a group of objects

interaction between these objects

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Activity Diagram

An activity diagram is
a variant of statechart
diagrams organized
according to actions, ;_ Inquire
and mainly targeted
towards representing
the internal behavior
of a method Order

Deliver

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Component Diagram

Component diagrams describe software components and their
relationships within the implementation environment

Components represent all kinds of elements that pertain to the piecing
together of software applications. Among other things, they may be simple
files, or libraries loaded dynamica
P rocesses 1 Specification
Processes are objects that -
have their own control flow
(or thread), and as such are
special kinds of active

objects. Processes may be
contained within components

Subsystems

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Deployment Diagram

Deployment diagrams show the physical layout of the various hardware
components (nodes) that compose a system, as well as the distribution of
executable programs on this hardware.

Caonsale e
i —1 Servar
T ATLRIPe

PC ‘ ‘ | X5 whssambly

i
Filel) L L
1 | Mastar

| Gate

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Modeling Elements

» Structural elements

- class, interface, collaboration, use case,
active class, component, node

> Behavioral elements
- Interaction, state machine

Interface

» Grouping elements
- package, subsyste

objects are underlined
abstract elements are in italics.

» Other elements

+ resize(s : Scale)

uisiﬂility + display()
- no‘[e # invalidateRegion()

Responsibilities
-- manage shape
state -
-- handle basic shape| extra compartment
transformations

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

